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Abstract
In this paper, a Lie symmetry method is used for the nonlinear generalized
Camassa–Holm equation and as a result reduction of the order and computing the
conservation laws are presented. Furthermore, μ-symmetry and μ-conservation laws
of the generalized Camassa–Holm equation are obtained.
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1 Introduction
Partial differential equations (PDEs) with suitable solutions are among the most important
topics in various branches of mathematical physics [1–6]. The most accurate methods for
order reduction and computation conservation rules are the classical Lie theory [7–9],
the general theorem [7], the direct method [10], the μ-symmetries method [11], and the
Noether theorem [7, 12].

Using Lie transformation group theory for order reduction and constructing solutions of
nonlinear PDEs with integer order [8, 9] or fractional order partial differential equations [6,
13–20] and ordinary differential equations is one of the most efficient fields of research in
the theory of nonlinear PDEs. The λ-symmetry method has been presented by Muriel and
Romero, which is a modern method to order reduction of ODEs [21]. Gaeta and Morando
have extended the λ-symmetries approach for ODEs to the μ-symmetries method for
PDEs [22, 23].

The concepts of variational problem and conservation law in the case of symmetry have
been developed by Muriel, Romero and Olver to λ-symmetries of ODEs via proper for-
mulation of Noether’s theorem for λ-symmetry of ODEs [12, 24]. These results have been
generalized by Cicogna and Gaeta to the framework of μ-symmetries for PDEs. Also, the
conservation law called the μ-conservation law in μ-symmetry of the Lagrangian topic
has been addressed [12].
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The nonlinear generalized Camassa–Holm equation (gC-H) equation with the nonlin-
earity parameter p is discussed in this article,

�u ≡ ut – utxx –
1
2

(p + 1)(p + 2)upux +
1
2

p(p – 1)up–2u3
x

+ 2pup–1uxuxx + upuxxx = 0. (1)

In the case that p = 1, the above equation reduces to the Camassa–Holm equation. In the
case that p = 2, we have the case generalized of the Camassa–Holm equation possesses
bi-Hamiltonian structure [25]. This Camassa–Holm equation is a mathematical model for
shallow water waves that explains wave breaking for a major class of solutions in which
the wave inclination blows up in a limited time while the amplitude of wave is confined
[26, 27]. Integrity, possessing a Lax pair, bi-Hamiltonian structure property and infinite
hierarchy of symmetries are important features of the Camassa–Holm equation [26, 28].

The outline of this paper is as follows: Lie symmetry analysis, reduction, optimal sys-
tem of one-dimensional subalgebras and differential invariant of Eq. (1) are presented in
Sect. 2. Some conservation laws for Eq. (1) will be found in Sect. 3. In Sect. 4, we calculate
the μ-symmetry and order reduction of Eq. (1) and Sect. 5 deals with Lagrangian of Eq. (1)
in potential form and we will apply it to obtain μ-conservation laws of Eq. (1).

2 Lie symmetries of gC-H equation
r independent variables x = (x1, . . . , xr) and s dependent variables u = (u1, . . . , us) construct
the total space M = X ×U , and the kth order jet space M(k), including M and the derivatives
of dependent variables up to order k. Let �(x, uk) = 0 be a PDE on M and G be a local
group transformation that acts on M. Suppose ν =

∑r
i=1 ηi(x, u)∂xi +

∑s
α=1 ψα(x, u)∂uα is

an infinitesimal transformation of G in g that acts on X × U × U (1). Now, to calculate the
symmetry group via an infinitesimal symmetry condition, the kth prolongation of ν must
acts on �(x, uk), i.e.,

Pr(k) ν
[
�

(
x, u(k))] ≡ 0, mod �

(
x, u(k)),

where

Pr(k) ν = ν +
s∑

α=1

∑

J=(j1,...,jk )

[

DJ

(

ψα –
r∑

h=1

ηhuα
h

)

+
r∑

h=1

ηhuα
J ,h

]

∂uα
J

, 1 ≤ k ≤ p.

(See for more details [7].) The symmetry group of �(x, uk) is obtained by solving these sys-
tem [7, 9]. Let v = η(x, t, u)∂x + γ (x, t, u)∂t + ψ(x, t, u)∂u be an infinitesimal generator of the
classical Lie point symmetry groups for the gC-H equation, To calculation of the symme-
try group for the gC-H equation, first applying the Pr(3) v on Eq. (1), we have Pr(3) v[�u] = 0,
then substituting

utxx + (1/2)(p + 1)(p + 2)upux – (1/2)p(p – 1)up–2u3
x – 2pup–1uxuxx – upuxxx

for ut , whatever remains is a polynomial equation involving the various derivatives of
u(x, t), whose coefficients are certain derivatives of η, γ and ψ . By solving this multivariate
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system, we will have

η = b3,

γ = b1t + b2,

ψ = –
b1

p
u,

where b1, b2 and b3 are arbitrary constants.

Corollary 1 The Lie algebras of infinitesimal projectable symmetries of the gC-H equation
is spanned by the vector fields

ν1 = ∂x,

ν2 = ∂t ,

ν3 = t∂t –
u
p
∂u.

The one-parameter groups Bi, generated by the vector fields ν1, ν2 and ν3, each of them
giving the transformed point exp(κνi)(x, t, u), are

B1 : (x, t, u) �→ (x + κ , t, u),

B2 : (x, t, u) �→ (x, t + κ , u),

B3 : (x, t, u) �→ (
x, teκ , ue–κ/p).

If u = f (x, t) is a solution of Eq. (1), since each group Gi is a symmetry group, we conclude
that the functions u1 = f (x – ε, t), u2 = f (x, t – ε) and u3 = f (x, t/eε)e–ε/p, are solutions of
Eq. (1).

Invariant solutions are a family of solutions that all correspond to the one-parameter
subgroup of the symmetry group of a PDE, and for computing an optimal system of sub-
algebras, an optimal system of subgroups must be calculated. Usually, to solve the clas-
sification problem of one-dimensional subalgebras, the same problem of classifying the
orbits is considered [7]. Table 1 shows the commutation table of Lie algebra g for the gC-
H equation. The solubility property of g is significant.

Table 1 The commutator table of Eq. (1)

[νi ,νj] ν1 ν2 ν3

ν1 0 0 0
ν2 0 0 ν2
ν3 0 –ν2 0

Table 2 Adjoint representation table of Eq. (1)

Ad(exp(ενi)νj) ν1 ν2 ν3

ν1 ν1 ν2 ν3
ν2 ν1 ν2 ν3 – εν2
ν3 ν1 ν2 + εν2 ν3
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Table 2 shows adjoint representation of the gC-H equation, such that

Ad
(
exp(ενi)

)
νj = νj – ε[νi,νj] +

ε2

2
[
νi, [νi,νj]

]
– · · · .

Theorem 1 An optimal system of one-dimensional Lie algebras of Eq. (1) is provided by
a1ν1 + ν3, a1ν1 + ν2 and a1ν1.

Proof Suppose the symmetry algebra g of the gC-H equation is spanned by the vector
fields ν1, ν2 and ν3. A linear map

⎧
⎨

⎩

Fε
i : g −→ g (i = 1, 2, 3),

ν �→ Ad(exp(ενi))ν,

is assumed. The matrices Bε
i of Fε

i , with respect to basis {ν1,ν2,ν3} are

Bε
1 =

⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠ , Bε

2 =

⎛

⎜
⎝

1 0 0
0 1 ε

0 0 1

⎞

⎟
⎠ , Bε

1 =

⎛

⎜
⎝

1 0 0
0 e–ε 0
0 0 1

⎞

⎟
⎠ .

Every one-dimensional subalgebra of g is determined by a nonzero vector ν = c1ν1 + c2ν2 +
c3ν3, where ci are arbitrary constants. We will make coefficients ci as simple as possible
through acting with these matrices on ν .

Case 1. Suppose that c3 �= 0. So, we can assume that c3 = 1. Acting with Bε
1 and Bε

2 on ν ,
the coefficient of ν2 vanishes and the coefficient of ν1 does not change. Then ν is reduced
to ν = a1ν1 + ν3.

Case 2. Suppose that c3 = 0 and c2 �= 0. So, we can assume that c2 = 1. Acting with Bε
i on

ν , the coefficient of ν1 does not change and ν is reduced to ν = c1ν1 + ν2.
Case 3. Suppose that c3 = 0 and c2 = 0. Acting with Bε

i on ν , the coefficient of ν1 does not
change. Then ν = c1ν1. �

Table 3 Invariant of Eq. (1)

Operator y w u

αν1 t u w(y)
αν1 + ν2 x – αt u w(y)
αν1 + ν3 te–x/α uex/αp w(y)e–x/αp

Table 4 Reduction of Eq. (1)

Operator Reduced equations

αν1 wy = 0
αν1 + ν2 –αwy + αwyyy – 1

2 (p + 1)(p + 2)wpwy + 1
2p(p – 1)w

p–2w3
y

+ 2pwp–1wywyy +wpwyy = 0
αν1 + ν3 – 1

α3
(y3 +wpy4)wyyy + ( 2

α3
wpy2 – 3p+2

αp y2 – 3p+3
α3p

wpy3)wyy

– 2p
α3

wp–1y3wywyy –
p(p–1)
2α3

wp–2y4w3
y –

(p+1)
2α3

wp–1y3w2
y

+ ( α
2p2–(p+1)2

α2p2
y + p+7

2α3p
– p2+3p+3

α3p2
)wpy2wyg

+ ( p+5
2α3p2

– 1
α3p3

– (p+1)(p+2)
2αp )wp+1y = 0
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Invariants associated with the symmetry operators can be computed, which are calcu-
lated by integrating the characteristic equations. For example, the characteristic equation
of the operator αv1 = α∂x is dx

α
= dt

0 = du
0 , and the corresponding invariants are y = t and

w = u. The derivatives of u are given in terms of y and w(y) as ut = wy, utxx = 0, ux = 0,
uxx = 0, uxxx = 0. Substituting them into Eq. (1), the ordinary differential equation wy = 0
is obtained. Tables 3 and 4 show all results in this step.

3 Conservation laws of the gC-H equation
A conservation law in physics describes a measured property of an isolated system that
does not alter over time. The following divergence expression shows a local conservation
law of a system �(x, uk) = 0:

Divϑ = D1ϑ
1(x, u(k)) + · · · + Drϑ

r(x, u(k)) = L.�, L = (L1, . . . , Ln),

where ϑ = (ϑ1, . . . ,ϑ r) is a r-tuple of smooth functions on M(k), and ϑ is and L are the fluxes
and characteristic of conservation law. Also,

Eαj =
∂

∂αj – Di
∂

∂αj + · · · + (–1)sDi1 · · ·Dis
∂

∂α
j
i1···is

+ · · ·

is the Euler operator with respect to αj. The equations

Eαj F
(
x,α, ∂α , . . . , ∂ s

α

) ≡ 0, j = 1, . . . , s,

hold for arbitrary α(x) if and only if F(x,α, ∂α , . . . , ∂ s
α) ∈ Div [10]. Suppose

Eαj
(
�ν

(
x,α, ∂α , . . . , ∂r

α

)
�ν

(
x, u(k))) ≡ 0, j = 1, . . . q.

Finally, this set of equations holds for arbitrary functions α(x) and {�ν}l
ν=1 yields a local

conservation law for the system [10].
Now, all the rules in the form � = �(x, t, u, ux, ut , uxx, uxt , utt) of Eq. (1) are obtained, and

the solution of the determining system is

�1 = 1, �2 = u,

where � determines a pair of nontrivial local conservation law of (ρ,�), where

Dtρ + Dx�

≡ �

(

ut – utxx –
1
2

(p + 1)(p + 2)upux +
1
2

p(p – 1)up–2u3
x + 2pup–1uxuxx + upuxxx

)

.

To calculate (ρ,�), we can use the strong 2-dimensional homotopy operator

Dtρ + Dx� = DtH
(t)
u(x,t)f + DxH(x)

u(x,t)f = 0.
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Table 5 Conservation laws for Eq. (1)

�

�1 = 1 ϒ (x)
u = – 1

2 (p + 1)(p + 2)up+1 + 1
2 (p)(p + 1)up–1u2x + (p + 1)upuxx – 2

3uxt
ϒ (t)

u = u – 1
3uxx

ρ = – 1
2 (p + 2)up+1 + 1

2 (p)u
p–1u2x + upuxx – 2

3uxt
� = u – 1

3uxx

�2 = U ϒ (x)
u = – 1

2 (p + 1)(p + 2)up+2 + 1
2 (p – 1)(p + 2)upu2x + (p + 2)up+1uxx – 4

3uuxt +
2
3uxut

ϒ (t)
u = u2 + 1

3u
2
x –

2
3uxxu

ρ = – 1
2 (p + 1)(p + 2)up+2 + 1

2 (p – 1)(p)u
p–1u3x + up+1uxx – 2

3uuxt +
1
3uxut

� = 1
2u

2 + 1
6u

2
x –

1
3uxxu

Definition 1 The homotopy operator is a pair vector operator of (H(x)
u(x,t)f , H(t)

u(x,t)f ), where

H(x)
u(x,t)f =

∫ 1

0

( q∑

j=1

ϒ
(x)
uj f

)

[κu]
dκ

κ
, H(t)

u(x,t)f =
∫ 1

0

( q∑

j=1

ϒ
(t)
uj f

)

[κu]
dκ

κ
.

The x-integrand, ϒ (x)
uj(x,t)f and the t-integrand, ϒ (t)

uj(x,t)f are

ϒ
(x)
uj f =

Nj
1∑

ι1=1

Nj
2∑

ι2=0

(
ι1–1∑

r1=0

ι2∑

r2=0

J(x)uj
xr1 tr2 (–Dx)ι1–r1–1(–Dt)ι2–r2

)
∂f

∂uj
xι1 tι2

,

ϒ
(t)
uj f =

Nj
1∑

ι1=0

Nj
2∑

ι2=1

(
ι1∑

r1=0

ι2–1∑

r2=0

J(x)uj
xr1 tr2 (–Dx)ι1–r1 (–Dt)ι2–r2–1

)
∂f

∂uj
xι1 tι2

,

where Nj
1, Nj

2 are the orders of the derivatives u in x and t and

J(x) = J(r1, r2, ι1, ι2) =
C(r1 + r2, r1)C(ι1 + ι2 – r1 – r2 – 1, ι1 – r1 – 1)

C(ι1 + ι2, ι1)
.

Also, J(t) = J(r2, r1, ι2, ι1). Table 5 shows the local conservation law multipliers for the gC-
H equation.

4 μ-Symmetry method for the gC-H equation
Suppose that λi : J (1)M −→R and μ = λi dxi is a horizontal one-form on (M(1),π , M) which
is compatible, i.e., Diλj – Djλi = 0 [22]. Let �(x, u(k)) = 0 be a scalar PDE of order n, involv-
ing r independent variables x = (x1, . . . , xr) and one dependent variable u = u(x1, . . . , xr).
Suppose that X =

∑p
i=1 φi(x, u)∂xi + ϕ(x, u)∂u is a vector field. Then the vector field Y =

X +
∑n

J=1 χ J∂uJ is a μ-prolongation of X on M(k), if for χ0 = ϕ, its coefficient satisfies the
μ-prolongation formula, i.e.,

χ J ,i = (Di + λi)χ J – uJ ,m(Di + λi)φm. (2)

Let the solution manifold for � be denoted by S . If Y : S −→ TS , we say that X is a
μ-symmetry for �. In general, if μ = 0, ordinary prolongation and ordinary symmetry are
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one and the calculation of both is similar. Now to obtain μ-symmetry of a system, apply
Y to �, and restrict the obtained results to the solution manifold S� ⊂ M(k) that will be
up to φ, ϕ and λi. If we consider the λi as functions on M(k) and compatibility conditions
between the λi, a system of all the dependence on uJ form the determining equation [22]. If
X is a vector field on M, then V = e(

∫
μ)X is an exponential vector field. X is a μ-symmetry

for � if and only if V is a general symmetry for �.

Theorem 2 (Order reduction of PDEs under μ-symmetry method) �(x, uk) be a scalar
PDE and X = ηi(x, u)∂xi + ψ(x, u)∂u be a vector field on M, with characteristic Q = ψ – uiη

i,
and let Y be the μ-prolong of order n of X. If X is a μ-symmetry for �, then Y : SX −→ TSX ,
where SX ⊂ M(k) is the solution manifold for the system �X made of � and EJ := DJ Q = 0
for all J with |J| = 0, 1, . . . , n – 1 [22].

To calculate the μ-symmetry of Eq. (1), suppose we have a horizontal one-form μ =
λ1 dx + λ2 dt such that Dtλ1 = Dxλ2 when �u = 0. Let X = η∂x + τ∂t + ψ∂u be a vector field
on total space and Y be a μ-prolongation of order 3 of X. So,

Y = X + �x∂ux + � t∂ut + �xx∂uxx + · · · + � ttt∂uttt ,

where the coefficients Y are

�x = (Dx + λ1)ψ – ux(Dx + λ1)η – ut(Dx + λ1)τ ,

� t = (Dt + λ2)ψ – ux(Dt + λ2)η – ut(Dt + λ2)τ , (3)

. . . .

Applying Y to Eq. (1) and combining terms, we obtain the following system:

– 3ξuup = 0,

2τu = 0,

4τuu = 0,

– 3upτu + 3ξu = 0.

(4)

Suppose that λ1 and λ2 are any choice of the type

λ1 = Dx
[
M(x, t)

]
+ N(x), λ2 = Dt

[
M(x, t)

]
+ P(t),

and M(x, t), N(x) and P(t) are arbitrary functions. For example, taking N(x) = 0, P(t) = 0
and M(x, t) = – ln(G(x, t)) into λ1 and λ2, then substituting λ1 = –Gx(x, t)/G(x, t) and λ2 =
–Gt(x, t)/G(x, t) and solving (4), we deduce that η = G(x, t), τ = 0, ψ = 0, where G(x, t) is
an arbitrary positive function. Hence, the vector field X = G(x, t)∂x is a μ-symmetry of
Eq. (1) and the vector field V = exp(

∫
λ1 dx + λ2 dt)X = exp(

∫
– Gx(x,t)

G(x,t) dx – Gt (x,t)
G(x,t) dt)X, is

a general symmetry of exponential type corresponds to X. Now, using Theorem 2, the
order reduction of Eq. (1) is Q = ψ – ηux – τut = –G(x, t)ux. Other modes are presented in
Tables 6 and 7.
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Table 6 μ-symmetry of Eq. (1)

N(x), P(t) λ1, λ2 μ-symmetry

N(x) = 0 λ1 = – Gx (x,t)
G(x,t) X = G(x, t)∂x

P(t) = 0 λ2 = – Gt (x,t)
G(x,t)

N(x) = 0 λ1 = – Gx (x,t)
G(x,t) X = G(x, t)(∂t + u

c1–pt
∂u)

h(t) = p
pt–c1

λ2 = – Gt (x,t)
G(x,t) +

p
pt–c1

N(x) = 0 λ1 = – Gx (x,t)
G(x,t) X = G(x, t)( –1

c1t+c2
∂x

+ ∂t –
c1u

(c1t+c2)p
∂u)P(t) = c1

c1t+c2
λ2 = – Gt (x,t)

G(x,t) +
c1

c1t+c2

Table 7 Order reduction of Eq. (1)

Symmetry of exponential type Order reduction

V = exp(
∫
– Gx (x,t)

G(x,t) dx –
Gt (x,t)
G(x,t) dt)X –G(x, t)ux = 0

V = exp(
∫
– Gx (x,t)

G(x,t) dx – (
Gt (x,t)
G(x,t) –

p
pt–c1

)dt)X –G(x,t)
pt–c1

((pt – c1)ut + u) = 0

V = exp (
∫
– Gx (x,t)

G(x,t) dx – (
Gt (x,t)
G(x,t) –

c1
c1t+c2

)dt)X –G(x,t)
(c1t+c2)p

((c1t + c2)put
+ c1u – pux ) = 0

5 μ-Conservation laws of the gC-H equation
Let μ = λi dxi be a horizontal one-form such that Diλj = Djλi. A μ-conservation law is

(Di + λi)Pi = 0,

where the μ-conserved vector Pi is a matrix-valued M-vector.

Theorem 3 ([12]) Let L(x, un) represent the nth order Lagrangian. X is a μ-symmetry for
L, in other words, Y [L] = 0 if and only if there exists M-vector Pi such that (Di + λi)Pi = 0.

To calculate the Pi, let L(x, u2) be a second order Lagrangian, and the vector field X =
ψ(∂/∂u) be a μ-symmetry for L. Then the M-vector Pi is obtained as follows [12]:

Pi := ψ
∂L
∂ui

+
(
(Dj + λj)ψ

) ∂L
∂uij

– ψDj
∂L
∂uij

. (5)

The Frechet derivative of a system is self-adjoint, i.e., D∗
� = D� iff the system accepts a

variational formulation [7].

Theorem 4 Let � = 0 be a PDE and L =
∫

L dx is a variational problem. Then � = E(L),
i.e., � is the Euler–Lagrange expression for L, iff the Frechet derivative D� is self-adjoint.
Also, using the homotopy formula L[u] =

∫ 1
0 u.�(κu) dκ , the Lagrangian for � can be pre-

cisely constructed.

The gC-H equation (�u) is of odd order and its Frechet derivative is

D�u = –
1
2

(p + 1)(p + 2)up–1ux +
1
2

p(p – 1)up–3u3
x + 2pup–2uxuxx

+ up–1uxxx +
(

–1
2

(p + 1)(p + 2)up +
1
2

p(p – 1)up–2u2
x + 2pup–1uxx

)

Dx

+ 2pup–1uxD2
x + upD3

x + Dt – D2
xDt .
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Note that D∗
�u �= D�u . So, �u does not admit a variational problem. The gC-H equation

in potential form �v obtained by the well-known differential substitution u = vx and its
Frechet derivative are

�v = vxt – vtxxx –
1
2

(p + 1)(p + 2)vp
xvxx +

1
2

p(p – 1)vp–2
x v3

xx

+ 2pvp–1
x vxxvxxx + vp

xvxxxx = 0,

D�v = DxDt – D3
xDt +

(

–
1
2

(p + 1)(p + 2)vp–1
x vxx +

1
2

p(p – 1)vp–3
x v3

xx

+ 2pvp–2
x vxxvxxx + vp–1

x vxxxx

)

Dx +
(

–
1
2

(p + 1)(p + 2)vp
x

+
1
2

p(p – 1)vp–2
x v2

xx + 2pvp–1
x vxxx

)

D2
x + 2pvp–1

x vxxD3
x + vp

xD4
x,

which is self-adjoint and the Lagrangian of �v is

L[v] =
∫ 1

0
v.�v(κv) dκ = –

1
2
(
vxvt + vxxvxt – vp

xv2
xx – vp+2

x
)

+ Div P.

= –
1
2
(
vxvt + vxxvxt – vp

xv2
xx – vp+2

x
)
.

For calculation of the μ-conservation law of �v = E(L[v]), let X = ψ∂v be a vector field for
L[v], and μ = λ1 dx + λ2 dt be a horizontal one-form such that Dtλ1 = Dxλ2 when �v = 0.
Now, using (2), Y and its coefficients are

Y = ψ∂v + �x∂vx + � t∂vt + �xx∂vxx + �xt∂vxt / + � tt∂vtt ,

�x = (Dx + λ1)ψ ,

� t = (Dt + λ2)ψ ,

�xx = (Dx + λ1)�x,

�xt = (Dt + λ2)�x,

� tt = (Dt + λ2)� t .

Applying the μ-prolongation Y on the L[v], and substituting (–vxxvxt + vp
xv2

xx + vp+2
x )/vx for

vt into it, we obtain the system

(1/2)pψv = 0,

– (1/2)ψvv = 0,

(1/2)(λ1ψ + ψx) = 0,

. . . .

(6)

Consider ϕ = G(x, t), where G(x, t) is an arbitrary positive function and L[v] = 0. Now, a
special solution of system (6) is

λ1 = –
Gx(x, t)
G(x, t)

, λ2 = –
Gt(x, t)
G(x, t)

. (7)
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Therefore, X = G(x, t)∂v is a μ-symmetry for L[v] and there exists an M-vector Pi which
is μ-conservation law, i.e., (Di + λi)Pi = 0. The M-vector Pi for L[v] is obtained:

P1 = –
1
2
(
vt – 2vtxx – (p + 2)vp+1

x + pvp–1
x v2

xx + 2vp
xvxxx

)
G(x, t),

P2 = –
1
2

vxG(x, t). (8)

So, μ-conservation law for second order Lagrangian L[v] is the form (Dx + λ1)P1 + (Dt +
λ2)P2 = 0.

Corollary 2 The μ-conservation law for the gC-H equation in potential form �v = E(L[v])
is DxP1 + DtP2 + λ1P1 + λ2P2 = 0, where P1 and P2 are the M-vectors Pi of (8).

Remark 1 The gC-H equation in potential form �v satisfies Noether’s theorem for μ-
symmetry and μ-conservation law, i.e.

(Di + λi)Pi = (Dx + λ1)P1 + (Dt + λ2)P2

= G(x, t)
(

vxt – vtxxx –
1
2

(p + 1)(p + 2)vp
xvxx

+
1
2

p(p – 1)vp–2
x v3

xx + 2pvp–1
x vxxvxxx + vp

xvxxxx

)

= QE
(
L[v]

)
.

To compute the μ-conservation law of the gC-H equation �u, we can use the gC-H
equation in potential form �v. The �v corresponds to Dx(vt – vtxx – (1/2)(p + 2)vp+1

x +
(1/2)pvp–1

x v2
xx + vp

xvxxx) = 0, or equivalently vt – vtxx – (1/2)(p + 2)vp+1
x + (1/2)pvp–1

x v2
xx +

vp
xvxxx = h(t), where h(t) is an arbitrary function. If we substitute

h(t) + vtxx + (1/2)(p + 2)vp+1
x – (1/2)pvp–1

x v2
xx – vp

xvxxx

for vt and substitute u for vx into (8), then we obtain the M-vectors P1 and P2 as follows:

P1 = –
1
2

(

h(t) – utx –
1
2

(p + 2)up+1 +
1
2

pup–1u2
x + upuxx

)

G(x, t),

P2 = –
1
2

uG(x, t). (9)

Corollary 3 The μ-conservation law for the gC-H equation �u is DxP1 + DtP2 + λ1P1 +
λ2P2 = 0, where P1 and P2 are the M-vectors Pi of (9).

Remark 2 The gC-H equation �u satisfies the characteristic form, i.e.,

(Di + λi)Pi = (Dx + λ1)P1 + (Dt + λ2)P2

= F(x, t)
(

ut – utxx –
1
2

(p + 1)(p + 2)upux



Jafari et al. Advances in Difference Equations        (2021) 2021:322 Page 11 of 12

+
1
2

p(p – 1)up–2u3
x + 2pup–1uxuxx + upuxxx

)

= Q�u.

6 Conclusion
We attempted to study the generalized Camassa–Holm equation using the symmetry ap-
proach in this paper. The general form of an infinitesimal generator admitted for the gen-
eralized Camassa–Holm equation and transformed solutions are calculated. Then the op-
timal system, one-dimensional subalgebras, Lie invariants, reduced equations, differential
invariants and the conservation laws corresponding to the infinitesimal symmetries of the
gC-H equation are obtained. In the second part, μ-symmetry and order reduction, La-
grangian of generalized Camassa–Holm equation in potential form and μ-conservation
laws of the gC-H equation are calculated. In [29], by defining the new variable, the sym-
metries of the generalized Camassa–Holm equation are obtained. Also in [30–32], the
equations derived from the generalized Camassa–Holm equation are discussed in several
ways.
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