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Abstract
In this work, we investigate blowup phenomena for nonlinearly damped viscoelastic
equations with logarithmic source effect and time delay in the velocity. Owing to the
nonlinear damping term instead of strong or linear dissipation, we cannot apply the
concavity method introduced by Levine. Thus, utilizing the energy method, we show
that the solutions with not only non-positive initial energy but also some positive
initial energy blow up at a finite point in time.

MSC: 35L05; 35L70; 35B44

Keywords: Blowup; Viscoelastic equation; Logarithmic source; Time delay; Nonlinear
dissipation

1 Introduction
We discuss the viscoelastic wave equation with nonlinear damping, logarithmic source,
and delay terms

utt – �u + k ∗ �u + c1
∣
∣ut(t)

∣
∣
q–2ut(t) + c2

∣
∣ut(t – τ )

∣
∣
q–2ut(t – τ )

= |u|p–2u ln |u| in � × (0, T), (1.1)

u = 0 on ∂� × (0, T), (1.2)

u(0) = u0, ut(0) = u1 in �, (1.3)

ut(t – τ ) = j0(t – τ ) for t ∈ (0, τ ), (1.4)

here � ⊂R
n is a bounded domain with smooth boundary ∂�, k ∗�u =

∫ t
0 k(t – s)�u(s) ds,

the kernel function k : [0,∞) → (0,∞) is a C1-function with

k′(t) ≤ 0 and 1 –
∫ ∞

0
k(s) ds := kl > 0,

τ > 0 is time delay, the coefficients c1 > 0 and c2 ∈R satisfy 0 < |c2| < c1, and the exponents
q ≥ 2 and p > 2 are specified later.
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Many researchers have studied parabolic or hyperbolic equations with logarithmic non-
linearity [2, 4, 7, 13, 15]. For the physical application of this nonlinearity, we refer to [1, 6].
In [4], the authors discussed a strongly damped equation,

utt – �u – �ut = |u|p–2u ln |u|

with Dirichlet boundary condition. They showed that the solutions with subcritical and
critical initial energy blow up in a finite point under suitable conditions. Moreover, they
estimated bounds of the blowup time. The authors of [7] proved similar results to those of
[4] for the equation with memory. Most work dealing with wave equations with logarith-
mic nonlinearity is associated with a strongly or linearly damped mechanism, and blowup
results are investigated by virtue of the potential well method and Levine’s concavity tech-
nique [12].

On the other hand, time delay effect arises in many natural phenomena depending not
only on the present state but also on some past occurrences. Thus, partial differential
equations with time delay have become an active area of research in resent years. For the
physical application of the time delay, we refer to [3, 18]. Recently, Kafini and Messaoudi
[8] considered the wave equation with linear damping and delay terms

utt – �u + c1ut(t) + c2ut(t – τ ) = k|u|p–2u ln |u|

with Dirichlet boundary condition. They established a blowup result of the solution with
negative initial energy by adapting the energy method. While there are many studies on
the existence and asymptotic stability of the solutions of wave equations with delay, there
are relatively few studies on blowup. We refer to [5, 10, 16, 17, 19] and [9] for stability
and blowup of equations with delay, respectively. Motivated by this pioneering work [8],
in this article, we study blowup phenomena for the nonlinearly damped viscoelastic wave
equation (1.1)–(1.4) with logarithmic source effect and time delay in the velocity. Due to
the presence of nonlinear dissipation instead of strong or linear damping terms, we cannot
apply the concavity method. Thus, by applying the energy method, we establish a blowup
result of solutions with not only non-positive initial energy but also some positive initial
energy. And, it is worth to mention that there are few works dealing with viscoelastic wave
equations with nonlinear damping and logarithmic source terms.

Here is the outline of this paper. In Sect. 2, we present notations, hypotheses, and aux-
iliary functions and lemmas. In Sect. 3, we establish a blowup criterion of solutions with
not only non-positive initial energy but also some positive initial energy.

2 Preliminaries
Throughout this article, (·, ·) denotes the scalar product in Hilbert space L2(�). ‖·‖r repre-
sents the norm in the space Lr(�). Moreover, ‖ ·‖Y denotes the norm of a normed space Y .
C > 0 represents a generic constant. If there is no ambiguity, we omit the variables t and
x.

We let the function y be as in [16]

y(x,σ , t) = ut(x, t – στ ) for (x,σ , t) ∈ � × (0, 1) × (0, T).
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Then problem (1.1)–(1.4) reads

utt – �u +
∫ t

0
k(t – s)�u(s) ds + c1|ut|q–2ut + c2

∣
∣y(x, 1, t)

∣
∣
q–2y(x, 1, t)

= |u|p–2u ln |u| in � × (0, T), (2.1)

τyt(x,σ , t) + yσ (x,σ , t) = 0 for (x,σ , t) ∈ � × (0, 1) × (0, T), (2.2)

u = 0 on ∂� × (0, T), (2.3)

u(0) = u0, ut(0) = u1 in �, (2.4)

y(0) = j0(x, –στ ) := y0 in � × (0, 1). (2.5)

By the arguments of [7, 9], we can state the well-posedness.

Theorem 2.1 Let (u0, u1, y0) ∈ H1
0 (�) × L2(�) × Lq(� × (0, 1)), q ≥ 2, and

2 < p <
2(n – 1)

n – 2
if n ≥ 3, 2 < p < ∞ if n = 1, 2.

Then problem (2.1)–(2.5) admits a unique local solution (u, y) with u ∈ C(0, T ; H1
0 (�)) ∩

C1(0, T ; L2(�)) and y ∈ L∞(0, T ; Lq(� × (0, 1))).

Our goal is to find a blowup result to problem (2.1)–(2.5). For this, we will often use the
embedding

H1
0 (�) ↪→ Lr(�), where 2 ≤ r ≤ r :=

⎧

⎨

⎩

∞ if n = 1, 2;
2n

n–2 if n ≥ 3,

and Young’s inequality

ab ≤ 1
r

ar +
1
r∗ br∗ , (2.6)

where

a, b ≥ 0, r, r∗ > 1,
1
r

+
1
r∗ = 1.

Also, we need the lemmas below, which are proved by Kafini and Messaoudi [8], to esti-
mate logarithmic nonlinearity.

Lemma 2.1 For φ ∈ Lp(�) ∩ H1
0 (�), we have

‖φ‖s
p ≤ C

(‖φ‖p
p + ‖∇φ‖2

2
)

for 2 ≤ s ≤ p.

Lemma 2.2 For φ ∈ Lp+1(�) ∩ H1
0 (�) with

∫

�
|φ|p ln |φ|dx ≥ 0, we have

(∫

�

|φ|p ln |φ|dx
) s

p
≤ C

(

‖∇φ‖2
2 +

∫

�

|φ|p ln |φ|dx
)

for 2 ≤ s ≤ p.
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Lemma 2.3 For φ ∈ Lp(�) ∩ H1
0 (�) with

∫

�
|φ|p ln |φ|dx ≥ 0, we have

‖φ‖p
p ≤ C

(

‖∇φ‖2
2 +

∫

�

|φ|p ln |φ|dx
)

.

To establish our desired blowup result, we impose the following assumptions:
(Hn) Let 1 ≤ n ≤ 5.
(Hp) Let p satisfy

⎧

⎨

⎩

2 < p < ∞ if n = 1, 2;

2 < p < min{ 2(n–1)
n–2 , n+2

n–2 } if n = 3, 4, 5.

(Hq) Let q verify

max

{

2,
p2 + 2p

p2 – 2p + 4

}

< q < p. (2.7)

(Hk) Let k satisfy

∫ ∞

0
k(s) ds <

p(1 – λ) – 2
p(1 – λ) – 2 + 1

2η

, (2.8)

where

0 < λ <
p – 2

p
, 0 < η <

p(1 – λ)
2

. (2.9)

From (Hp), there exists μ > 0 satisfying

⎧

⎨

⎩

2 < p < p + μ < ∞ if n = 1, 2;

2 < p < p + μ < 2n
n–2 if n = 3, 4, 5.

(2.10)

This implies

H1
0 (�) ↪→ Lp+μ(�).

Put D0 be the embedding constant with

‖φ‖p+μ ≤ D0‖∇φ‖2, φ ∈ H1
0 (�). (2.11)

We let D = D0√
kl

and define a continuously differentiable function K as

K(ξ ) = –
Dp+μ

eμp
ξp+μ +

1
2
ξ 2 (2.12)
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and put

ξK =
(

eμp
p + μ

) 1
p+μ–2

(
1
D

) p+μ
p+μ–2

, (2.13)

Kmax =
(

1
2

–
1

p + μ

)(
eμp

p + μ

) 2
p+μ–2

(
1
D

) 2(p+μ)
p+μ–2

. (2.14)

Lemma 2.4 For p > 2 and μ > 0, the function K satisfies
(i) K(0) = 0,

(ii) limξ→∞ K(ξ ) = –∞,
(iii) K ′(ξ ) > 0 on (0, ξK ), K ′(ξ ) < 0 on (ξK ,∞),
(iv) K has the maximum value Kmax at ξK .

Proof The results (i) and (ii) are clear. Since

K ′(ξ ) = ξ

(

1 –
(p + μ)Dp+μ

eμp
ξp+μ–2

)

, (2.15)

we have K ′(ξK ) = 0, K ′(ξ ) > 0 on (0, ξK ), and K ′(ξ ) < 0 on (ξK ,∞). Thus, K has the maxi-
mum value

K(ξK ) = –
Dp+μ

eμp
ξ

p+μ

K +
1
2
ξ 2

K

=
(

1
2

–
Dp+μ

eμp
ξ

p+μ–2
K

)

ξ 2
K

=
(

1
2

–
1

p + μ

)

ξ 2
K

=
(

1
2

–
1

p + μ

)(
eμp

p + μ

) 2
p+μ–2

(
1
D

) 2(p+μ)
p+μ–2

. (2.16)
�

We also need the following auxiliary result in the proof of our main theorem.

Lemma 2.5 For p > 2, μ > 0, and 0 < λ < p–2
p , the ξK and Kmax verify

0 <
ξ 2

K
2p(1 – λ)

(
p(1 – λ)

2
– 1

)

< Kmax. (2.17)

Proof First, we claim

A :=
(

p2 – 2p + μp + 2μ
)

– λp(p + μ – 4) > 0. (2.18)

Indeed, if p + μ ≤ 4, it is clear that A > 0. If p + μ > 4,

min

{
p – 2

p
,

p2 – 2p + μp + 2μ

p(p + μ – 4)

}

=
p – 2

p
.
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This means

0 < λ <
p – 2

p
≤ p2 – 2p + μp + 2μ

p(p + μ – 4)
.

So, we also have A > 0 if p + μ > 4. The result (2.18) implies

1
2

–
1

p + μ
–

1
2p(1 – λ)

(
p(1 – λ)

2
– 1

)

=
(p2 – 2p + μp + 2μ) – λp(p + μ – 4)

4p(p + μ)(1 – λ)
> 0,

which gives

0 <
ξ 2

K
2p(1 – λ)

(
p(1 – λ)

2
– 1

)

<
(

1
2

–
1

p + μ

)

ξ 2
K = Kmax. �

3 Blowup results
In this part, we search a blowup result of the solution to (2.1)–(2.5) inspired by the ideas
in [8, 14].

We define the energy to problem (2.1)–(2.5) by

E(t) =
1
2
‖ut‖2

2 +
1
2

(

1 –
∫ t

0
k(s) ds

)

‖∇u‖2
2 +

1
2

(k ◦ ∇u) +
1
p2 ‖u‖p

p

–
1
p

∫

�

|u|p ln |u|dx + ξτ

∫ 1

0

∥
∥y(σ , t)

∥
∥

q
q dσ , (3.1)

where

(k ◦ ∇u)(t) =
∫ t

0
k(t – s)

∥
∥∇u(t) – ∇u(s)

∥
∥

2
2 ds

and

(q – 1)|c2|
q

< ξ < c1 –
|c2|
q

. (3.2)

Lemma 3.1 Under the conditions of Theorem 2.1, the equation

d
dt

E(t) ≤ –γ1
(‖ut‖q

q +
∥
∥y(1, t)

∥
∥

q
q

)

–
k(t)

2
‖∇u‖2

2 +
1
2
(

k′ ◦ ∇u
) ≤ 0 (3.3)

is fulfilled for some γ1 > 0.

Proof Taking the scalar product (2.1) by ut in L2(�), we get

d
dt

(
1
2
‖ut‖2

2 +
1
2
‖∇u‖2

2

)

–
∫ t

0
k(t – s)

(∇u(s),∇ut(t)
)

ds

= –c1‖ut‖q
q – c2

∫

�

ut(x, t)
∣
∣y(x, 1, t)

∣
∣
q–2y(x, 1, t) dx +

∫

�

ut|u|p–2u ln |u|dx.
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Using the estimate

∫

�

ut|u|p–2u ln |u|dx =
1
p

d
dt

∫

�

|u|p ln |u|dx –
1
p2

d
dt

‖u‖p
p

and

–
∫ t

0
k(t – s)

(∇u(s),∇ut(t)
)

ds

=
1
2

d
dt

{

(k ◦ ∇u) –
(∫ t

0
k(s) ds

)

‖∇u‖2
2

}

+
k(t)

2
‖∇u‖2

2 –
1
2
(

k′ ◦ ∇u
)

,

we get

d
dt

E(t) = –c1
∥
∥ut(t)

∥
∥

q
q – c2

∫

�

ut(x, t)
∣
∣y(x, 1, t)

∣
∣
q–2y(x, 1, t) dx

–
k(t)

2
‖∇u‖2

2 +
1
2
(

k′ ◦ ∇u
)

+
∂

∂t

(

ξτ

∫ 1

0

∥
∥y(σ , t)

∥
∥

q
q dσ

)

. (3.4)

Using (2.6) with q–1
q + 1

q = 1, we have

–c2

∫

�

∣
∣y(x, 1, t)

∣
∣
q–2y(x, 1, t)ut(x, t) dx ≤ |c2|(q – 1)

q
∥
∥y(1, t)

∥
∥

q
q +

|c2|
q

∥
∥ut(t)

∥
∥

q
q. (3.5)

From (2.2), we find

∂

∂t

∫ 1

0

∥
∥y(σ , t)

∥
∥

q
q dσ =

∫

�

∫ 1

0
q
∣
∣y(x,σ , t)

∣
∣
q–2y(x,σ , t)yt(x,σ , t) dσ dx

= –
1
τ

∫

�

∫ 1

0
q
∣
∣y(x,σ , t)

∣
∣
q–2y(x,σ , t)yσ (x,σ , t) dσ dx

= –
1
τ

∫

�

∫ 1

0

∂

∂σ

∣
∣y(x,σ , t)

∣
∣
q dσ dx

= –
1
τ

∥
∥y(1, t)

∥
∥

q
q +

1
τ

∥
∥y(0, t)

∥
∥

q
q

= –
1
τ

∥
∥y(1, t)

∥
∥

q
q +

1
τ

∥
∥ut(t)

∥
∥

q
q. (3.6)

From (3.4), (3.5), and (3.6), one sees

d
dt

E(t) ≤ –
(

c1 –
|c2|
q

– ξ

)

‖ut‖q
q –

(

ξ –
|c2|(q – 1)

q

)
∥
∥y(1, t)

∥
∥

q
q

–
k(t)

2
‖∇u‖2

2 +
1
2
(

k′ ◦ ∇u
)

.

Letting

γ1 = min

{

c1 –
|c2|
q

– ξ , ξ –
|c2|(q – 1)

q

}

,

we obtain (3.3) from (3.2). �
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Lemma 3.2 Let (u, y) be the solution of (2.1)–(2.5). If the initial datum (u0, y0) satisfies

E(0) < Kmax and
√

kl‖∇u0‖2 ≥ ξK , (3.7)

there exists ξ1 > ξK such that

√

kl
∥
∥∇u(t)

∥
∥

2 ≥ ξ1, t ≥ 0. (3.8)

Proof Set

�1 =
{

x ∈ � | ∣∣u(x, t)
∣
∣ ≥ 1

}

and �2 =
{

x ∈ � | ∣∣u(x, t)
∣
∣ < 1

}

.

Using (3.1), (2.11), (2.12), and the relation (Lemma 2.1, [11])

0 ≤ ln a ≤ ar

er
for r > 0, a ≥ 1,

we derive

E(t) ≥ 1
2

(

1 –
∫ t

0
k(s) ds

)

‖∇u‖2
2 –

1
p

∫

�1

|u|p ln |u|dx –
1
p

∫

�2

|u|p ln |u|dx

≥ kl

2
‖∇u‖2

2 –
1

eμp

∫

�1

|u|p+μ dx

≥ kl

2
‖∇u‖2

2 –
1

eμp
‖u‖p+μ

p+μ

≥ kl

2
‖∇u‖2

2 –
Dp+μ

0
eμp

‖∇u‖p+μ

2

= K
(√

kl‖∇u‖2
)

. (3.9)

Since E(0) < Kmax, there exists ξ1 > ξK with K(ξ1) = E(0). From (3.9), we have

K(ξ1) = E(0) ≥ K
(√

kl‖∇u0‖2
)

. (3.10)

Since K is decreasing on (ξK ,∞), (3.10) gives

√

kl‖∇u0‖2 ≥ ξ1.

To show (3.8), we use a contradiction. Suppose there exists t1 > 0 such that
√

kl‖∇u(t1)‖2 <
ξ1. The continuity of u corresponding to t gives the existence of t0 > 0 with

ξK <
√

kl
∥
∥∇u(t0)

∥
∥

2 < ξ1.

From this and (3.9), we get

E(t0) ≥ K
(√

kl
∥
∥∇u(t0)

∥
∥

2

)

> K(ξ1) = E(0),

but this contradicts (3.3). �
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Now, we are ready to state our main theorem.

Definition 3.1 We say that the solution (u, y) of problem (2.1)–(2.5) blows up in a finite
time if there exists a time T∗, 0 < T∗ < ∞, such that

lim
t→T∗

∥
∥∇u(t)

∥
∥

2 = ∞.

Theorem 3.1 Let (Hn), (Hp), (Hq), (Hk), and the assumptions of Lemma 3.2 hold. Further-
more, we assume

E(0) <
ξ 2

K
2klp(1 – λ)

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl)

}

.

Then the solution (u, y) to problem (2.1)–(2.5) blows up after finite time.

Proof Let E with

E(0) < E <
ξ 2

K
2klp(1 – λ)

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl)

}

. (3.11)

From this and (2.17), we see

E(0) < E <
ξ 2

K
2p(1 – λ)

(
p(1 – λ)

2
– 1

)

–
ξ 2

K (1 – kl)
8klηp(1 – λ)

< Kmax. (3.12)

Define

R(t) = E – E(t), (3.13)

then

R′(t) = –E′(t) ≥ γ1
(‖ut‖q

q +
∥
∥y(1, t)

∥
∥

q
q

)

+
k(t)

2
‖∇u‖2

2 –
1
2
(

k′ ◦ ∇u
) ≥ 0. (3.14)

From this, (3.1), (3.12), Lemma 3.2, and the definition of ξK and Kmax, we obtain

0 < R(0) ≤ R(t) ≤ E –
kl

2
‖∇u‖2

2 +
1
p

∫

�

|u|p ln |u|dx

< Kmax –
ξ 2

1
2

+
1
p

∫

�

|u|p ln |u|dx

< Kmax –
ξ 2

K
2

+
1
p

∫

�

|u|p ln |u|dx

= –
Dp+μ

eμp
ξ

p+μ

K +
1
p

∫

�

|u|p ln |u|dx

<
1
p

∫

�

|u|p ln |u|dx, (3.15)

which also ensures
∫

�

|u|p ln |u|dx > 0. (3.16)
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Now, we put

L(t) = R1–β (t) + ε
(

u(t), ut(t)
)

, (3.17)

where ε > 0 and

2(p – q)
p2(q – 1)

≤ β ≤ min

{
p – q

p(q – 1)
,

p – 2
2p

}

. (3.18)

From (2.1)–(2.5), we get

L′(t) = (1 – β)R–β(t)R′(t) + ε‖ut‖2
2 – ε

(

1 –
∫ t

0
k(s) ds

)

‖∇u‖2
2

+ ε

∫

�

|u|p ln |u|dx + ε

∫ t

0
k(t – s)

(∇u(t),∇u(s) – ∇u(t)
)

ds

– εc1

∫

�

u|ut|q–2ut dx – εc2

∫

�

u(x, t)
∣
∣y(x, 1, t)

∣
∣
q–2y(x, 1, t) dx. (3.19)

Using (2.6) with q–1
q + 1

q = 1, we have

c1

∫

�

u|ut|q–2ut dx ≤ c1(q – 1)
q

χ
– q

q–1 ‖ut‖q
q +

c1χ
q

q
‖u‖q

q

and

c2

∫

�

u(x, t)
∣
∣y(x, 1, t)

∣
∣
q–2y(x, 1, t) dx ≤ |c2|χq

q
‖u‖q

q +
|c2|(q – 1)

q
χ

– q
q–1

∥
∥y(1, t)

∥
∥

q
q

for any χ > 0. From these and the relation 0 < |c2| < c1, we get

c1

∫

�

u|ut|q–2ut dx + c2

∫

�

u(x, t)
∣
∣y(x, 1, t)

∣
∣
q–2y(x, 1, t) dx

≤ c1(q – 1)
q

χ
– q

q–1
(‖ut‖q

q +
∥
∥y(1, t)

∥
∥

q
q

)

+
(c1 + |c2|)χq

q
‖u‖q

q.

Taking χ = (θR–β(t))– q–1
q , θ > 0, and applying (3.14), we derive

c1

∫

�

u|ut|q–2ut dx + c2

∫

�

u
∣
∣y(1, t)

∣
∣
q–2y(1, t) dx

≤ c1(q – 1)θ
q

(

R(t)
)–β(‖ut‖q

q +
∥
∥y(1, t)

∥
∥

q
q

)

+
c1 + |c2|
qθq–1

(

R(t)
)β(q–1)‖u‖q

q

≤ c1(q – 1)θ
qγ1

(

R(t)
)–βR′(t) +

C
qθq–1

(

R(t)
)β(q–1)‖u‖q

p. (3.20)

Using (3.16), (3.15), Lemma 2.3, and (2.6) with q
p + p–q

p = 1, we find

(

R(t)
)β(q–1)‖u‖q

p

≤ C
(∫

�

|u|p ln |u|dx
)β(q–1)(∫

�

|u|p ln |u|dx + ‖∇u‖2
2

) q
p
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≤ C
(∫

�

|u|p ln |u|dx
)β(q–1){(∫

�

|u|p ln |u|dx
) q

p
+ ‖∇u‖

2q
p

2

}

≤ C
(∫

�

|u|p ln |u|dx
)β(q–1)+ q

p
+ C

(∫

�

|u|p ln |u|dx
)β(q–1)

‖∇u‖
2q
p

2

≤ C
(∫

�

|u|p ln |u|dx
) βp(q–1)+q

p
+ C

(∫

�

|u|p ln |u|dx
) β(q–1)p

p–q
+ ‖∇u‖2

2. (3.21)

From (3.18), we see 0 < β ≤ p–q
p(q–1) , which gives

2 ≤ βp(q – 1) + q ≤ p.

Thanks to (Hp), we also note the solution u to (2.1)–(2.5) belongs to Lp+1(�). So, we can
apply Lemma 2.2 to get

(∫

�

|u|p ln |u|dx
) βp(q–1)+q

p
≤ C

(

‖∇u‖2
2 +

∫

�

|u|p ln |u|dx
)

. (3.22)

Similarly, from (3.18), we see 2(p–q)
p2(q–1) ≤ β ≤ p–q

p(q–1) , which implies

2 ≤ β(q – 1)p2

p – q
≤ p.

So, we have

(∫

�

|u|p ln |u|dx
) β(q–1)p

p–q
≤ C

(

‖∇u‖2
2 +

∫

�

|u|p ln |u|dx
)

. (3.23)

Inserting (3.22) and (3.23) to (3.21), we obtain

(

R(t)
)β(q–1)‖u‖q

p ≤ C
(

‖∇u‖2
2 +

∫

�

|u|p ln |u|dx
)

.

From this and (3.20),

c1

∫

�

|ut|q–2ut dx + c2

∫

�

u
∣
∣y(1, t)

∣
∣
q–2y(1, t) dx

≤ c1(q – 1)θ
qγ1

(

R(t)
)–βR′(t) +

C
qθq–1

(∫

�

|u|p ln |u|dx + ‖∇u‖2
2

)

.

Applying this and the estimate

∫ t

0
k(t – s)

(∇u(t),∇u(s) – ∇u(t)
)

ds ≥ –η(k ◦ ∇u) –
1

4η

(∫ t

0
k(s) ds

)

‖∇u‖2
2

to (3.19), we get

L′(t) ≥
(

(1 – β) –
εc1(q – 1)θ

qγ1

)

R–β (t)R′(t) + ε‖ut‖2
2
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+ ε

∫

�

|u|p ln |u|dx – εη(k ◦ ∇u) –
εC

qθq–1

∫

�

|u|p ln |u|dx

– ε

(

1 –
∫ t

0
k(s) ds +

1
4η

∫ t

0
k(s) ds +

C
qθq–1

)

‖∇u‖2
2. (3.24)

Subtracting and adding the term ελ
∫

�
|u|p ln |u|dx, where λ is given in (2.9), and using

(3.1) and (3.13), we get

L′(t) ≥
(

(1 – β) –
εc1(q – 1)θ

qγ1

)

R–β (t)R′(t) + ε

(

1 +
p(1 – λ)

2

)

‖ut‖2
2

+ ε

(

λ –
C

qθq–1

)∫

�

|u|p ln |u|dx +
ε(1 – λ)

p
‖u‖p

p + εp(1 – λ)R(t)

+ εξτp(1 – λ)
∫ 1

0

∥
∥y(σ , t)

∥
∥

q
q dσ + ε

(
p(1 – λ)

2
– η

)

(k ◦ ∇u) – εp(1 – λ)E

+
ε

2

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl) –

C
qθq–1

}

‖∇u‖2
2

+
ε

2

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl) –

C
qθq–1

}

‖∇u‖2
2. (3.25)

By (Hk), we note

p(1 – λ)
2

– η > 0

and

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl) > 0.

Firstly, we take θ > 0 appropriately large to guarantee

λ –
C

qθq–1 > 0

and

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl) –

C
qθq–1 > 0.

Next, we claim

–εp(1 – λ)E +
ε

2

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl) –

C
qθq–1

}

‖∇u‖2
2 > 0. (3.26)

Indeed, it is seen from Lemma 3.2 that

–p(1 – λ)E +
1
2

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl) –

C
qθq–1

}

‖∇u‖2
2

≥ –p(1 – λ)E +
ξ 2

1
2kl

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl) –

C
qθq–1

}

> –p(1 – λ)E +
ξ 2

K
2kl

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl) –

C
qθq–1

}

. (3.27)
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From (3.11), we have

–p(1 – λ)E +
ξ 2

K
2kl

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl)

}

> 0.

Thus, we can fix θ > 0 suitably large again to get

–p(1 – λ)E +
ξ 2

K
2kl

{

kl

(
p(1 – λ)

2
– 1

)

–
1

4η
(1 – kl)

}

–
C

2klqθq–1 ξ 2
K > 0.

This and (3.27) imply (3.26).
Finally, we pick ε > 0 suitably small to have

(1 – β) –
εc1(q – 1)θ

qγ1
> 0

and

L(0) = R1–β(0) + ε(u0, u1) > 0.

Therefore, from (3.25) we arrive at

L′(t) ≥ C
(

‖ut‖2
2 + ‖u‖p

p + R(t) +
∫

�

|u|p ln |u|dx + ‖∇u‖2
2

)

. (3.28)

Next, from (3.17), we know

L
1

1–β (t) ≤ C
(

R(t) +
∣
∣(u, ut)

∣
∣

1
1–β

)

. (3.29)

Using (2.6) with 1
2(1–β) + 1–2β

2(1–β) = 1, noting 2 ≤ 2
1–2β

≤ p from (3.18), and applying
Lemma 2.1, we deduce

∣
∣(u, ut)

∣
∣

1
1–β ≤ ‖u‖

1
1–β

2 ‖ut‖
1

1–β

2

≤ C‖u‖
1

1–β
p ‖ut‖

1
1–β

2

≤ C
(‖ut‖2

2 + ‖u‖
2

1–2β
p

)

≤ C
(‖ut‖2

2 + ‖u‖p
p + ‖∇u‖2

2
)

. (3.30)

Combining (3.29), (3.30) and noting (3.16), we derive

L
1

1–β (t) ≤ C
(

R(t) + ‖ut‖2
2 + ‖u‖p

p + ‖∇u‖2
2
)

≤ C
(

R(t) + ‖ut‖2
2 + ‖u‖p

p + ‖∇u‖2
2 +

∫

�

|u|p ln |u|dx
)

.

From this and (3.29), we conclude

L′(t) ≥ CL
1

1–β (t), t ≥ 0,

which shows that the solution u blows up after finite time T∗ ≤ 1–β

CβL
β

1–β (0)
. �
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4 Conclusion
In this paper, we considered a viscoelastic wave equation with nonlinear damping and
time delay terms and logarithmic source effect. Under the conditions (Hn), (Hp), (Hq), and
(Hk), we showed that the solutions with not only a non-positive initial energy but also
some positive initial energy blow up after a finite time by utilizing the energy method.
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