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Abstract
In this work, we present new necessary and sufficient conditions for the oscillation of
a class of second-order neutral delay impulsive differential equations. Our oscillation
results complement, simplify and improve recent results on oscillation theory of this
type of nonlinear neutral impulsive differential equations that appear in the literature.
An example is provided to illustrate the value of the main results.
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1 Introduction
Nowadays impulsive differential equations are attracting a lot of attention. They appear
in the study of several real world problems (see, for instance, [1–3]). In general, it is well
known that several natural phenomena are driven by differential equations. However, the
description of some real world problems requires studies on systems of differential equa-
tions with impulses, a subject very interesting from a mathematical point of view. Ex-
amples of the aforementioned phenomena are related to mechanical systems, biological
systems, population dynamics, pharmacokinetics, theoretical physics, biotechnology pro-
cesses, chemistry, engineering, control theory (we also stress that in the modeling of these
phenomena is suitably formulated by evolutive partial differential equations and, more-
over, moment problem approaches appear also as a natural instrument in control theory
of neutral type systems; see [4–6] and [7], respectively).

The literature related to impulsive differential equations is very wide. Here we mention
some recent developments in this field.

In [8], Shen and Wang considered impulsive differential equations of the following form:

⎧
⎨

⎩

u′(ι) + r(ι)u(ι – ν) = 0, ι �= φk , ι ≥ ι0,

u(φ+
k ) – u(φ–

k ) = Ik(u(φk)), k ∈N,
(1)

where r ∈ C(R,R) and Ik ∈ C(R,R) for k ∈ N, and obtained sufficient conditions that en-
sure the oscillation and the asymptotic behaviour of the solutions of the problem (1).

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03474-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03474-x&domain=pdf
http://orcid.org/0000-0002-7251-9608
mailto:o.bazighifan@gmail.com


Santra et al. Advances in Difference Equations        (2021) 2021:318 Page 2 of 12

In [9], Graef et al. considered the problem

⎧
⎨

⎩

(u(ι) – q(ι)u(ι – ζ ))′ + r(ι)|u(ι – ν)|λ sgn u(ι – ν) = 0, ι ≥ ι0,

u(φ+
k ) = bku(φk), k ∈N,

(2)

assuming that q(ι) ∈ PC([ι0,∞),R+) (that is, q(ι) is piecewise continuous in [ι0,∞)), ob-
tained sufficient conditions for the oscillation of the solutions of the problem (2).

In [10], Shen and Zou obtained oscillation criteria for first-order impulsive neutral delay
differential equations of the form

⎧
⎨

⎩

(u(ι) – q(ι)u(ι – ζ ))′ + r(ι)u(ι – ν1) – v(ι)u(ι – ν2) = 0, ν1 ≥ ν2 > 0,

u(φ+
k ) = Ik(u(φk)), k ∈N,

(3)

obtaining sufficient conditions that ensure the oscillation of the solutions of (3) under the
assumptions that q(ι) ∈ PC([ι0,∞),R+) and bk ≤ Ik (u)

u ≤ 1.
Karpuz et al. in [11] extended the results contained in [10] by taking the nonhomoge-

neous counterpart of the system (3) with variable delays.
Oscillation and nonoscillation properties for a class of second-order neutral impulsive

differential equations with constant coefficients and constant delays were studied by Tri-
pathy and Santra in [12], where the authors considered the problem

⎧
⎨

⎩

(u(ι) – qu(ι – ζ ))′′ + ru(ι – ν) = 0, ι �= φk , k ∈ N,

�(u(φk) – qu(φk – ζ ))′ + r̃u(φk – ν) = 0, k ∈N.
(4)

Other necessary and sufficient conditions for the oscillation of a class of second-order
neutral impulsive systems were established in [13], where Tripathy and Santra studied
systems of the form

⎧
⎨

⎩

(p(ι)(u(ι) + q(ι)u(ι – ζ ))′)′ + r(ι)g(u(ι – ν)), ι �= φk , k ∈N,

�(p(φk)(u(φk) + q(φk)u(φk – ζ ))′) + r(φk)g(u(φk – ν)) = 0, k ∈ N.
(5)

In [13], in particular, the authors are interested with oscillating systems that, after a per-
turbation by instantaneous change of state, remain oscillating.

In [14], Santra and Tripathy investigated the oscillatory behaviour of the solutions for
first-order impulsive neutral delay differential equations of the form

⎧
⎪⎪⎨

⎪⎪⎩

(u(ι) – q(ι)u(ι – ζ ))′ + r(ι)g(u(ι – ν)) = 0, ι �= φk , ι ≥ ι0,

u(φ+
k ) = Ik(u(φk)), k ∈N,

u(φ+
k – τ ) = Ik(u(φk – τ )), k ∈N,

(6)

for different values of the neutral coefficient q.
We also mention Ref. [15] in which Santra and Dix, using Lebesgue’s dominated con-

vergence theorem, obtained necessary and sufficient conditions for the oscillation of the
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solutions of the following second-order neutral differential equations with impulses:

⎧
⎨

⎩

(p(ι)(w′(ι))γ )′ +
∑m

j=1 rj(ι)gj(u(νj(ι))) = 0, ι ≥ ι0, ι �= φk , k ∈N,

�(p(φk)(w′(φk))γ ) +
∑m

j=1 r̃j(φk)gj(u(νj(φk))) = 0,
(7)

where

w(ι) = u(ι) + q(ι)u
(
ζ (ι)

)
, �u(a) = lim

s→a+
u(s) – lim

s→a– u(s), –1 ≤ q(ι) ≤ 0.

In line with the contents of [15], Tripathy and Santra in [16] examined oscillation and
nonoscillation properties for the solutions of the following class of forced impulsive non-
linear neutral differential systems:

⎧
⎨

⎩

(p(ι)(u(ι) + q(ι)u(ι – ζ ))′)′ + r(ι)g(u(ι – ν)) = f (ι), ι �= φk , k ∈ N,

�(p(φk)(u(φk) + q(φk)u(φk – ζ ))′) + r̃(φk)g(u(φk – ν)) = f̃ (φk), k ∈N,
(8)

for different values of q(ι) and obtained sufficient conditions for the existence of positive
bounded solutions of system (8).

Finally we mention recent work [17] in which Tripathy and Santra obtained some char-
acterizations for the oscillation of solutions of the following second-order neutral impul-
sive differential system:

⎧
⎨

⎩

(p(ι)(w′(ι))γ )′ +
∑m

j=1 rj(ι)xαj (νj(ι)) = 0, ι ≥ ι0, ι �= φk ,

�(p(φk)(w′(φk))γ ) +
∑m

j=1 hj(φk)xαj (νj(φk)) = 0, k ∈N,
(9)

where w(ι) = u(ι) + q(ι)u(ζ (ι)) and –1 < q(ι) ≤ 0.
For further details on neutral impulsive differential equations and for recent results re-

lated to the oscillation theory for ordinary differential equations, we refer the reader to
Refs. [18–43] and to the references therein. In particular, the study of oscillation of half-
linear/Emden–Fowler (neutral) differential equations with deviating arguments (delayed
or advanced arguments or mixed arguments) has numerous applications in physics and
engineering (e.g., half-linear/Emden–Fowler differential equations arise in a variety of real
world problems such as in the study of p-Laplace equations and in chemotaxis models);
see, e.g., Refs. [4, 34–37, 39, 40, 42, 43] for more details. In particular, by using differ-
ent methods, the following work was concerned with the oscillation of various classes of
half-linear/Emden–Fowler differential equations and half-linear/Emden–Fowler differen-
tial equations with different neutral coefficients (e.g., Ref. [33] was concerned with neutral
differential equations assuming that 0 ≤ q(ι) < 1 and q(ι) > 1; Ref. [34] was concerned with
neutral differential equations assuming that 0 ≤ q(ι) < 1; Ref. [36] was concerned with neu-
tral differential equations assuming that q(ι) is nonpositive; Rewfs. [37, 41] were concerned
with neutral differential equations in the case where q(ι) > 1; Ref. [40] was concerned with
neutral differential equations assuming that 0 ≤ q(ι) ≤ q0 < ∞ and q(ι) > 1; Ref. [42] was
concerned with neutral differential equations in the case where 0 ≤ q(ι) ≤ q0 < ∞; Ref.
[43] was concerned with neutral differential equations in the case when 0 ≤ q(ι) = q0 �= 1;
whereas Ref. [39] was concerned with differential equations with a nonlinear neutral term
assuming that 0 ≤ q(ι) ≤ a < 1), which has the same research topic as that of this paper.
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Motivated by the aforementioned findings, in this paper we prove necessary and suf-
ficient conditions for the oscillation of solutions to a second-order nonlinear impulsive
differential system in the form

(
p(ι)

(
w′(ι)

)α)′ +
m∑

j=1

rj(ι)uβ
(
νj(ι)

)
= 0, ι ≥ ι0, ι �= φk , k ∈N, (10)

�
(
p(φk)

(
w′(φk)

)α)
+

m∑

j=1

r̃j(φk)uβ
(
νj(φk)

)
= 0, (11)

where

w(ι) = u(ι) + q(ι)u
(
ζ (ι)

)
, �u(a) = lim

s→a+
u(s) – lim

s→a– u(s),

the functions rj, r̃j, p, q, νj, ζ are continuous that satisfy the conditions stated now;
(a) νj ∈ C([0,∞),R), ζ ∈ C2([0,∞),R), νj(ι) < ι, ζ (ι) < ι, limι→∞ νj(ι) = ∞,

limι→∞ ζ (ι) = ∞.
(b) νj ∈ C([0,∞),R), ζ ∈ C2([0,∞),R), νj(ι) > ι, ζ (ι) < ι, limι→∞ ζ (ι) = ∞.
(c) p ∈ C1([0,∞),R), rj, r̃j ∈ C([0,∞),R); 0 < p(ι), 0 ≤ rj(ι), 0 ≤ r̃j(ι), for all ι ≥ 0 and

j = 1, 2, . . . , m;
∑

rj(ι) is not identically zero in any interval [b,∞).
(d) q ∈ C2([0,∞),R+) with 0 ≤ q(ι) ≤ a < 1.
(e) limι→∞ P(ι) = ∞ where P(ι) =

∫ ι

0 p–1/α(s) ds.
(f ) α and β are the quotients of two positive odd integers and the sequence {φk}

satisfies 0 < φ1 < φ2 < · · · < φk → ∞ as k → ∞.

2 Preliminary results
To make our notations simpler, we set

R1(ι) =
m∑

j=1

rj(ι)
(
(1 – a)w

(
νj(ι)

))β ;

R(1,k) =
m∑

j=1

r̃j(φk)
(
(1 – a)w

(
νj(φk)

))β .

Lemma 2.1 Suppose (a)–(f ) hold for ι ≥ ι0, and u is an eventually positive solution of (10)–
(11). Then w satisfies

0 < w(ι), w′(ι) > 0, and
(
p(ι)

(
w′(ι)

)α)′ ≤ 0 for ι ≥ ι1. (12)

Proof Let u be an eventually positive solution. Then w(ι) > 0 and there exists ι0 ≥ 0 such
that u(ι) > 0, u(νj(ι)) > 0, u(ζ (ι)) > 0 for all ι ≥ ι0 and j = 1, 2, . . . , m. Then (10)–(11) gives

(
p(ι)

(
w′(ι)

)α)′ = –
m∑

j=1

rj(ι)uβ
(
νj(ι)

) ≤ 0 for ι �= φk ,

�
(
p(φk)

(
w′(φk)

)α)
= –

m∑

j=1

r̃j(φk)uβ
(
νj(φk)

) ≤ 0 for k ∈N,

(13)
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which shows that p(ι)(w′(ι))α is non-increasing for ι ≥ ι0, including jumps of disconti-
nuity. Next we claim that, for w > 0, p(ι)(w′(ι))α is positive for ι ≥ ι1 > ι0. If not, letting
p(ι)(w′(ι))α ≤ 0 for ι ≥ ι1, we can choose c > 0 such that

p(ι)
(
w′(ι)

)α ≤ –c,

that is,

w′(ι) ≤ (–c)1/αp–1/α(ι).

Integrating both sides from ι1 to ι we get

w(ι) – w(ι1) –
∞∑

k=1

w′(φk) ≤ (–c)1/α(
P(ι) – P(ι1)

)
.

Taking the limit in both sides as ι → ∞, we have limι→∞ w(ι) ≤ –∞, that is, w(ι) ≤ 0 which
leads to a contradiction to w(ι) > 0. Hence, p(ι)(w′(ι))α > 0 for ι ≥ ι1 i.e., w′(ι) > 0 for ι ≥ ι1.
This completes the proof. �

Lemma 2.2 Suppose (a)–(f ) hold for ι ≥ ι0, and u is an eventually positive solution of (10)–
(11). Then w satisfies

u(ι) ≥ (1 – a)w(ι) for ι ≥ ι1. (14)

Proof Assume that u is an eventually positive solution of (10)–(11). Then w(ι) > 0 and
there exists ι ≥ ι1 > ι0 such that

u(ι) = w(ι) – q(ι)u
(
ζ (ι)

)

≥ w(ι) – q(ι)w
(
ζ (ι)

)

≥ w(ι) – q(ι)w(ι)

=
(
1 – q(ι)

)
w(ι)

≥ (1 – a)w(ι).

Hence w satisfies (14) for ι ≥ ι1. �

Remark 2.1 The above two lemmas hold for any α > β or α < β .

3 Main results
Theorem 3.1 Let (b)–(f ) hold for ι ≥ ι0 and β > α. Then every solution of (10)–(11) is
oscillatory if and only if

∫ ∞

0
p–1/α(s)

[∫ ∞

s

m∑

j=1

rj(ψ) dψ +
∑

φk≥s

m∑

j=1

r̃j(φk)

]1/α

ds = ∞. (15)
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Proof Let u be an eventually positive solution of (10)–(11). Then w(ι) > 0 and there ex-
ists ι0 ≥ 0 such that u(ι) > 0, u(νj(ι)) > 0, u(ζ (ι)) > 0 for all ι ≥ ι0 and j = 1, 2, . . . , m. Thus,
Lemmas 2.1 and 2.2 hold for ι ≥ ι1. By Lemma 2.1, there exists ι2 > ι1 such that w′(ι) > 0
for all ι ≥ ι2. Then there exist ι3 > ι2 and c > 0 such that w(ι) ≥ c for all ι ≥ ι3. Next using
Lemma 2.2, we get u(ι) ≥ (1 – a)w(ι) for all ι ≥ ι3 and (10)–(11) become

(
p(ι)

(
w′(ι)

)α)′ + R1(ι) ≤ 0 for ι �= φk ,

�
(
p(φk)

(
w′(φk)

)α)
+ R(1,k) ≤ 0 for k = 1, 2, . . . .

(16)

Integrating (16) from ι to ∞ we get

[
p(s)

(
w′(s)

)α]∞
ι

+
∫ ∞

ι

R1(s) ds +
∑

φk≥ι

R(1,k) ≤ 0.

Note that p(ι)(w′(ι))α is positive and non-decreasing. So, limι→∞ p(ι)(w′(ι))α finitely exists
and is positive. Therefore,

p(ι)
(
w′(ι)

)α ≥
∫ ∞

ι

R1(s) ds +
∑

φk≥ι

R(1,k),

that is,

w′(ι) ≥ p–1/α(ι)
[∫ ∞

ι

R1(s) ds +
∑

φk≥ι

R(1,k)

]1/α

= (1 – a)β/αp–1/α(ι)

[∫ ∞

ι

m∑

j=1

rj(s)wβ
(
νj(s)

)
ds +

∑

φk≥ι

m∑

j=1

r̃j(φk)wβ
(
νj(φk)

)
]1/α

.

(17)

Using (b) and the fact that w(ι) is non-decreasing,

w′(ι) ≥ (1 – a)β/αp–1/α(ι)

[∫ ∞

ι

m∑

j=1

rj(s) ds +
∑

φk≥ι

m∑

j=1

r̃j(φk)

]1/α

wβ/α(ι),

that is,

w′(ι)
wβ/α(ι)

≥ (1 – a)β/αp–1/α(ι)

[∫ ∞

ι

m∑

j=1

rj(s) ds +
∑

φk≥ι

m∑

j=1

r̃j(φk)

]1/α

.

By integrating over ι3 and ∞ both side, we have

(1 – a)β/α
∫ ∞

ι3

p–1/α(s)

[∫ ∞

s

m∑

j=1

rj(ψ) dψ +
∑

φk≥ι

m∑

j=1

r̃j(φk)

]1/α

ds

≤
∫ ∞

ι3

w′(s)
wβ/α(s)

ds < ∞

due to β > α, which is a contradiction to (15) and hence the sufficient part of the theorem
is proved.
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Next we prove necessary part by contrapositive argument. If (15) does not hold, then
for every ε > 0 there exists ι ≥ ι0 for which

∫ ∞

ι

p–1/α(s)

[∫ ∞

s

m∑

j=1

rj(ψ) dψ +
∑

φk≥s

m∑

j=1

r̃j(φk)

]1/α

ds < ε for ι ≥ T ,

where 2ε = [ 1
1–a ]–β/α > 0. Let us define a set

V =
{

u ∈ C
(
[0,∞)

) :
1
2

≤ u(ι) ≤ 1
1 – a

for all ι ≥ T
}

and � : V → V as

(�u)(ι) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if ι ≤ T ,
1+a

2(1–a) – q(ι)u(ζ (ι))

+
∫ ι

ι
p–1/α(s)[

∫ ∞
s

∑m
j=1 rj(ψ)uβ (νj(ψ)) dψ

+
∑

φk≥s
∑m

j=1 r̃j(φk)uβ (νj(φk))]1/α ds if ι > T .

Next, we prove (�u)(ι) ∈ V . For u(ι) ∈ V ,

(�u)(ι) ≤ 1 + a
2(1 – a)

+
∫ ι

T
p–1/α(s)

[∫ ∞

s

m∑

j=1

rj(ψ)
(

1
1 – a

)β

dψ +
∑

φk≥s

m∑

j=1

r̃j(φk)
(

1
1 – a

)β
]1/α

ds

≤ 1 + a
2(1 – a)

+
(

1
1 – a

)β/α

× ε

=
1 + a

2(1 – a)
+

1
2

=
1

1 – a

and further, for u(ι) ∈ V ,

(�u)(ι) ≥ 1 + a
2(1 – a)

– q(ι).
1

1 – a
+ 0 ≥ 1 + a

2(1 – a)
–

a
1 – a

=
1
2

.

Hence � maps V into V .
Now we are going to find a fixed point for � in V which will give an eventually positive

solution of (10)–(11).
First we define a sequence of functions in V by

u0(ι) = 0 for ι ≥ ι0,

u1(ι) = (�u0)(ι) =

⎧
⎨

⎩

0 if ι < T ,
1
2 if ι ≥ T ,

un+1(ι) = (�un)(ι) for n ≥ 1, ι ≥ T .
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Here we see u1(ι) ≥ u0(ι) for each fixed ι and 1
2 ≤ un–1(ι) ≤ un(ι) ≤ 1

1–a , ι ≥ T for all n ≥ 1.
Thus un converges point-wise to a function u. By Lebesgue’s dominated convergence the-
orem u is a fixed point of � in V , which shows that there has a non-oscillatory solution.
This completes the proof the theorem. �

Theorem 3.2 Let (a), (c)–(f ) hold for ι ≥ ι0 and β < α. Then every solution of (10)–(11) is
oscillatory if and only if

[∫ ∞

0

m∑

j=1

rj(ψ)
[
(1 – a)P

(
νj(ψ)

)]β dψ +
∞∑

k=1

m∑

j=1

r̃j(φk)
[
(1 – a)P

(
νj(φk)

)]β

]

= ∞. (18)

Proof Let u(ι) be an eventually positive solution of (10)–(11). Then, proceeding as in the
proof of Theorem 3.1 we have ι2 > ι1 > ι0 such that (17) holds for all ι ≥ ι2. Using (e), there
exists ι3 > ι2 for which P(ι) – P(ι3) ≥ 1

2 P(ι) for ι ≥ ι3. Integrating (17) from ι3 to ι, we have

w(ι) – w(ι3) ≥
∫ ι

ι3

p–1/α(s)
[∫ ∞

s
R1(κ) dκ +

∑

φk≥s

R(1,k)

]1/α

ds

≥
∫ ι

ι3

p–1/α(s)
[∫ ∞

ι

R1(κ) dκ +
∑

φk≥ι

R(1,k)

]1/α

ds,

that is,

w(ι) ≥ (
P(ι) – P(ι3)

)
[∫ ∞

ι

R1(κ) dκ +
∑

φk≥ι

R(1,k)

]1/α

≥ 1
2

P(ι)
[∫ ∞

ι

R1(κ)dκ +
∑

φk≥ι

R(1,k)

]1/α

. (19)

Hence,

w(ι) ≥ 1
2

P(ι)U1/α(ι) for ι ≥ ι3

where

U(ι) =
∫ ∞

ι

m∑

j=1

rj(κ)
(
(1 – a)w

(
νj(κ)

))β dκ +
∑

φk≥ι

m∑

j=1

r̃j(φk)
(
(1 – a)w

(
νj(φk)

))β .

Now,

U ′(ι) = –
m∑

j=1

rj(ι)
(
(1 – a)w

(
νj(ι)

))β

≤ –
1

2β

m∑

j=1

rj(ι)
[
(1 – a)P

(
νj(ι)

)]βUβ/α(
νj(ι)

) ≤ 0 (20)
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and

�U(φk) = –
1

2β

m∑

j=1

rj(φk)
[
(1 – a)P

(
νj(φk)

)]βUβ/α(
νj(φk)

) ≤ 0, (21)

which shows that U(ι) is non-increasing on [ι4,∞) and limι→∞ U(ι) exists. Using (20) and
(a), we find

[
U1–β/α(ι)

]′ = (1 – β/α)U–β/α(ι)U ′(ι)

≤ –
1 – β/α

2β

m∑

j=1

rj(ι)
[
(1 – a)P

(
νj(ι)

)]βUβ/α(
νj(ι)

)
U–β/α(ι)

≤ –
1 – β/α

2β

m∑

j=1

rj(ι)
[
(1 – a)P

(
νj(ι)

)]β . (22)

To estimate the discontinuity of U1–β/α , we use the first-order Taylor polynomial approx-
imation h(u) = u1–β/α , with 0 < β < α and u = a:

b1–β/α – a1–β/α ≤ (1 – β/α)a–β/α(b – a).

Then

�U1–β/α(φk) ≤ (1 – β/α)U–β/α(φk)�U(φk)

≤ –
1 – β/α

2β

m∑

j=1

rj(φk)
[
(1 – a)P

(
νj(φk)

)]β .

Integrating (22) from ι3 to ι we have

[
U1–β/α(s)

]ι

ι4
–

∑

φk≥ι

�
[
U1–β/α(φk)

] ≤ –
1 – β/α

2β

∫ ι

ι3

m∑

j=1

rj(s)
[
(1 – a)P

(
νj(s)

)]β ds,

that is,

1 – β/α
2β

[∫ ∞

0

m∑

j=1

rj(s)
[
(1 – a)P

(
νj(s)

)]β ds +
∞∑

k=1

m∑

j=1

r̃j(φk)
[
(1 – a)P

(
νj(φk)

)]β

]

≤ –
[
U1–β/α(s)

]ι

ι3
< U1–β/α(ι3) < ∞

which contradicts (18). This completes the proof the theorem. �

Example 3.1 Consider the neutral differential equations

(((
u(ι) + e–ιu

(
ζ (ι)

))′)1/3)′ + ι
(
u(ι – 2)

)5/3 + (ι + 1)
(
u(ι – 3)

)5/3 = 0, (23)
(((

u
(
3k) + e–3k

u
(
ζ
(
3k)))′)1/3)′ + (ι + 2)

(
u
(
3k – 2

))5/3 + (ι + 3)
(
u
(
3k – 3

))5/3 = 0. (24)
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Here α = 1/3, p(ι) = 1, 0 < q(ι) = e–ι < 1, νj(ι) = ι–(j +1), φk = 3k for k ∈N with index j = 1, 2.
For β = 5/3, we have β = 5/3 > α = 1/3. To check (15) we have

∫ ∞

ι0

[
1

p(s)

[∫ ∞

s

m∑

j=1

rj(ψ) dψ +
∑

φk≥s

m∑

j=1

r̃j(φk)

]]1/α

ds

≥
∫ ∞

ι0

[
1

p(s)

[∫ ∞

s

m∑

j=1

rj(ψ) dψ

]]1/α

ds

≥
∫ ∞

ι0

[
1

p(s)

[∫ ∞

s
r1(ψ) dψ

]]1/α

ds

≥
∫ ∞

2

[∫ ∞

s
ψ dψ

]3

ds = ∞.

So, all the conditions of Theorem 3.1 hold. Thus, each solution of (23)–(24) is oscillatory.

Example 3.2 Consider the neutral differential equations

(
e–ι

((
u(ι) + e–ιu

(
ζ (ι)

))′)11/3)′ +
1

ι + 1
(
u(ι – 2)

)7/3 +
1

ι + 2
(
u(ι – 3)

)7/3 = 0, (25)

(
e–k((u(k) + e–ku

(
ζ (k)

))′)11/3)′ +
1

ι + 4
(
u(k – 2)

)7/3 +
1

ι + 5
(
u(k – 3)

)7/3 = 0. (26)

Here α = 11/3, p(ι) = e–ι, 0 < q(ι) = e–ι < 1, νj(ι) = ι – (j + 1), φk = k for k ∈ N with index
j = 1, 2, P(ι) =

∫ ι

0 e3s/11 ds = 11
3 (e3ι/11 – 1). For β = 7/3, we have β = 7/3 < α = 11/3. To check

(18) we have

1
(2)β

[∫ ∞

0

m∑

j=1

rj(ψ)
[
(1 – a)P

(
νj(ψ)

)]β dψ +
∞∑

k=1

m∑

j=1

r̃j(φk)
[
(1 – a)P

(
νj(φk)

)]β

]

≥ 1
(2)7/3

∫ ∞

0

m∑

j=1

rj(ψ)
[
(1 – a)P

(
νj(ψ)

)]β dψ

≥ 1
(2)7/3

∫ ∞

0
r1(ψ)

[
(1 – a)P

(
ν1(ψ)

)]β dψ

=
1

(2)7/3

∫ ∞

0

1
ψ + 1

[

(1 – a)
11
3

(
e3(ψ–2)/11 – 1

)
]7/3

dψ = ∞.

So, all the conditions of Theorem 3.2 hold, and therefore, each solution of (25)–(26) is
oscillatory.

4 Conclusions
In this work, we studied second-order highly nonlinear neutral impulsive differential sys-
tems and established necessary and sufficient conditions for the oscillation of (10)–(11)
when the neutral coefficient lies in [0, 1). It would be of interest to examine the oscillation
of (10)–(11) with different neutral coefficients; see, e.g., Refs. [33, 36, 37, 40–43] for more
details. Furthermore, it is also interesting to analyze the oscillation of (10)–(11) with a
nonlinear neutral term; see, e.g., Ref. [39] for more details.
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