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Abstract
Based on the predator–prey system with a Holling type functional response function,
a diffusive predator–prey system with digest delay and habitat complexity is
proposed. Firstly, the stability of the equilibrium of diffusion system without delay is
studied. Secondly, under the Neumann boundary conditions, taking time delay as the
bifurcation parameter, by analyzing the eigenvalues of linearized operator of the
system and using the normal form theory and center manifold method of partial
functional differential equations, the effect of time delay on the stability of the system
is studied and the conditions under which Hopf bifurcation occurs are given. In
addition, the calculation formulas of the bifurcation direction and the stability of
bifurcating periodic solutions are derived. Finally, the accuracy of theoretical analysis
results is verified by numerical simulations and the biological explanation is given for
the analysis results.
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1 Introduction
1.1 Development of the population model
In the ecosystem, the functional response function can reflect the optimal feeding behav-
ior of the predator with the maximum energy intake per unit time in order to achieve
the maximum growth capacity of the population. Holling proposed three kinds of differ-
ent functional response functions, later, a Holling IV functional response function was
proposed to describe the interaction between zooplankton and phytoplankton. In addi-
tion, scholars have also intensively studied on predator–prey models with Beddington–
DeAngelis functional response function [1], a ratio-dependent functional response func-
tion [2], the Ivelev functional response function [3] and the Crowley–Martin functional
response function [4].

At the same time, more and more biological effects are applied to the predator–prey
systems when studying the stability of the equilibrium, such as Allee effect [5], prey refuge
effect [6–11], habitat complexity effect [12–14], and harvesting effect [28]. Habitat usually
refers to the area where organisms live, in which the organism can find food, shelter and
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breed. Homogeneous habitat means that the habitat has the same resource level. However,
in fact, the living environment of natural habitats is spatial heterogeneous, and existing
studies have shown that most of habitats have complexity due to heterogeneity [15–17]. A
large number of experimental studies have shown that the complexity of habitats reduces
the meeting rate between predator and prey, thus reduces the predation rate of predators
[18–23]. Therefore, the effect of habitat complexity on the interaction between predator
and prey cannot be ignored. However, the habitat complexity effect reduces the predation
probability of prey, and the prey is not absolutely safe, while prey with refuge effect are
absolutely safe.

In the natural environment, because of the limited resources, the spatial distribution of
the population is heterogeneous, the biology will search for food everywhere in order to
survive, then migration and diffusion will occur. Therefore, considering the heterogeneity
of spatial distribution of the population, the corresponding reaction–diffusion system can
be obtained. Different boundary conditions represent different biological significance in
the study of predator–prey systems with diffusion term. For example, the homogeneous
Neumann boundary condition means that neither prey nor predator can cross the bound-
ary, the homogeneous Dirichlet boundary means that the number of both prey and preda-
tor is zero at the boundary, the homogeneous Robin boundary condition means that prey
or predator can cross the boundary.

1.2 Establishment of the model
In [24], the author introduced habitat complexity into the ordinary differential equation
system with Holling type functional response function and delay. The model is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = rx(1 – x
K ) – c(1–β)xαy

1+ch(1–β)xα ,

ẏ(t) = ec(1–β)xα (t–τ )y(t–τ )
1+ch(1–β)xα (t–τ ) – dy,

x(ξ ) = φ(ξ ) > 0, y(ξ ) = ψ(ξ ) > 0, ξ ∈ (–τ , 0],

(1.1)

where x(t), y(t), respectively, represents the density of prey population and predator pop-
ulation at time t, and the other parameters are all positive. The biological significance is
expressed as follows: r is the intrinsic growth rate of prey population; K is the maximum
environmental capacity of prey population; c(1–β)xα

1+ch(1–β)xα represents Holling type functional
response function, in which, α ≥ 1 and represents a kind of aggregation efficiency, when
α = 1, it becomes Holling II type functional response, when α = 2, it becomes Holling III
type functional response; c represents the attack rate of the predator on the prey; h is the
handing time; e (0 < e < 1) is the conversion efficiency; d represents per capita death rate
of predators; β (0 < β < 1) represents the intensity of the habitat complexity effect.

Considering that the habitat is heterogeneous, we introduce the diffusion term in
the model (1.1), and obtain the reaction–diffusion system with homogeneous Neumann
boundary conditions, the model is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = d1	u + ru(1 – u

K ) – c(1–β)uαv
1+ch(1–β)uα ,

∂v
∂t = d2	v + ec(1–β)uα (x,t–τ )v(x,t–τ )

1+ch(1–β)uα (x,t–τ ) – dv(x, t),

ux(0, t) = vx(0, t) = 0, ux(lπ , t) = vx(lπ , t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ � = (0, lπ ).

(1.2)
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Next, we will study the stability of the equilibrium point of the system, give the existence
conditions of Hopf bifurcation, and derive the properties of Hopf bifurcation using the
central manifold theory and normal form method proposed by Hassar [25], Wu [26], Faria
[27], including the direction of Hopf bifurcation and the stability of bifurcating periodic
solutions.

1.3 Existence of the constant equilibria
In order to ensure the biological significance of the model (1.2), we make the following
hypothesis:

(H0) h < e/d and α ≥ 1.
Three equilibria of the system (1.2) can be obtained:

P0 = (0, 0), P1 = (K , 0), P∗ =
(
u∗, v∗),

where

u∗ = α

√
1

1 – β

α

√
d

c(e – dh)
, v∗ =

eru∗

d

(

1 –
u∗

k

)

,

u∗ can be regarded as a function of habitat complexity effect β , let u∗ = u(β). For conve-
nience, denote β∗ = 1 – d

ckα (e–dh) and make the following assumption:
(H1) β < β∗.

Theorem 1.1 If (H0) and (H1) hold, then the system (1.2) has a unique positive equilibrium
point P∗ = (u∗, v∗).

2 Stability analysis of diffusion system without time delay
When τ = 0, the system (1.2) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = d1	u + ru(1 – u

K ) – c(1–β)uαv
1+ch(1–β)uα ,

∂v
∂t = d2	v + ec(1–β)uαv

1+ch(1–β)uα – dv,

ux(0, t) = vx(0, t) = 0, ux(lπ , t) = vx(lπ , t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ � = (0, lπ ).

(2.1)

Define the real-valued Sobolev space

X :=
{

(u, v)T |u, v ∈ H2(0, lπ ), (ux, vx)|x=0,lπ = (0, 0)
}

,

and let the complexification of X be

Xc := X ⊕ iX = {x1 + ix2|x1, x2 ∈ X}.

Let

U = (u, v) ∈ H2(0, lπ ), D = diag(d1, d2), F(β , U) = (F1, F2),
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then the system (2.1) can be written in the form of an abstract equation

U̇(t) = D	U(t) + F(β , U).

We use J(F) to represent the Jacobian matrix of F , then the linearization of the steady state
system corresponding to the system (2.1) at (β , 0, 0) is

L(β) = D
∂2

∂x2 + J(F)|U≡0.

2.1 Stability of positive equilibrium
Let the Jacobian matrix corresponding to system (2.1) at the positive equilibrium point
P∗ = (u∗, v∗) be

(
a1 a2

a3 a4

)

,

where

a1 =
(

r –
2ru∗

K

)

+ α

(

1 –
dh
e

)(

r –
ru∗

K

)

,

a2 = –
c(1 – β)u∗α

1 + ch(1 – β)u∗α
= –

d
e

,

a3 = αr
(

1 –
u∗

K

)

(e – dh), a4 = 0.

We assume

Ln =

(
a1 – d1

n2

l2 a2

a3 –d2
n2

l2

)

,

En = – tr(Ln) = –a1 + (d1 + d2)
n2

l2 ,

Fn = |Ln| = d1d2
n4

l4 – a1d2
n2

l2 – a2a3,

then the characteristic equation of Ln is

λ2 + Enλ + Fn = 0, (2.2)

the characteristic roots of Eq. (2.2) are

λ
(n)
1,2 =

–En ±
√

En
2 – 4Fn

2
, n ∈N0 � {0} ∪N.

Theorem 2.1 Suppose (H0) and (H1) are true, then we can obtain
(i) If 1 – (1 – β∗)(1 + e

e+α(e–dh) )α < β < β∗, then the system (2.1) is locally asymptotically
stable at P∗ = (u∗, v∗).

(ii) If β < 1 – (1 – β∗)(1 + e
e+α(e–dh) )α , then the system (2.1) is unstable at P∗ = (u∗, v∗).
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2.2 Stability of boundary equilibria
At the equilibrium point P0 = (0, 0), the corresponding characteristic roots are λn

01 =
r – d1

n2

l2 , λn
02 = –d – d1

n2

l2 < 0. At the equilibrium point P1 = (K , 0), the corresponding char-
acteristic roots are λn

11 = –r – d1
n2

l2 < 0, λn
12 = ec(1–β)Kα

1+ch(1–β)Kα – d – d2
n2

l2 .

Theorem 2.2 For the system (2.1), the following statements are true.
(i) P0 = (0, 0) is unstable.

(ii) If β > β∗, then P1 = (K , 0) is locally asymptotically stable; if β < β∗, P1 = (K , 0) is
unstable.

Theorem 2.3 Suppose (H0) and (H1) are true, for the system (2.1), if β > β∗, then the
equilibrium P1 = (K , 0) is globally asymptotically stable.

Proof Under hypotheses (H0) and (H1), u ≥ 0, v ≥ 0. By the first equation of the system
(2.1),

∂u
∂t

– d1	u = ru
(

1 –
u
K

)

–
c(1 – β)uαv

1 + ch(1 – β)uα
≤ ru

(

1 –
u
K

)

.

Using the comparison principle, we know limt→∞ maxx∈[0,lπ ] u(x, t) ≤ K . From the second
equation,

∂v
∂t

– d2	v =
ec(1 – β)uαv

1 + ch(1 – β)uα
– dv

= v
(

ec(1 – β)
1/uα + ch(1 – β)

– d
)

≤ v
(

ec(1 – β)
1/Kα + ch(1 – β)

– d
)

< 0,

we can obtain ec(1–β)uαv
1+ch(1–β)uα – dv < 0. Therefore, for any ε > 0, there exist T > 0, v(x, t) ≤ ε so

that

∂u
∂t

– d1	u = ru
(

1 –
u
K

)

–
c(1 – β)uαv

1 + ch(1 – β)uα

≥ u
[

r
(

1 –
u
K

)

– c(1 – β)uα–1ε

]

≥ u
[

r
(

1 –
u
K

)

– c(1 – β)Kα–1ε

]

.

Applying the comparison principle again, we have u(x, t) ≥ K(1 – c(1–β)Kαε

r ), t > T , x ∈
[0, lπ ], so limt→∞ maxx∈[0,lπ ] u(x, t) = K . That is, the equilibrium point P1 = (K , 0) is glob-
ally asymptotically stable. �

3 Hopf bifurcation property analysis of time-delay system
When τ �= 0, we will study the time-delay effect on dynamic properties of the diffusion
system (1.2).
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3.1 Existence of Hopf bifurcation induced by time delay
Assuming that (H0) and (H1) are true, the system (1.2) has a unique positive equilibrium
P∗ = (u∗, v∗). For convenience, we make transformations û = u – u∗, v̂ = v – v∗ to move P∗

to the origin. We still use u, v to represent û, v̂, and then the system (1.2) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t = d1	u + r(u + u∗)(1 – u+u∗

K ) – c(1–β)(u+u∗)α (v+v∗)
1+ch(1–β)(u+u∗)α ,

∂v
∂t = d2	v + ec(1–β)[u(x,t–τ )+u∗]α [v(x,t–τ )+v∗]

1+ch(1–β)[u(x,t–τ )+u∗]α – d(v + v∗),

ux(0, t) = vx(0, t) = 0, ux(lπ , t) = vx(lπ , t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ � = (0, lπ ).

(3.1)

Let

u1(t) = u(·, t), u2(t) = v(·, t), U = (u1, u2)T , X = C
(
[0, lπ ],R2),

in phase space Cτ = C([–τ , 0], X), (3.1) can be abstracted as

U̇(t) = D	U(t) + L(Ut) + F(Ut), (3.2)

where φ = (φ1,φ2)T , D = diag(d1, d2).L : Cτ → X, F : Cτ → X are defined as follows:

L(φ) =

(
a1 a2

0 –d

)(
φ1(0)
φ2(0)

)

+

(
0 0
c1 d

)(
φ1(–τ )
φ2(–τ )

)

, F(φ) =

(
F1(φ)
F2(φ)

)

,

with

F1(φ) = r
(
φ1(0) + u∗)

(

1 –
φ1(0) + u∗

k

)

–
c(1 – β)(φ1(0) + u∗)α(φ2(0) + v∗)

1 + ch(1 – β)(φ1(0) + u∗)α

– a1φ1(0) – a2φ2(0),

F2(φ) =
ec(1 – β)(φ1(–τ ) + u∗)α(φ2(–τ ) + v∗)

1 + ch(1 – β)(φ1(–τ ) + u∗)α
– d

(
φ2(0) + v∗) + dφ2(0)

– c1φ1(–τ ) – dφ2(–τ ),

a1 =
(

r –
2ru∗

K

)

+ α

(

1 –
dh
e

)(

r –
ru∗

K

)

, a2 = –
d
e

,

c1 = αr
(

1 –
u∗

K

)

(e – dh).

The linearized equation of (3.1) at the origin is

U̇(t) = D	U(t) + L(Ut), (3.3)

where

L(Ut) = L1U + L2Ut , L1 =

(
a1 a2

0 –d

)

, L2 =

(
0 0
c1 d

)

.
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It is well known that the eigenvalue of –ϕ′′ = μϕ, x ∈ (0, lπ ), ϕ′(0) = ϕ′(lπ ) = 0 is μn =
n2/l2, n ∈N0, the characteristic function is ϕn = cos nπ

l , n ∈N0, λ is the eigenvalue of (3.3).
Substituting y =

∑∞
n=0

( y1n
y2n

)
cos nπ

l into λy – d	y – L(eλy) = 0, we can obtain

(
a1 – d1μn a2

c1e–λτ –d + de–λτ – d2μn

)(
y1n

y2n

)

= λ

(
y1n

y2n

)

, n ∈ N0,

the corresponding characteristic equation is

det
(
λI + μnD – L1 – L2e–λτ

)
= 0, n ∈N0.

It is equivalent to

fn(λ, τ ) = λ2 + Anλ + Bn + Cne–λτ = 0, (3.4)

where

An = (d1 + d2)μn – a1 + d,

Bn = d1d2μn
2 – (a1d2 – dd1)μn – a1d,

Cn = a1d – a2c1 – dd1μn – dλ.

Make the assumptions:
(H2) a1 < 0,
(H3) a2c1 – 2a1d < 0,
(H4) a2c1 – 2a1d ≥ 0.

We have the following lemmas.

Lemma 3.1 If (H0)–(H2) are true, the following conclusions can be drawn.
(i) When τ = 0, all the characteristic roots of Eq. (3.4) have negative real parts, and the

system (3.1) is locally asymptotically stable at the positive equilibrium point
P∗ = (u∗, v∗);

(ii) λ = 0 is not the root of Eq. (3.4).

Lemma 3.2 Assume (H0)–(H2) are true, we have the following conclusions.
(i) If (H3) holds, when n > N1, Eq. (3.4) has no pure imaginary roots. When 0 ≤ n ≤ N1,

Eq. (3.4) has a pair of pure imaginary roots ±iω+
n at τ = τ

j,+
n .

(ii) If (H4) holds, Eq. (3.4) has no pure imaginary roots.

We have

N1 =

⎧
⎨

⎩

[N̂], N̂ /∈N,

[N̂] – 1, N̂ ∈N,
[N̂] represents rounding N̂ ,
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where

N̂ = l

√
1

2d1d2

[
(a1d2 – 2dd1) +

√

(a1d2 – 2dd1)2 – 4d1d2(a2c1 – 2a1d)
]
,

τ j,+
n =

1
ω+

n
arccos

(Dn + dAn)(ω+
n )2 – DnBn

Dn
2 + d2(ω+

n )2 +
2jπ
ω+

n
, j ∈N0.

Proof We seek the critical value of τ which makes for the characteristic equation (3.4) exist
a pair of pure imaginary roots. Let λ = iω (ω > 0) be the root of (3.4), and for some n ∈N0,
ω satisfies –ω2 + iωAn + Bn + [(a1 – d1μn – iω)d – a2c1](cosωτ – i sinωτ ) = 0. Separate the
real part and the imaginary part,

⎧
⎨

⎩

(a1d – dd1μn – a2c1) cosωτ – dω sinωτ = ω2 – Bn,

(a1d – dd1μn – a2c1) sinωτ + dω cosωτ = Anω.
(3.5)

Let Dn = a1d – dd1μn – a2c1, then we have

ω4 +
(
An

2 – 2Bn – d2)ω2 + Bn
2 – Dn

2 = 0. (3.6)

Let z = ω2, then (3.6) can be rewritten as

z2 +
(
An

2 – 2Bn – d2)z + Bn
2 – Dn

2 = 0, (3.7)

where

An
2 – 2Bn – d2 =

(
d1

2 + d2
2)μn

2 – 2a1d1μn
2 + a1

2 + 2dd2μn > 0,

Bn + Dn = d1d2μn
2 – a1d2μn – a2c1 > 0,

Bn – Dn = d1d2μn
2 – (a1d2 – 2dd1)μn – 2a1d + a2c1,

under hypothesis (H3), when 0 ≤ n ≤ N1, Bn –Dn < 0, Bn
2 –Dn

2 < 0; when n > N1, Bn –Dn ≥
0, Bn

2 – Dn
2 ≥ 0. If hypothesis (H4) holds, Bn – Dn > 0, Bn

2 – Dn
2 > 0 for n ∈N0.

In summary, the conclusions are true. The roots of Eq. (3.7) are

z± =
–(An

2 – 2Bn – d2) ±
√

(An
2 – 2Bn – d2)2 – 4(Bn

2 – Dn
2)

2
.

Thus Eq. (3.7) has one positive root z+
n . If all parameter values of the system (3.1) are given,

the roots of Eq. (3.6) can be easily calculated, and ω+
n =

√
z+

n . �

Lemma 3.3 If hypothesis (H2) is true, then α′(τ j,+
n ) = dλ

dτ
|
τ=τ

j,+
n

> 0.

Proof Taking the derivative of Eq. (3.4) with respect to τ , we can obtain

(
dλ

dτ

)–1

=
2λ + An – de–λτ

λCne–λτ
–

τ

λ
,
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then

sign

{

Re

(
dλ

dτ

∣
∣
∣
∣
τ=τ

j,+
n

)–1}

= sign

{

Re

(
2λ + An – de–λτ

λCne–λτ
–

τ

λ

)}

τ=τ
j,+
n

= sign

{
2ω2(ω2 – Bn) + An

2ω2 – d2ω2

d2ω4 + Dn
2ω4

}

= sign

{
2ω2 – 2Bn + An

2 – d2

d2ω2 + Dn
2

}

= sign

{
√

(An
2 – 2Bn – d)2 – 4(Bn

2 – Dn
2)

d2ω2 + Dn
2

}

> 0. �

Let λ(τ ) = α(τ ) + iβ(τ ) be the root of Eq. (3.4) when τ is sufficiently close to τ
j,+
n (0 ≤ n ≤

N1), which satisfies α(τ j,+
n ) = 0, β(τ j,+

n ) = ω+
n , j ∈ N0. According to the Rouche theorem, as

τ changes from a value less than τ
j,+
n to a value greater than τ

j,+
n , the characteristic root of

(3.4) transverses the imaginary axis. Therefore, when τ = τ
j,+
n , the system (3.1) satisfies the

condition for a Hopf bifurcation to occur.
Obviously, τ 0

n = minj∈N0{τ j,+
n }, denote τ 0∗ = min0≤n≤N1{τ 0

n }, we have the following theo-
rem.

Theorem 3.1 Assume that (H0)–(H2) are true, if (H3) (0 ≤ n ≤ N1) is also satisfied, we
have the following conclusions for the system (3.1).

(i) When τ ∈ [0, τ 0∗ ), the equilibrium P∗ = (u∗, v∗) is locally asymptotically stable.
(ii) When τ > τ 0∗ , the equilibrium P∗ = (u∗, v∗) is unstable.

(iii) When τ = τ
j,+
0 , j ∈N0, Hopf bifurcation occurs at the equilibrium P∗ = (u∗, v∗) and

the bifurcating periodic solutions are homogeneous; When
τ ∈ {τ j,+

n : τ j,+
n �= τ i,+

m , m �= n, 0 ≤ m, n ≤ N1, j, i ∈N0}/{τ k,+
0 |k ∈N0}, the system

undergoes Hopf bifurcation at P∗ = (u∗, v∗) and the bifurcating periodic solutions are
inhomogeneous.

3.2 Direction and periodic solutions of Hopf bifurcation
In this section, we shall study the direction of Hopf bifurcation and the stability of bifur-
cating periodic solutions. For fixed j ∈N0 and 0 ≤ n ≤ N1, we denote τ̃ = τ

j,+
n , ωn = ω+

n , and
let ũ(x, t) = u(x, τ t) – u∗ and ṽ(x, t) = v(x, τ t) – v∗. For convenience, we drop the tilde, then
the system (1.2) can be transformed into

⎧
⎨

⎩

∂u
∂t = τ [d1	u + r(u + u∗)(1 – u+u∗

k ) – c(1–β)(u+u∗)α (v+v∗)
1+ch(1–β)(u+u∗)α ],

∂v
∂t = τ [d2	v + ec(1–β)[u(t–1)+u∗]α [v(t–1)+v∗]

1+ch(1–β)[u(t–1)+u∗]α – d(v + v∗)],
(3.8)

for x ∈ (0, lπ ), and t > 0. Let

τ = τ̃ + μ, u1(t) = u(·, t), u2(t) = v(·, t) and U = (u1, u2)T .
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Then (3.8) can be rewritten in an abstract form in the phase space Cτ := C([–1, 0], X)

dU(t)
dt

= τ̃D	U(t) + Lτ̃ (Ut) + F(Ut ,μ), (3.9)

in which

Lμ(φ) = μ

(
a1φ1(0) + a2φ2(0)

–dφ2(0) + c1φ1(–1) + dφ2(–1)

)

, (3.10)

F(φ,μ) = μD	φ + Lμ(φ) + f (φ,μ), (3.11)

with

f (φ,μ) = (τ̃ + μ)
(
F1(φ,μ), F2(φ,μ)

)T ,

F1(φ,μ) = r
(
φ1(0) + u∗)

(

1 –
φ1(0) + u∗

k

)

–
c(1 – β)(φ1(0) + u∗)α(φ2(0) + v∗)

1 + ch(1 – β)(φ1(0) + u∗)α

– a1φ1(0) – a2φ2(0),

F2(φ,μ) =
ec(1 – β)(φ1(–1) + u∗)α(φ2(–1) + v∗)

1 + ch(1 – β)(φ1(–1) + u∗)α
– d

(
φ2(0) + v∗) + dφ2(0)

– c1φ1(–1) – dφ2(–1),

respectively, for φ = (φ1,φ2)T ∈ Cτ . Consider the linearized equation

dU(t)
dt

= τ̃D	U(t) + Lτ̃ (Ut). (3.12)

According to the results in Sect. 3.1, ±iωn are eigenvalues of the system (3.12) and the
linearized functional differential equation is

dz(t)
dt

= –τ̃D
n2

l2 z(t) + Lτ̃ (zt). (3.13)

By the Riesz representation theorem, there exists a 2 × 2 matrix function ηn(σ , τ̃ ), –1 ≤
σ ≤ 0, whose elements are bounded variation functions such that

–τ̃D
n2

l2 φ(0) + Lτ̃ (φ) =
∫ 0

–1
dηn(σ , τ )φ(σ )

for φ ∈ C([–1, 0],R2).
We select

ηn(σ , τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

τE, σ = 0,

0, σ ∈ (–1, 0),

–τF , σ = –1,

(3.14)

in which

E =

(
a1 – d1

n2

l2 a2

0 –d – d2
n2

l2

)

, F =

(
0 0
c1 d

)

. (3.15)
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Denote by A(τ̃ ) the infinitesimal generators of semigroup included by the solutions of
Eq. (3.13) and let A∗ be the formal adjoint of A(τ̃ ) under the bilinear paring

(ψ ,φ) = ψ(0)φ(0) –
∫ 0

–1

∫ σ

ξ=0
ψ(ξ – σ ) dηn(σ , τ̃ )φ(ξ ) dξ

= ψ(0)φ(0) + τ̃

∫ 0

–1
ψ(ξ + 1)Fφ(ξ ) dξ ,

(3.16)

for φ,ψ ∈ C([–1, 0],R2). A(τ̃ ) and A∗ both have a pair of simple purely imaginary eigen-
values ±iωnτ̃ . Let P and P∗ be the center subspace, i.e., the generalized eigenspace of
A(τ̃ ) and A∗ connected with �n, respectively. Then P∗ is the adjoint space of P, and
dim P = dim P∗ = 2.

We can verify that p1(θ ) = (1, ξ )T eiωn τ̃ σ (σ ∈ [–1, 0]), p2(σ ) = p1(σ ) is a basis of A(τ̃ ) with
�n and q1(r) = (1,η)e–iωn τ̃ r (r ∈ [0, 1]), q2(r) = q1(r) is a basis of A∗ with �n, where

ξ =
iωn – a1 + d1

n2

l2

a2
, η =

–iωn – a1 + d1
n2

l2

c1eiωn τ̃
.

Let � = (�1,�2) and �∗ = (�∗
1 ,�∗

2 )T with

�1(σ ) =
p1(σ ) + p2(σ )

2
=

⎛

⎝
cos(ωnτ̃ σ )

–a1+d1
n2
l2

a2
cosωnτ̃ σ – ωn

a2
sinωnτ̃ σ

⎞

⎠ ,

�2(σ ) =
p1(σ ) – p2(σ )

2i
=

⎛

⎝
sin(ωnτ̃ θ )

ωn
a2

cosωnτ̃ σ +
–a1+d1

n2
l2

a2
sinωnτ̃ σ

⎞

⎠ ,

�∗
1 (r) =

q1(r) + q2(r)
2

=

⎛

⎝
cos(ωnτ̃ r)

–a1+d1
n2
l2

c1
cosωnτ̃ (r + 1) – ωn

c1
sinωnτ̃ (r + 1)

⎞

⎠ ,

�∗
2 (r) =

q1(r) – q2(r)
2i

=

⎛

⎝
– sin(ωnτ̃ r)

– ωn
c1

cosωnτ̃ (r + 1) –
–a1+d1

n2
l2

c1
sinωnτ̃ (r + 1)

⎞

⎠ ,

for θ ∈ [–1, 0], and r ∈ [0, 1]. According to (3.16), we can calculate

D∗
1 :=

(
�∗

1 ,�1
)
, D∗

2 :=
(
�∗

1 ,�2
)
, D∗

3 :=
(
�∗

2 ,�1
)
, D∗

4 :=
(
�∗

2 ,�2
)
.

Define (�∗,�) = (�∗
j ,�k) =

( D∗
1D∗

2
D∗

3D∗
4

)
and construct a basis � of P∗ by

� = (�1,�2)T =
(
�∗,�

)–1
�∗,

then (� ,�) = I2.
Furthermore, we define fn := (β1

n ,β2
n) with

β1
n =

(
cos n

l x
0

)

, β2
n =

(
0

cos n
l x

)

,
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and

c · fn = c1β
1
n + c2β

2
n , for c = (c1, c2)T ∈Cτ .

Thus the center subspace of the linear equation (3.12) is given by PCNCτ ⊕PSCτ and PSCτ

is the complement subspace of PCNCτ in Cτ ,

< u, v >:=
1

lπ

∫ lπ

0
u1v1 dx +

1
lπ

∫ lπ

0
u2v2 dx

for u = (u1, u2), v = (v1, v2), u, v ∈ X and 〈φ, f0〉 = (〈φ, f 1
0 〉, 〈φ, f 2

0 〉)T .
Let Aτ̃ be the infinitesimal generator of an analytic semigroup induced by the linear

system (3.12), and Eq. (3.8) can be rewritten as

dU(t)
dt

= Aτ̃ Ut + R(Ut ,μ), (3.17)

where

R(Ut ,μ) =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

F(Ut ,μ), θ = 0.
(3.18)

By the decomposition of Cτ , the solution above can be written as

Ut = �

(
x1

x2

)

fn + h(x1, x2,μ),

where
(

x1

x2

)

=
(
� , 〈Ut , fn〉

)

and

h(x1, x2,μ) ∈ PSCτ , h(0, 0, 0) = 0, Dh(0, 0, 0) = 0.

Specially, the solution of (3.9) on the center manifold is given by

Ut = �

(
x1(t)
x2(t)

)

fn + h(x1, x2, 0). (3.19)

Let z = x1 – ix2, and because p1 = �1 + i�2, we have

�

(
x1

x2

)

fn = (�1,�2)

(
z+z

2
i(z–z)

2

)

fn =
1
2

(p1z + p1z)fn

and

h(x1, x2, 0) = h
(

z + z
2

,
i(z – z)

2
, 0

)

.
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Therefore, Eq. (3.19) can be transformed into

Ut =
1
2

(p1z + p1z)fn + h
(

z + z
2

,
i(z – z)

2
, 0

)

=
1
2

(p1z + p1z)fn + W (z, z),
(3.20)

in which

W (z, z) = h
(

z + z
2

,
i(z – z)

2
, 0

)

,

z satisfies

ż = iωnτ̃z + g(z, z), (3.21)

where

g(z, z) =
(
�1(0) – i�2(0)

)〈
F(Ut , 0), fn

〉
. (3.22)

Let

W (z, z) = W20
z2

2
+ W11zz + W02

z2

2
+ · · · , (3.23)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · · , (3.24)

from Eqs. (3.20) and (3.23), we have

ut(0) =
1
2

(z + z) cos

(
nx
l

)

+ W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz + W (1)
02 (0)

z2

2
+ · · · ,

vt(0) =
1
2

(ξz + ξz) cos

(
nx
l

)

+ W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz + W (2)
02 (0)

z2

2
+ · · · ,

ut(–1) =
1
2
(
ze–iωn τ̃ + zeiωn τ̃

)
cos

(
nx
l

)

+ W (1)
20 (–1)

z2

2
+ W (1)

11 (–1)zz

+ W (1)
02 (–1)

z2

2
+ · · · ,

vt(–1) =
1
2
(
ξze–iωn τ̃ + ξzeiωn τ̃

)
cos

(
nx
l

)

+ W (2)
20 (–1)

z2

2
+ W (2)

11 (–1)zz

+ W (2)
02 (–1)

z2

2
+ · · · ,

and

F1(Ut , 0) =
1
τ̃

F1 =
1
2
α1u2

t (0) + α2ut(0)vt(0) +
1
2
α3v2

t (0) + · · · , (3.25)

F2(Ut , 0) =
1
τ̃

F2 =
1
2
β1u2

t (–1) + β2ut(–1)vt(–1) +
1
2
β3v2

t (–1)

+ β4ut(–1)vt(0) +
1
2
β5v2

t (0) + · · · ,
(3.26)
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with

α1 = –
2r
k

–
αc(1 – β)u∗α–2[α – 1 – (α + 1)ch(1 – β)u∗α]v∗

[1 + ch(1 – β)u∗α]3 ,

α2 = –
αc(1 – β)u∗α–1

[1 + ch(1 – β)u∗α]2 , α3 = 0,

β1 = –
αec(1 – β)u∗α–2[α – 1 – (α + 1)ch(1 – β)u∗α]v∗

[1 + ch(1 – β)u∗α]3 ,

β2 =
αdr(1 – u∗

k )
c(1 – β)u∗αv∗ , β3 = β4 = β5 = 0.

Therefore,

F1(Ut , 0) = cos2
(

nx
l

)(
z2

2
χ20 + zzχ11 +

z2

2
χ20

)

+
z2z
2

cos
nx
l

[

W (1)
11 (0)(α1 + ξα2) + W (2)

11 (0)α2 + W (1)
20 (0)

α1 + ξα2

2

+ W (2)
20 (0)

α2

2

]

+ · · · ,

(3.27)

F2(Ut , 0) = cos2
(

nx
l

)(
z2

2
ς20 + zzς11 +

z2

2
ς20

)

+
z2z
2

cos
nx
l

[

W (1)
11 (–1)

(
e–iτ̃ωnβ1 + ξβ2

)

+ W (1)
20 (–1)

(
1
2

eiτ̃ωnβ1 +
1
2
ξβ2

)

+ e–iτ̃ωn W (2)
11 (–1)β2

+
1
2

eiτ̃ωn W (2)
20 (–1)β2

]

+ · · · ,

(3.28)

〈
F(Ut , 0), fn

〉
=

z2

2
τ̃

(
χ20

ς20

)

� + zzτ̃

(
χ11

ς11

)

� +
z2

2
τ̃

(
χ20

ς20

)

�

+
z2z
2

τ̃

(
κ1

κ2

)

+ · · · ,

(3.29)

with

� =
1

lπ

∫ lπ

0
cos3

(
nx
l

)

dx,

κ1 =
[

(α1 + ξα2)W (1)
11 (0) + α2W (2)

11 (0) +
1
2

(α1 + ξα2)W (1)
20 (0)

+
1
2
α1W (2)

20 (0)
]

1
lπ

∫ lπ

0
cos2

(
nx
l

)

dx,

κ2 =
[
(
e–iτ̃ωnβ1 + ξβ2

)
W 1

11(–1) +
(

1
2

eiτ̃ωnβ1 +
1
2
ξβ2

)

W 1
20(–1)

+ e–iτ̃ωnβ2W 2
11(0) +

1
2

eiτ̃ωnβ2W 2
20(0)

]
1

lπ

∫ lπ

0
cos2

(
nx
l

)

dx,
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and

χ20 =
1
4

(α1 + 2ξα2), χ11 =
1
4
(
α1 + (ξ + ξ )α2

)
,

χ20 =
1
4

(α1 + 2ξα2), ς20 =
1
4

e–2iτ̃ωn (β1 + 2ξβ2),

ς11 =
1
4
β1 +

1
4
ξβ2 +

1
4
ξβ2, ς20 =

1
4

e2iτ̃ωn (β1 + 2ξβ2).

(3.30)

Denote

�1(0) – i�2(0) := (γ1,γ2).

and because

1
lπ

∫ lπ

0
cos3

(
nx
l

)

dx = 0, n ∈ N,

we can obtain

(
�1(0) – i�2(0)

)〈
F(Ut , 0), fn

〉

=
z2

2
(γ1χ20 + γ2ς20)�τ̃ + zz(γ1χ11 + γ2ς11)�τ̃ +

z2

2
(γ1χ20 + γ2ς20)�τ̃

+
z2z
2

τ̃ [γ1κ1 + γ2κ2] + · · · ,

(3.31)

then, by (3.23), (3.24) and (3.31), we get g20 = g11 = g02 = 0, for n ∈ N. When n = 0, g20 =
γ1τ̃χ20 + γ2τ̃ ς20, g11 = γ1τ̃χ11 + γ2τ̃ ς11, g02 = γ1τ̃χ20 + γ2τ̃ ς20. When n ∈N0, g21 = τ̃ (γ1κ1 +
γ2κ2).

Next, we shall compute W20(θ ) and W11(θ ) (θ ∈ [–1, 0]) to get g21. We have

Ẇ (z, z) = W20zż + W11żz + W11zż + W02zż + · · · ,

Aτ̃ W (z, z) = Aτ̃ W20
z2

2
+ Aτ̃ W11zz + Aτ̃ W02

z2

2
+ · · · ,

and W (z, z) satisfies

Ẇ (z, z) = Aτ̃ W + H(z, z),

where

H(z, z) = H20
z2

2
+ W11zz + H02

z2

2
+ · · ·

= X0F(Ut , 0) – �
(
� ,

〈
X0F(Ut , 0), fn

〉 · fn
)
.

(3.32)

Hence, we can obtain

(2iωnτ̃ – Aτ̃ )W20 = H20, –Aτ̃ W11 = H11, (–2iωnτ̃ – Aτ̃ )W02 = H02, (3.33)
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that is,

W20 = (2iωnτ̃ –Aτ̃ )–1H20, W11 = –A–1
τ̃ H11, W02 = (–2iωnτ̃ –Aτ̃ )–1H02. (3.34)

By (3.31), we obtain, for θ ∈ [–1, 0),

H(z, z) = –�(0)�(0)
〈
F(Ut , 0), fn

〉 · fn

= –
(

p1(θ ) + p2(θ )
2

,
p1(θ ) – p2(θ )

2i

)(
�1(0)
�2(0)

)
〈
F(Ut , 0), fn

〉 · fn

= –
1
2
[
p1(θ )

(
�1(0) – i�2(0)

)
+ p2(θ )

(
�1(0) + i�2(0)

)]〈
F(Ut , 0), fn

〉 · fn

= –
1
2

[
(
p1(θ )g20 + p2(θ )g02

)z2

2
+

(
p1(θ )g11 + p2(θ )g11

)
zz

+
(
p1(θ )g02 + p2(θ )g20

)z2

2

]

+ · · · .

According to (3.32), for θ ∈ [–1, 0),

H20(θ ) =

⎧
⎨

⎩

0, n ∈N,

– 1
2 (p1(θ )g20 + p2(θ )g02) · f0, n = 0,

H11(θ ) =

⎧
⎨

⎩

0, n ∈N,

– 1
2 (p1(θ )g11 + p2(θ )g11) · f0, n = 0,

H02(θ ) =

⎧
⎨

⎩

0, n ∈N,

– 1
2 (p1(θ )g02 + p2(θ )g20) · f0, n = 0,

and

H(z, z)(0) = F(Ut , 0) – �
(
� ,

〈
F(Ut , 0), fn

〉) · fn,

where

H20(0) =

⎧
⎨

⎩

τ̃
( χ20

ς20

)
cos2( nx

l ), n ∈N,

τ̃
( χ20

ς20

)
– 1

2 (p1(0)g20 + p2(0)g02) · f0, n = 0,

H11(0) =

⎧
⎨

⎩

τ̃
( χ11

ς11

)
cos2( nx

l ), n ∈N,

τ̃
( χ11

ς11

)
– 1

2 (p1(0)g11 + p2(0)g11) · f0, n = 0.

(3.35)

By the definition of Aτ̃ and (3.33), for –1 ≤ θ < 0, we have

Ẇ20 = Aτ̃ W20 = 2iωnτ̃W20 +
1
2
(
p1(θ )g20 + p2(θ )g02

) · fn.
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That is,

W20(θ ) =
i

2ωnτ̃

(

g20p1(θ ) +
g02
3

p2(θ )
)

· fn + E1e2iωn τ̃ θ ,

in which

E1 =

⎧
⎨

⎩

W20(0), n ∈ N,

W20(0) – i
2ωn τ̃

(g20p1(θ ) + g02
3 p2(θ )) · f0, n = 0.

Also using the definition of Aτ̃ and (3.33), for –1 ≤ θ < 0, we have

–
(

g20p1(0) +
g02
3

p2(0)
)

· f0 + 2iωnτ̃E1 – Aτ̃

(
i

2ωnτ̃

(

g20p1(0) +
g02
3

p2(0)
)

· f0

)

– Aτ̃ E1 – Lτ̃

(
i

2ωnτ̃

(

g20p1(0) +
g02
3

p2(0)
)

· fn + E1e2iωn τ̃ θ

)

= τ̃

(
χ20

ς20

)

–
1
2
(
p1(0)g20 + p2(0)g02

) · f0.

According to

Aτ̃ p1(0) + Lτ̃ (p1 · f0) = iω0p1(0) · f0

and

Aτ̃ p2(0) + Lτ̃ (p2 · f0) = –iω0p2(0) · f0,

we can obtain

2iωnE1 – Aτ̃ E1 – Lτ̃ E1e2iωn = τ̃

(
χ20

ς20

)

cos2
(

nx
l

)

, n ∈ N0.

That is,

E1 = τ̃E

(
χ20

ς20

)

cos2
(

nx
l

)

,

in which

E =

(
2iωnτ̃ + d1

n2

l2 – a1 –a2

–c1e–2iωn τ̃ 2iωnτ̃ + d2
n2

l2 + d – de–2iωn τ̃

)–1

.

Similarly, from (3.34), we can obtain

–Ẇ11 =
i

2ωnτ̃

(
p1(θ )g11 + p2(θ )g11

) · fn, –1 ≤ θ < 0.



Li et al. Advances in Difference Equations        (2021) 2021:320 Page 18 of 24

That is,

W11(θ ) =
i

2ωnτ̃

(
p1(θ )g11 – p1(θ )g11

)
+ E2.

Similar to the procedure of computing W20, we have

E2 = τ̃E∗
(

χ11

ς11

)

cos2
(

nx
l

)

,

where

E∗ =

(
d1

n2

l2 – a1 –a2

–c1 d2
n2

l2

)–1

.

Thus, the following quantities which determine the direction and the stability of bifurcat-
ing periodic solutions can be obtained:

⎧
⎨

⎩

c1(0) = i
2ωn τ̃

(g20g11 – 2|g11|2 – |g02|2
3 ) + 1

2 g21, μ2 = – Re(c1(0))
Re(λ′(τ j,+

n ))
,

T2 = – 1
ωn τ̃

[Im(c1(0)) + μ2 Im(λ′(τ j,+
n ))], β2 = 2 Re(c1(0)).

(3.36)

Theorem 3.2 For any critical value τ
j,+
n , we have

(i) If μ2 > 0 (μ2 < 0), then Hopf bifurcation is forward (backward), that is, the
bifurcating periodic solutions exists for τ > τ

j,+
n (τ < τ

j,+
n ).

(ii) If β2 < 0 (β2 > 0), then the bifurcating periodic solutions are orbitally asymptotically
stable (unstable).

(iii) If T2 > 0 (T2 < 0), then the period increases (decreases).

4 Numerical simulation
In model (2.1), if β = 0, i.e., the habitat complexity effect is 0, it means that all prey may be
caught by the predator. When β → 1, it means that only little of preys can be caught, i.e.,
most prey are protected.

1. Stability of the system without delay.
In the system (2.1), select the parameters as

r = 0.9, K = 300, c = 0.46, e = 0.58,

h = 0.053, d = 0.6, α = 1.

At P∗ = (u∗, v∗), when 0 < β < 0.467, the system (2.1) is unstable, when 0.467 < β < 0.834,
the system is locally asymptotically stable. Fix β = 0.5, by calculation, P∗ = (u∗, v∗) =
(99.568, 5.787) (see Figs. 1–4).

2. Stability of the system with delay.
(1) For the system (2.1), let α = 1, we choose other parameters:

d1 = 1, d2 = 0.5, r = 2.65, K = 300, c = 0.23,

e = 0.115, h = 0.054, d = 1.16.
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Figure 1 β = 0.5, d1 = 1, d2 = 0.3 and the initial condition is (99.568, 5.787). P∗ = (u∗ , v∗) is locally
asymptotically stable

Figure 2 β = 0.9, d1 = 1, d2 = 0.3 and the initial condition is (10, 40). P1 = (300, 0) shows global asymptotic
stability

Figure 3 β = 0.3, d1 = 1, d2 = 0.3 and the initial condition is (99.568, 5.787). The system produces periodic
solutions

By Theorem 2.1, we know that when 0 < β < 0.0895, the equilibrium P∗ = (u∗, v∗) is un-
stable; when 0.0895 < β < β∗ = 0.6789, the equilibrium P∗ = (u∗, v∗) is locally asymptot-
ically stable. We choose β = 0.18, by direct computation, P∗ = (u∗, v∗) = (117.47, 18.78),
τ 0

0 ≈ 0.2236. By the theorem, when τ ∈ (0, τ 0
0 ], the equilibrium P∗ = (u∗, v∗) is locally

asymptotically stable. When τ crosses τ 0
0 , the equilibrium P∗ = (u∗, v∗) loses stability and

a Hopf bifurcation occurs (see Figs. 5–7).
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Figure 4 d1 = 0.6888, d2 = 0.16, β = 0.213 and the initial condition is (62.23, 4.219). The system produces
periodic solutions

Figure 5 τ = 0.15 < τ 0
0 and the initial condition is (117.47, 18.78). P∗ = (u∗ , v∗) is locally asymptotically stable

Figure 6 τ = 0.3 > τ 0
0 and the initial condition is (117.47, 18.78). The system produces periodic solutions

(2) For the system (2.1), let α = 2, we choose the other parameters:

d1 = 1, d2 = 0.5, r = 3.3, K = 500, c = 0.045,

e = 0.1, h = 0.05, d = 1.06.

By Theorem 2.1, we know that when 0 < β < 0.3743, the equilibrium P∗ = (u∗, v∗) is un-
stable; when 0.3743 < β < β∗ = 0.998, the equilibrium P∗ = (u∗, v∗) is locally asymptot-
ically stable. We choose β = 0.7, by direct computation, P∗ = (u∗, v∗) = (40.87, 11.68),
τ 0

0 ≈ 2.1563. By the theorem, when τ ∈ (0, τ 0
0 ], the equilibrium P∗ = (u∗, v∗) is locally
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Figure 7 τ = 0.15, β = 0.06 and the initial condition is (117.47, 18.78). The system produces periodic solutions

Figure 8 τ = 2 < τ 0
0 and the initial condition is (40.87, 11.68). P∗ = (u∗ , v∗) is locally asymptotically stable

Figure 9 τ = 2.2 > τ 0
0 and the initial condition is (40.87, 11.68). The system produces periodic solutions

asymptotically stable. When τ crosses τ 0
0 , the equilibrium P∗ = (u∗, v∗) loses stability and

a Hopf bifurcation occurs (see Figs. 8–10).
(3) In the system (2.1), let α = 3, we choose other parameters:

d1 = 1, d2 = 0.5, r = 2.65, K = 30, c = 0.24,

e = 0.07, h = 0.054, d = 1.16.

By Theorem 2.1, we know that when 0 < β < 0.6376, the equilibrium P∗ = (u∗, v∗) is unsta-
ble; when 0.6376 < β < β∗ = 0.9757, the equilibrium P∗ = (u∗, v∗) is locally asymptotically
stable. We choose β = 0.8, by direct computation, P∗ = (u∗, v∗) = (12.71, 1.17), τ 0

0 ≈ 3.8624.
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Figure 10 τ = 2, β = 0.16 and the initial condition is (40.87, 11.68). The system produces periodic solutions

Figure 11 τ = 3.8 < τ 0
0 and the initial condition is (12.71, 1.17). P∗ = (u∗ , v∗) is locally asymptotically stable

Figure 12 τ = 3.9 > τ 0
0 and the initial condition is (12.71, 1.17). The system produces periodic solutions

Figure 13 τ = 3.9, β = 0.68 and the initial condition is (12.71, 1.17). P∗ = (u∗ , v∗) is locally asymptotically stable
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By the theorem, when τ ∈ (0, τ 0
0 ], the equilibrium P∗ = (u∗, v∗) is locally asymptotically sta-

ble. When τ crosses τ 0
0 , the equilibrium P∗ = (u∗, v∗) loses stability and a Hopf bifurcation

occurs (see Figs. 11–13).

5 Biological significance
From the biological standpoint, when the intensity of habitat complexity effect is higher,
the magnitude of the predator population will decrease with the increase of habitat com-
plexity effect. This is due to a lower predation rate causing predators to starve to death
because of lacking sufficient food. However, when the intensity of habitat complexity ef-
fect is relatively low, the population equilibrium density of the predator will increase with
the increase of habitat complexity effect, because when the habitat complexity effect is
lower, the predator still has not enough food to survive continuously.

The existence of equilibrium P0 = (0, 0) means the extinction of predator and prey pop-
ulations. This is so because, when the intensity of habitat complexity effect is lower, the
prey are quickly eaten by the predator, leading to a sharp reduction in the number of prey
to extinction, and finally the predators are extinct without food.

The existence of equilibrium P1 = (K , 0) means the extinction of predators, which means
that when the intensity of habitat complexity effect is higher, the predators cannot get
food, the mortality rate of predators is higher than the growth rate, and the predators
eventually die. The prey are absolutely safe and the number of prey eventually stabilizes at
the maximum carrying capacity of the environment. Compared with the refuge effect, it
is not difficult to find that they have the same effect on the equilibrium density of predator
and prey populations. However, the difference is that the habitat complexity effect reduces
the predation rate by reducing the meeting rate between predator and prey, prey are not
absolutely safe. Under the refuge effect, prey are perfectly safe.

The stability of coexistence equilibrium P∗ = (u∗, v∗) means that the system may have
spatially homogeneous or inhomogeneous periodic solutions due to the existence of a dif-
fusion term and time delay. That is to say, if the intensity of habitat complexity effect is
higher, the predator’s ability is higher and there is a short digestion delay, then the preda-
tor and prey can coexist in time and space, and the population quantity will remain near
the stable value. When the digest delay is close to the Hopf bifurcation value, the system
may have stable periodic solutions. In this case, predators and preys can coexist, but the
population quantity may show stable periodic solutions.
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