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Abstract
In this article we propose a hybrid method based on a local meshless method and
the Laplace transform for approximating the solution of linear one dimensional partial
differential equations in the sense of the Caputo–Fabrizio fractional derivative. In our
numerical scheme the Laplace transform is used to avoid the time stepping
procedure, and the local meshless method is used to produce sparse differentiation
matrices and avoid the ill conditioning issues resulting in global meshless methods.
Our numerical method comprises three steps. In the first step we transform the given
equation to an equivalent time independent equation. Secondly the reduced
equation is solved via a local meshless method. Finally, the solution of the original
equation is obtained via the inverse Laplace transform by representing it as a contour
integral in the complex left half plane. The contour integral is then approximated
using the trapezoidal rule. The stability and convergence of the method are
discussed. The efficiency, efficacy, and accuracy of the proposed method are assessed
using four different problems. Numerical approximations of these problems are
obtained and validated against exact solutions. The obtained results show that the
proposed method can solve such types of problems efficiently.

Keywords: Local meshless method; Linear partial differential equations; Laplace
transform; Caputo Fabrizio fractional derivative

1 Introduction
The integer order derivatives are local in nature, i.e., using these derivatives changes in
a neighborhood of a point can be described, but using the arbitrary order derivatives we
can describe changes in an interval. Namely, fractional derivatives are nonlocal in nature.
That is why arbitrary order derivatives are suitable to model more physical phenomena
such as electrodynamics, earthquake vibrations, diffusion process, polymers, fluid flow,
elasticity, hydrology, and signal and image processing [1–7]. Fractional order derivative of
a function is in fact its definite integral. A geometrically fractional derivative accumulates
the function. The corresponding accumulation includes the integer order derivative as a
special case. In the literature a large number of arbitrary order derivatives are available
such as the Marchaud, Grünwald–Letnikov, Riemann–Liouville, and Caputo derivatives
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[8–15]. However, these derivatives have certain disadvantages, these derivatives contain
kernels with singularities. It is reported in the literature that these derivatives face prob-
lems when someone tries to model nonlocal phenomenon [1, 16]. Therefore, to model the
non-local phenomenon accurately, recently a new fractional derivative has been defined,
called the Caputo–Fabrizio (CF) derivative [17].

The research community took great interest in the CF derivative due to its non-singular
kernel. The CF derivative has a large number of applications, and researchers have applied
it successfully to many phenomena like signal processing [18], ground water pollution [19],
groundwater flow in a confined aquifer [1, 20], the mass–spring damper system [21], non-
Darcian flow and solute transport [22].

In many real world problems as regards their modeling, we need to obtain their exact so-
lution which is some times quite difficult specially for nonlinear problems. Therefore, we
need some sophisticated tools to deal with such problems. The researchers increasingly
have used numerical and analytical techniques to handle the problems for corresponding
numerical and analytical solutions. For example a homotopy analysis method based on
the Laplace transform is proposed for solving linear problems including the CF derivative
in [2, 23]. In [1] the authors solved the model of groundwater flow with the CF deriva-
tive using the Sumudu transform. In [24] a fractional order Fisher diffusion equation with
the CF derivative is solved via some iterative method. The Crank–Nicholson scheme in
[25] is applied for approximating the solution of the Allen Cahn model with CF derivative.
A numerical approximation of the solution of groundwater pollution model with space–
time fractional CF derivative in [19] is obtained via the Crank–Nicholson scheme. The
Laplace and Fourier transforms are utilized in [26] for obtaining the fundamental solu-
tion of advection–diffusion equation with the CF derivative. In [27] the authors applied
the CF derivative to the analysis of a rock fracture process. Many other numerical and
analytical techniques for the solutions of different fractional order models can be found
in [28–39] and the references therein. In this work our aim is to approximate linear PDEs
with the CF derivative via the Laplace transform (LT) and local meshless method. The
Laplace transform is coupled with a local meshless method for avoiding the time stepping
procedure. The Laplace transform will help us in obtaining the solution in less computa-
tion time and without time instability. The paper is organized as follows: In Sect. 2 some
basic definitions are given; In Sect. 3 the Laplace transform and contour integration meth-
ods are discussed; Sect. 3.1 shows how to construct the differentiation matrices via a local
meshless method; Sect. 4 discusses the convergence of the method; Sect. 5 discusses the
stability of the method; Sect. 6 contains the numerical tests, where theory and experiment
are compared.

2 Preliminaries
Definition 2.1 The LT of a piecewise continuous function f (t), t > 0 is defined as

L
[
f (t)

]
= f̂ (s) =

∫ ∞

0
e–stf (t) dt. (1)

Definition 2.2 The CF derivative of fractional order α is defined as [17]

CF
0 Dα

t f (t) =
(2 – α)B(α)

2(1 – α)

∫ t

0
exp

(
–α(t – s)

1 – α

)
dnf (s)

dsn ds, α ∈ (n – 1, n), (2)

where B(α) denotes the normalization function, satisfying B(0) = B(1) = 1.
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Definition 2.3 If n ∈ N, and 0 ≤ α ≤ 1 then the LT of the CF fractional derivative is de-
fined as [2, 24]

L
[CF

0 Dα+n
t f (t)

]
(s) =

sn+1 f̂ (s) – snf (0) – sn–1f ′(0) – · · · – f n(0)
s + α(1 – s)

, (3)

using n = 0 we get

L
[CF

0 Dα
t f (t)

]
(s) =

sf̂ (s) – f (0)
s + α(1 – s)

, (4)

and for n = 1 we have

L
[CF

0 Dα+1
t f (t)

]
(s) =

s2 f̂ (s) – sf (0) – f ′(0)
s + α(1 – s)

. (5)

3 Numerical scheme
In order to validate our method let us consider a linear one dimensional partial differential
equation with the CF derivative for q – 1 < α + n ≤ q:

CF
0 Dα

t u(x, t) + Lu(x, t) = h(x, t), x ∈ �, and 0 ≤ t ≤ T , (6)

the boundary and initial conditions are

∂ l
t u(x, 0) = ul(x), l = 0, 1, 2, . . . , q – 1,

and

Bu(x, t) = g(x, t), x ∈ ∂�, (7)

where L is the linear differential operator and B is the boundary operator. Applying the
LT to Eq. (6) and Eq. (7), we have

L
[CF

0 Dα+n
t u(x, t) + Lu(x, t)

]
= L

[
h(x, t)

]
(8)

and

Bû(x, s) = ĝ(x, s). (9)

From Eq. (8), we have

sn+1û(x, s) – snu(x, 0) – sn–1u′(x, 0) – · · · – un(x, 0)
s + α(1 – s)

+ Lû(x, s) = ĝ(x, s), (10)

on simplification we get

[(
sn+1

s(1 – α) + α

)
I + L

]
û(x, s) = Ĝ(x, s), (11)
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Bû(x, s) = ĝ(x, s), (12)

where Ĝ(x, s) is

Ĝ(x, s) =
snu(x, 0) + sn–1u′(x, 0) + · · · + un(x, 0)

s(1 – α) + α
+ ĝ(x, s).

We obtain the solution u(x, t) of (6)–(7) by representing it as an integral along a smooth
curve as

u(x, t) =
1

2π i

∫ σ+ι∞

σ–ι∞
estû(x, s) ds =

1
2π i

∫

�

estû(x, s) ds, σ > σ0, (13)

where σ0 ∈R is the convergence abscissa, it is large enough and the contour � is a suitably
selected line �0 perpendicular to x axis connecting σ – ι∞ and σ + ι∞. Then in Eq. (13),
u(x, t) is the inverse Laplace of û(x, s), with the condition that the �0 lie to the right of
all the singularities of the transform û(x, s). For our purposes, however, we assume that
û(x, s) may be continued analytically in an appropriate way. We shall want to take for �0

a deformed contour � in the set 	δ
φ = {0} ∪ {s �= 0 : | arg s| < φ}. The deformed contour

will show asymptotic behavior like the couple of lines in the left half complex plane with
Im s → ±∞ and Re s → –∞, forcing the factor est to decay in the direction of both ends
of the contour �. In this work we select � with the parametric representation of the form
[40]

s(μ) = δ + ξ – ξ sin(θ – ιμ)), μ ∈ R, (14)

where

0 < θ < φ –
π

2
, ξ > 0, and δ > 0. (15)

Letting s = x + ιy, we notice that Eq. (14) serves as the left part of the hyperbola defined by

(
x – δ – ξ

ξ sin θ

)2

–
(

y
ξ cos θ

)2

= 1, (16)

where for Eq. (16) the asymptotes are y = ±(x – δ – ξ ) cot θ , and its x-intercept is s = δ +
ξ (1 – sin θ ). Equation (15) ensures that the contour � lies in 	δ

φ = δ +	φ ⊂ 	φ , and extends
towards the left half complex plane. Using Eq. (14) in Eq. (13) we have

u(x, t) =
1

2πι

∫ ∞

–∞
es(μ)t û

(
x, s(μ)

)
s′(μ) dμ. (17)

The approximation of Eq. (17) can be obtained by employing the trapezoidal rule as

uk(x, t) =
k

2πι

M∑

j=–M

esjtû(x, sj)s′
j, μj = jk, sj = s(μj), s′

j = s′(μj). (18)

The solution uk(x, t), can be obtained by solving the system of equations in (11)–(12) in
parallel for the nodes sj. In order to do this we employ the meshless method in local setting
for discretization of the operators L and B.
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3.1 Local meshless scheme
For data points {xi}N

i=1 in R
d , d ≥ 1 the local meshless approximation of û(x) is given by

û(xi) =
∑

xj∈�i

λi
jφ

(∥∥xi – xi
j
∥∥)

, (19)

where the vector λi = {λi
j}n

j=1 represents the expansion coefficients, φ(r) is kernel function
and r = ‖xi – xj‖ is the distance between xi and xj. �i and � are local and global domains,
respectively. The local domain �i includes the center xi and its n neighboring centers
around it. Hence we have N n × n linear systems as

⎛

⎜
⎜⎜
⎜
⎝

û(xi
1)

û(xi
2)

...
û(xi

n)

⎞

⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎝

φ(‖xi
1 – xi

1‖) φ(‖xi
1 – xi

2‖) · · · φ(‖xi
1 – xi

n‖)
φ(‖xi

2 – xi
1‖) φ(‖xi

2 – xi
2‖) · · · φ(‖xi

2 – xi
n‖)

...
...

...
...

φ(‖xi
n – xi

1‖) φ(‖xi
n – xi

2‖) · · · φ(‖xi
n – xi

n‖)

⎞

⎟
⎟⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜
⎝

λi
1

λi
2
...

λi
n

⎞

⎟
⎟⎟
⎟
⎠

,

i = 1, 2, . . . , N , (20)

which can be written as

ûi = �iλi, 1 ≤ i ≤ N , (21)

where �i is called the system matrix having entries of the form bi
kj = φ(‖xi

k – xi
j‖), where

xi
k , xi

j ∈ �i. Solving the N systems in Eq. (21) we obtain the unknowns λi = {λi
j}n

j=1. The
differential operator L can be approximated as

Lû(xi) =
∑

xj∈�i

λi
jLφ

(∥∥xi – xi
j
∥∥)

, (22)

Equation (22) can be written as

Lû(xi) = λi · νi, (23)

where the vectors ν i and λi have orders 1 × n and n × 1, respectively. The entries of νi are
of the form

νi = Lφ
(∥∥xi – xi

j
∥
∥)

, xi
j ∈ �i, (24)

solving Eq. (21) and Eq. (23) for λi, we have

Lû(xi) = νi(�i)–1ûi = � iûi, (25)

where

� i = νi(�i)–1, (26)
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hence at each center xi the operator L can be approximated via a local meshless method
as

Lû ≡ Dû, (27)

where DN×N is a sparse system matrix obtained via meshless method in local setting ap-
proximating L. We can approximate the operator B in a similar way.

4 Accuracy and convergence
The process of approximating the solution of the problem defined in Eq. (1)–Eq. (3) in-
volves the transformation of the given equation by employing the Laplace transform, no
error occurs in this process. Then we employ the meshless method in a local setting for
solving the transformed problem. The error estimate is O(γ

1
εh ), 0 < γ < 1 (where h is the fill

distance and ε is the shape parameter) for the meshless method in the local setting. Finally,
we obtain the solution of the problem via the inverse Laplace transform by representing it
as a Bromwhich integral (17). The integral is then approximated to high accuracy via the
trapezoidal rule. While approximating the integral (17) the convergence rate is dependent
on �. Also in this process the convergence orders are dependent on the step k and on the
chosen temporal domain [t0, T]. For optimal results and best convergence we choose an
optimal temporal domain. A proof of the error is given in the next theorem.

Theorem 1 ([40], Theorem 2.1) Let (6) have solution u(x, t) with û(x, s) analytic in 	δ
φ .

Let � ⊂ �r ⊂ 	δ
φ , and define for b > 0, cosh(b) = (ητ sin(θ ))–1, where 0 < τ0 < T , τ = t0

T ,
0 < η < 1.0 and let ξ = ηrM

bT . Then with k = b
M ≤ r

log 2 , for Eq. (18), we have |u(x, t)–uk(x, t)| ≤
CQeδτ l(‖u0‖ + ‖Ĥ‖	δ

φ
)(ρrM)e–μM , for μ = r(1–η)

b , ρr = ηrτ sin(θ–r)
b , r = 2πr, r > 0, τ0 ≤ t ≤ T ,

l(x) = max(1, log( 1
x )), and C = Cδ,r,φ . Hence we have

errorest =
∣∣uk(x, t) – u(x, t)

∣∣ = O
(
e–μM)

.

5 Stability of the method
For the stability of the system defined in Eq. (11)–Eq. (12), we write the system in matrix
form given as

Qû = R, (28)

where QN×N is obtained via a local meshless method. The constant of stability for the
system Eq. (28) is defined as

Sc = sup
û �=0

‖û‖
‖Qû‖ , (29)

for any discrete norm ‖ · ‖ defined on RN the constant Sc is finite. From Eq. (29) we may
write

‖Q‖–1 ≤ ‖û‖
‖Qû‖ ≤ Sc, (30)
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Figure 1 (a) The plot of the stability constant Sc for Example 2, with N = 35, n = 9, M = 70, and α = 0.3321 at
t = 1. We see that 1.3008 ≤ Sc ≤ 1.3504. It is observed that the upper and lower bounds for the stability
constant are very small numbers, which guarantees that the proposed localized meshless scheme is stable.
(b) The contour of integration

also for the pseudoinverse Q† of Q, we have

∥
∥Q†

∥
∥ = sup

B�=0

‖Q†B‖
‖B‖ . (31)

Thus, we have

∥∥Q†
∥∥ ≥ sup

B=QB̂�=0

‖Q†Qû‖
‖Qû‖ = sup

û �=0

‖û‖
‖Qû‖ = Sc. (32)

From Eq. (30) and Eq. (32) we observe that the constant Sc is bounded. Calculation of the
pseudoinverse for the system (28) may be computationally expensive, but it confirms the
stability. For square matrices we can use the MATLAB’s function condest for estimating
‖Q–1‖∞, hence we have

Sc =
condest(Q′)

‖Q‖∞
(33)

For our sparse matrix Q this works well in a very short time of computation (Fig.1).

6 Numerical experiments
Here we employ our proposed numerical scheme for the approximations different one di-
mensional linear PDEs. For optimization of the shape parameter we have utilized the un-
certainty principle due to [41]. In our numerical experiments for generating the quadra-
ture nodes the command μ = –M : k : M is used, also the multiquadrics (MQ) kernel is
used in all experiments. Other optimal parameters involved for the contour of integration
are θ = 0.15410, r = 0.13870, η = 0.10, τ = t0

T , δ = 2.0, t ∈ [t0, T] = [0.5, 5]. The accuracy of
the method is measured via the L∞ error given by

L∞ =
∥∥u(x, t) – uk(x, t)

∥∥∞ = max
1≤j≤N

(∣∣u(x, t) – uk(x, t)
∣∣).

Here u(x, t)k and u(x, t) are the numerical and exact solutions respectively.



Kamal et al. Advances in Difference Equations        (2021) 2021:317 Page 8 of 15

Table 1 The results are obtained for α = 0.22111, x ∈ [0, 1], and t = 1

N n M L∞ errorest ε κ C.time(s)

40 5 30 7.55× 10–2 5.37× 10–1 1.9 1.14× 10+10 0.229707
40 1.10× 10–3 1.83× 10–1 1.9 1.14× 10+10 0.327267
50 4.30× 10–3 6.25× 10–2 1.9 1.14× 10+10 0.488246
60 3.63× 10–4 2.12× 10–2 1.9 1.14× 10+10 0.711818
70 2.15× 10–4 7.20× 10–3 1.9 1.14× 10+10 1.416137
80 4.94× 10–5 2.40× 10–4 1.9 1.14× 10+10 3.252525
90 1.36× 10–5 8.18× 10–4 1.9 1.14× 10+10 5.078051

60 5 90 4.84× 10–5 8.18× 10–4 2.9 1.06× 10+10 9.992066
10 8.73× 10–5 8.18× 10–4 7.4 1.18× 10+10 7.996995
15 5.99× 10–4 8.18× 10–4 8.9 1.02× 10+10 10.601678

10 8 90 7.81× 10–5 8.18× 10–4 0.9 2.26× 10+10 0.577473
20 2.97× 10–5 8.18× 10–4 2.0 1.18× 10+10 1.026700
30 5.30× 10–5 8.18× 10–4 3.0 1.47× 10+10 2.842371
35 8.95× 10–5 8.18× 10–4 3.6 1.10× 10+10 4.340015

Figure 2 (a) Approximate solution for α = 0.22211. (b) Exact solution for α = 0.22211

Example 1 Here we consider a 1-D linear differential equation with the CF derivative [2]

CF
0 Dα+1

t u(x, t) –
1
2

x2Dxxu(x, t) = 0, x, t,α ∈ (0, 1) where Dxx =
∂2

∂x2 . (34)

the initial conditions are

u(x, 0) = x, Dtu(x, 0) = x2. (35)

The boundary conditions are extracted from the exact solution

u(x, t) = x + x2
(

et – e–αt

1 + α

)
. (36)

The results obtained for different centers n in local domain �i and N in global domain �

are given in Table 1 for fractional order α = 0.22211 and various quadrature points. The
condition number κ , L∞ errors, shape parameter ε, and the error estimates are also given
in Table 1. From Table 1 it is clear that the proposed method gives an acceptable accuracy.
The approximate and exact solutions are plotted in Fig. 2(a) and Fig. 2(b), respectively,
which clearly shows good agreement between them. The contour plot of absolute error is
shown in Fig. 3(a), which shows a high accuracy. The plot of actual error vs error estimate
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Figure 3 (a) The contour plot of absolute error. (b) The actual error vs error estimate

Table 2 The results are obtained for α = 0.3321, x ∈ [0, 1], and t = 1

N n M L∞ errorest ε κ C.time(s)

45 5 30 1.10× 10–1 5.37× 10–1 2.1 1.34× 10+10 0.133238
50 5.30× 10–3 6.25× 10–2 2.1 1.34× 10+10 0.296257
70 2.27× 10–4 7.20× 10–3 2.1 1.34× 10+10 0.620503
90 8.22× 10–5 8.18× 10–4 2.1 1.34× 10+10 3.566523

40 5 90 4.78× 10–4 8.18× 10–4 1.08 1.01× 10+12 2.989985
8 8.31× 10–5 8.18× 10–4 2.9 1.04× 10+12 3.039480
10 7.93× 10–5 8.18× 10–4 3.65 1.0× 10+12 2.642598

35 9 90 1.10× 10–4 8.18× 10–4 2.88 1.03× 10+12 2.187149
40 90 5.54× 10–5 8.18× 10–4 3.31 1.0× 10+12 2.800518
50 90 9.07× 10–5 8.18× 10–4 4.16 1.0× 10+12 4.435288

is shown in Fig. 3(b), which shows good agreement between them. From the results we
conclude that the proposed method is effective.

Example 2 Here we consider a non-homogeneous linear differential equation with the CF
derivative [2]:

CF
0 Dα

t u(x, t) + xDxu(x, t) + Dxxu(x, t) = 2
(
t2 + x2 + 1

)
, x, t,α ∈ (0, 1). (37)

the initial condition being

u(x, 0) = x2, (38)

the boundary conditions can be obtained from the exact solution

u(x, t) = x2 +
2tα(1 + (t – α)α)

1 + α
. (39)

The results obtained for different centers n in local domain �i and N in global domain
� are shown in Table 2 with fractional order α = 0.22211 and various quadrature nodes.
From the observations on this table also we conclude that the results obtained using the
proposed numerical scheme are acceptable. The plots of exact and approximate solutions
are given in Fig. 4(a), and Fig. 4(b), respectively. The error functions for different values of
α are shown in Fig. 5(a), we observe that the error decreases as we increase α. In Fig. 5(b)
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Figure 4 (a) Numerical solution for α = 0.3321. (b) Exact solution for α = 0.3321

Figure 5 In (a) absolute errors for different α , the error decreases as we increase α . In (b) the actual error and
error estimate are shown and good agreement is observed

the actual error and error estimates are shown, which shows good agreement between
them.

Example 3 Next the 1-D non-homogeneous diffusion equation with the CF derivative is
considered:

CF
0 Dα

t u(x, t) + Dxxu(x, t) = h(x, t), –1 < x < 1, 0 < t < 10 < α ≤ 1. (40)

with the forcing term

h(x, t) =
1

1 – α
sin(2πx)

(
3t2

P
–

6t
P2 +

6
P3

(
1 – e–Pt)

)

+ 4π2(t3 + 1
)

sin(2πx), where P =
α

1 – α
. (41)

The problem has the following exact solution:

u(x, t) = sin(2πx)
(
t3 + 1

)
. (42)
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Table 3 The results are obtained for α = 0.3, x ∈ [–1, 1], and t = 1

N n M L∞ errorest ε κ C.time(s)

60 10 30 0.1103 0.5373 2.7 1.42× 10+12 0.118417
50 6.30× 10–3 6.25× 10–2 2.7 1.42× 10+12 0.325090
70 3.42× 10–4 7.20× 10–3 2.7 1.42× 10+12 1.494413
90 8.67× 10–5 8.18× 10–4 2.7 1.42× 10+12 5.319907
100 8.53× 10–5 2.76× 10–4 2.7 1.42× 10+12 8.300325

10 10 90 0.1088 8.18× 10–4 0.4 2.26× 10+12 0.318351
30 4.84× 10–4 8.18× 10–4 1.3 1.97× 10+12 0.993061
50 1.64× 10–4 8.18× 10–4 2.2 1.93× 10+12 4.045085
60 8.67× 10–5 8.18× 10–4 2.7 1.42× 10+12 5.298335
80 10 100 1.92× 10–4 2.76× 10–4 3.6 1.52× 10+12 11.975305

15 1.24× 10–4 2.76× 10–4 4.6 1.14× 10+12 12.048443
20 4.90× 10–5 2.76× 10–4 5.0 1.13× 10+12 12.145290

Table 4 The results are obtained for α = 0.7, x ∈ [–1, 1], and t = 1

N n M L∞ errorest ε κ C.time(s)

60 10 30 0.1103 5.37× 10–1 2.7 1.42× 10+12 0.137554
40 2.10× 10–3 1.83× 10–1 2.7 1.42× 10+12 0.194359
60 5.01× 10–4 2.12× 10–2 2.7 1.42× 10+12 0.557261
70 1.03× 10–4 2.40× 10–3 2.7 1.42× 10+12 3.174273
90 8.49× 10–5 8.18× 10–4 2.7 1.42× 10+12 5.439579

20 15 90 3.0× 10–3 8.18× 10–4 1.1 1.28× 10+12 0.522960
40 3.37× 10–4 8.18× 10–4 2.2 2.14× 10+12 2.770111
60 1.75× 10–4 8.18× 10–4 1.4 3.40× 10+12 5.318668
70 8.76× 10–5 8.18× 10–4 4 1.24× 10+12 6.681699
60 5 90 1.95× 10–4 8.18× 10–4 0.8 1.20× 10+12 5.343147

8 9.18× 10–5 8.18× 10–4 2.2 1.00× 10+12 5.416387
10 8.49× 10–5 8.18× 10–4 2.7 1.42× 10+12 5.488575

Figure 6 (a) Numerical solution. (b) Exact solution

The initial and boundary conditions are extracted from the exact solution. The results
obtained for different nodes n ∈ �i, N ∈ � and different quadrature nodes with α = 0.3,
α = 0.7 are shown Table 3 and Table 4. A clear improvement is observed in the accuracy as
we increase the spatial and quadrature nodes. The plots of exact and numerical solutions
are given in Fig. 6(a) and in Fig. 6(b). In Fig. 7(a) the contour plot of the absolute error
is given, which shows a high accuracy of the proposed numerical scheme. In Fig. 7(b) the
plot of the actual error and error estimate is shown, which shows good agreement between
them. The results ensure the convergence, stability, and efficiency of our method.
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Figure 7 (a) The contour plot of absolute error. (b) The actual error vs error estimate

Example 4 The next test problem is the 1-D non-homogeneous diffusion equation with
the CF derivative:

CF
0 Dα

t u(x, t) + Dxxu(x, t) = h(x, t), χ , τ ,α ∈ (0, 1). (43)

The initial condition is

u(x, 0) = x2(1 – x2), (44)

with the forcing term

h(x, t) =
1

1 – α
x2(1 – x)2

(
3t2

P
–

6t
P2 +

6
P3

(
1 – e–Pt)

)

–
(
t3 + 1

)(
12x2 – 12x + 2

)
, where P =

α

1 – α
. (45)

The exact solution is

u(x, t) =
(
t3 + 1

)
x2(1 – x)2. (46)

The initial and boundary conditions are extracted from the exact solution. The results
obtained for different nodes n ∈ �i, N ∈ � and different quadrature nodes with α = 0.7
are given Table 5. The plots of exact and numerical solutions are given in Fig. 8(a) and in
Fig. 8(b). In Fig. 9(a) the contour plot of absolute error is shown, and in Fig. 9(b) the plot
of actual error vs error estimate is shown, which shows good agreement between them.
For this problem also the method produced accurate and stable results.

7 Conclusion
In this work, we have coupled the Laplace transform and a meshless method in a local
setting successfully for the approximation of linear one dimensional partial differential
equations with the CF derivative. The Laplace transform reduced the problem to a time
independent problem and in this way the classical time stepping procedure and hence the
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Table 5 The results are obtained for α = 0.7, x ∈ [0, 1], and t = 1

N n M L∞ errorest ε κ C.time(s)

70 15 30 6.70× 10–3 5.37× 10–1 8.0 1.24× 10+12 0.264581
50 3.82× 10–4 6.25× 10–2 8.0 1.24× 10+12 0.603418
70 1.90× 10–5 7.20× 10–3 8.0 1.24× 10+12 1.098719
90 5.38× 10–6 8.18× 10–4 8.0 1.24× 10+12 2.220157

30 10 80 2.06× 10–5 2.40× 10–3 2.7 1.08× 10+12 0.800305
50 1.23× 10–5 2.40× 10–3 4.5 1.35× 10+12 1.135721
70 2.22× 10–5 2.40× 10–3 6.4 1.15× 10+12 1.567001
80 5.16× 10–6 2.40× 10–3 7.3 1.22× 10+12 1.787725

Figure 8 (a) Numerical solution. (b) Exact solution

Figure 9 (a) The contour plot of absolute error. (b) The actual error vs error estimate

time instability issues were avoided. The local meshless method produced sparse differ-
entiation matrices and the issues of ill conditioning and shape parameter sensitivity were
resolved. We discussed the convergence and stability of the method. Some numerical ex-
periments were performed on one dimensional problems with a CF derivative for different
fractional orders. Numerical results confirmed the stability and high accuracy of the pro-
posed method. The obtained results ensured the efficiency and applicability of the method
for such problems.

Acknowledgements
Not applicable.



Kamal et al. Advances in Difference Equations        (2021) 2021:317 Page 14 of 15

Funding
Not applicable.

Availability of data and materials
All data are fully available in this manuscript.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All the authors contributed in theoretical and computational results and approved the final manuscript.

Author details
1Department of Mathematics, Islamia College Peshawar, Khyber Pakhtoon Khwa, Pakistan. 2Institute of IR 4.0, The
National University of Malaysia, 43600 UKM, Bangi, Selangor, Malaysia. 3Positive Computing Research Group, Institute of
Autonomous Systems, Department of Computer & Information Sciences, Universiti Teknologi Petronas, 32610, Bandar
Seri Iskandar, Perak, Malaysia. 4Young Researchers and Elite Club, Mobarakeh Branch, Islamic Azad University, Mobarakeh,
Iran. 5Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 January 2021 Accepted: 18 June 2021

References
1. Atangana, A., Alkahtani, B.S.T.: New model of groundwater flowing within a confine aquifer: application of

Caputo–Fabrizio derivative. Arab. J. Geosci. 9(1), 8 (2016)
2. Morales-Delgado, V.F., Gómez-Aguilar, J.F., Yépez-Martínez, H., Baleanu, D., Escobar-Jimenez, R.F., Olivares-Peregrino,

V.H.: Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative
with and without kernel singular. Adv. Differ. Equ. 2016(1), 164 (2016)

3. Shah, K., Seadawy, A.R., Arfan, M.: Evaluation of one dimensional fuzzy fractional partial differential equations. Alex.
Eng. J. 59(5), 3347–3353 (2020)

4. Khan, H., Shah, R., Kumam, P., Arif, M.: Analytical solutions of fractional-order heat and wave equations by the natural
transform decomposition method. Entropy 21(6), 597 (2019)

5. Liu Kamran, X., Yao, Y.: Numerical approximation of Riccati fractional differential equation in the sense of Caputo-type
fractional derivative. J. Math. 2020, Article ID 1274251 (2020)
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