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Abstract
In this paper, we study classes of linear and nonlinear multi-term fractional differential
equations involving a fractional derivative with generalized Mittag-Leffler kernel.
Estimates of fractional derivatives at extreme points are first obtained and then
implemented to derive new comparison principles for related linear equations. These
comparison principles are used to analyze the solutions of the linear multi-term
equations, where norm estimates of solutions, uniqueness and several comparison
results are established. For the nonlinear problem, we apply the Banach fixed point
theorem to establish the existence of a unique solution.
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1 Introduction
Several types of fractional derivatives have been introduced using different approaches.
Recently, new types of fractional derivatives with nonsingular kernel have been developed
and implemented in several applications; see [13, 14, 16, 29]. Abdeljawad and Baleanu [2]
have developed a new type of fractional derivative with generalized Mittag-Leffler ker-
nel that admits singular and nonsingular kernels based on some parameters. Fernandez
et al. [17, 18] related the derivative to Prabhakar operators and expressed it in a series
of Riemann–Liouville operators. The derivative has been implemented in mathematical
modeling and there are few analytical and numerical studies [1, 17, 18] devoted to this
aspect. On the other hand, very recent work about the application of fixed point theory
to integral equations, produced under the presence of different fractional operators, has
been published [4–6, 12, 20]. This will be a motivation to a part of our recent work de-
voted to the nonlinear fractional case. For recent analysis techniques in ordinary, partial
and fractional differential equations where Mittag-Leffler functions and their particular
version the exponential functions we refer to [11, 15, 19, 21–24, 27]. For a generalized
type of weighted fractional differences where the discrete Mittag-Leffler function plays an
important role we refer to [3].
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Definition 1.1 The left Caputo fractional derivative with generalized Mittag-Leffler ker-
nel is defined by

(ABC
0Dα,β f

)
(t) =

B(α)
1 – α

∫ t

0
(t – s)β–1Eα,β

[
–εα(t – s)α

]
f ′(s) ds, (1.1)

where B(α) > 0 is a normalization function satisfying B(0) = B(1) = 1, εα = α
1–α

, 0 < α < 1,
and Eα,β is the Mittag-Leffler function of two parameters defined by

Eα,β (x) =
∞∑

k=0

xk

�(αk + β)
.

For β ≥ 1, the kernel k(t) = tβ–1Eα,β (–εαtα) is nonsingular, and for β = 1, we have the
Atangana–Baleanu derivative. Here we are interested in the case of singular kernel, that
is, 0 < β < 1. For more details about the derivatives we refer the reader to [1, 2, 17, 18]. In
this paper we consider the multi-term linear and nonlinear equations of the form

a1
dv
dt

+ a2
ABC

0Dα,βv + q(t)v = h(t), t > 0, (1.2)

a1
dv
dt

+ a2
ABC

0Dα,βv = h(t, v), t > 0, (1.3)

where 0 < α,β < 1, a1, a2 ≥ 0, a2
1 + a2

2 > 0. For a2 = 0, and a1 > 0, the above two equa-
tions reduce to first order linear and nonlinear differential equations and the theory of
such equations is well-developed. So, we are interested here in a2 > 0. Recently, several
maximum-minimum principles were derived and implemented to study fractional differ-
ential equations [7–10, 25]. In this paper we extend the maximum principles techniques
to analyze the solutions of problems (1.2)–(1.3).

We organize this paper as follows: In Sect. 2, we derive new estimates of the fractional
derivative of a function at its extreme points. In Sect. 3, we develop new comparison prin-
ciples and analyze the solutions of the linear multi-term equation. In Sect. 4, we establish
existence and uniqueness results to the nonlinear multi-term equation via the Banach
fixed point theorem. We close with some conclusions in Sect. 5.

2 Estimates of the fractional derivatives at the extreme points
The following results concerning the Mittag-Leffler function are essential to proceed.

Lemma 2.1 [26, 28, 30] The following hold true:
1. Eα,α(–x) = –α d

dx Eα(–x),α ≥ 0.
2. For β > α > 0, we have

Eα,β (–x) =
1

α�(β – α)

∫ 1

0

(
1 – t

1
α
)β–α–1Eα,α(–tx) dt. (2.1)

3. Eα,β (–x), x ≥ 0 is completely monotone for α,β > 0, if and only if, 0 < α ≤ 1, and
β ≥ α. That is

(–1)n dn

dxn

(
Eα,β (–x)

) ≥ 0, x ≥ 0. (2.2)
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Proposition 2.1 For 0 < α < β < 1, the kernel

k(x) = xβ–1Eα,β
(
–εαxα

)
,

is monotone non-increasing for x > 0.

Proof We have k(x) = η1(x)η2(x), where η1(x) = xβ–1 ≥ 0, is monotone non-increasing, and
η2(x) = Eα,β (–εαxα). From Eq. (2.2) η2(x) is monotone non-increasing. Since Eα(x) is com-
pletely monotone, then Eα,α(–x) ≥ 0, and from Eq. (2.1) we have η2(x) = Eα,β (–εαx) ≥ 0.
Now η1 and η2 are both nonnegative and monotone non-increasing, so their product is
monotone non-increasing. Indeed, k′(x) = η′

2(x)η1(x)
︸ ︷︷ ︸

≤0

+η2(x)η′
1(x)

︸ ︷︷ ︸
≤0

≤ 0. �

Lemma 2.2 Assume f ∈ H1(0, 1) is a function attaining its maximum at a point t0 ∈ (0, 1]
and 0 < α < β < 1. Then

(ABC
0Dα,β f

)
(t0) ≥ B(α)

1 – α
tβ–1
0 Eα,β

[
–εαtα

0
](

f (t0) – f (0)
) ≥ 0. (2.3)

Proof We shall make use of the auxiliary function g(t) = f (t0) – f (t), t ∈ [0, 1]. Then it fol-
lows that g(t) ≥ 0, on [0, 1], g(t0) = 0 and (ABC

0Dα,βg)(t) = –(ABC
0Dα,β f )(t). We have

(ABC
0Dα,βg

)
(t0) =

B(α)
1 – α

∫ t0

0
(t0 – s)β–1Eα,β

[
–εα(t0 – s)α

]
g ′(s) ds.

Let

k0(s) = (t0 – s)β–1Eα,β
[
–εα(t0 – s)α

]
= (t0 – s)β–1

∞∑

k=0

(–εα)k(t0 – s)αk

�(αk + β)

=
∞∑

k=0

(–εα)k(t0 – s)αk+β–1

�(αk + β)
,

then

dk0

ds
= –

∞∑

k=0

(–εα)k

�(αk + β)
(αk + β – 1)(t0 – s)αk+β–2

= –(t0 – s)β–2
∞∑

k=0

(–εα)k

�(αk + β – 1)
(t0 – s)αk

= –(t0 – s)β–2Eα,β–1
[
–εα(t0 – s)α

]

is well defined for s < t0. Since k(x) = xβ–1Eα,β (–εαxα) is monotone non-increasing, and
x = t0 – s, we have dk0

ds ≥ 0. By integration by parts with

u = (t0 – s)β–1Eα,β
[
–εα(t0 – s)α

]
and dv = g ′(s) ds,

we have

(ABC
0Dα,βg

)
(t0) =

B(α)
1 – α

(
(t0 – s)β–1Eα,β

[
–εα(t0 – s)α

]
g(s)|t0

0 –
∫ t0

0

dk0

ds
g(s) ds

)



Al-Refai et al. Advances in Difference Equations        (2021) 2021:325 Page 4 of 10

=
B(α)
1 – α

(
–tβ–1

0 Eα,β
[
–εαtα

0
]
g(0) –

∫ t0

0

dk0

ds
g(s) ds

)
, (2.4)

≤ –
B(α)
1 – α

tβ–1
0 Eα,β

[
–εαtα

0
]
g(0).

Note that since g(t0) = 0, by L’Hospital’s rule we have

lim
s→t0

(t0 – s)β–1g(s) = lim
s→t0

(1 – β)–1g ′(s)(t0 – s)β = 0, 0 < β < 1.

Thus,

(ABC
0Dα,βg

)
(t0) = –

(ABC
0Dα,β f

)
(t0) ≤ –

B(α)
1 – α

tβ–1
0 Eα,β

[
–εαtα

0
]
g(0),

or

(ABC
0Dα,β f

)
(t0) ≥ B(α)

1 – α
tβ–1
0 Eα,β

[
–εαtα

0
](

f (t0) – f (0)
)
,

which completes the proof. �

If we process instead –f , then we have

Lemma 2.3 Assume f ∈ H1(0, 1) is a function attaining its minimum at a point t0 ∈ (0, 1]
and 0 < α < β < 1. Then

(ABC
0Dα,β f

)
(t0) ≤ B(α)

1 – α
tβ–1
0 Eα,β

[
–εαtα

0
](

f (t0) – f (0)
) ≤ 0. (2.5)

Lemma 2.4 Let a function f ∈ H1(0, T) attain its maximum at a point t0 ∈ (0, 1] and 0 <
α < β < 1. If f (t) is not identically constant function on [0, t0], then

(ABC
0Dα,β f

)
(t0) >

B(α)
1 – α

tβ–1
0 Eα,β

[
–εαtα

0
](

f (t0) – f (0)
) ≥ 0. (2.6)

Proof Since f (t) is not constant, g(t) = f (t0) – f (t) ≥ 0, and it is not identically zero on
[0, t0]. Thus

∫ t0

0

dk0

ds
g(s) ds > 0,

and the result follows from Eq. (2.4). �

3 Comparison principles
In this section, we make use of the results derived in Sect. 2 to obtain new comparison
principles for linear multi-term fractional equations including fractional derivatives with
generalized Mittag-Leffler kernels. Then we use these principles to establish a unique-
ness result and pre-norm estimate of solutions to related fractional initial value prob-
lems.
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Lemma 3.1 Assume a function v ∈ H1(0, 1) ∩ C[0, 1] satisfies the fractional inequality

Pα,β (v) = a1
dv
dt

+ a2
(ABC

0Dα,βv
)
(t) + q(t)v(t) ≤ 0, t > 0, 0 < α < β < 1, (3.1)

where q(t) > 0 is continuous on [0, 1]. If v(0) ≤ 0, then v(t) ≤ 0, t ∈ [0, 1].

Proof Assume the result is untrue, since v is continuous on [0, 1], v attains an absolute
maximum at t0 ≥ 0 with v(t0) > 0. Since v(0) ≤ 0, we have t0 	= 0. If v(t) is identically con-
stant on [0, t0], then

dv
dt

(t0) =
(ABC

0Dα,βv
)
(t0) = 0, q(t0) > 0,

and thus

Pα,β (v)(t0) = q(t0)v(t0) > 0,

which contradicts (3.1).
If v(t) is not identically constant on [0, t0], then, by virtue of the result in Lemma 2.4, we

have

dv
dt

(t0) = 0,
(ABC

0Dα,βv
)
(t0) > 0,

and thus

Pα,β (v)(t0) = q(t0)v(t0) > 0,

which contradicts (3.1). �

Corollary 3.1 Let v1, v2 ∈ H1(0, 1) ∩ C[0, 1] be possible solutions to the fractional initial
value problems

a1
dv1

dt
+ a2

(ABC
0Dα,βv1

)
(t) + q(t)v1(t) = h1(t), t > 0, 0 < α < β < 1,

a1
dv2

dt
+ a2

(ABC
0Dα,βv2

)
(t) + q(t)v2(t) = h2(t), t > 0, 0 < α < β < 1,

v1(0) = r1, v2(0) = r2,

where q(t) > 0, h1(t), h2(t) are continuous on [0, 1]. If h1(t) ≤ h2(t) and r1 ≤ r2, then

v1(t) ≤ v2(t), t ∈ [0, 1].

Proof Let z = v1 – v2,

Pα,β (z) = a1
dz
dt

+ a2
(ABC

0Dα,βz
)
(t) + q(t)z(t) = h1(t) – h2(t) ≤ 0,

t > 0, 0 < α < β < 1, (3.2)
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and z(0) = r1 – r2 ≤ 0. Applying the result in Lemma 3.1 we have z(t) ≤ 0, which completes
the proof. �

Lemma 3.2 Assume v ∈ H1(0, 1) is a possible solution to

a1
dv
dt

+ a2
(ABC

0Dα,βv
)
(t) + q(t)v(t) = h(t), t > 0, 0 < α < β < 1,

where q(t) > 0 is continuous on [0, 1]. Then

‖v‖[0,1] = max
t∈[0,1]

∣∣v(t)
∣∣ ≤ M = max

t∈[0,1]

{∣
∣∣
∣
h(t)
q(t)

∣
∣∣
∣,

∣∣v(0)
∣∣
}

,

provided that the maximum M exists.

Proof We have M ≥ | h(t)
q(t) |, or Mq(t) ≥ |h(t)|, t ∈ [0, 1]. Let v1 = v – M, then

Pα,β (v1) = a1
dv1

dt
+ a2

(ABC
0Dα,βv1

)
(t) + q(t)v1(t)

= a1
dv
dt

+ a2
(ABC

0Dα,βv
)
(t) + q(t)(v – M)

= h(t) – q(t)M ≤ ∣∣h(t)
∣∣ – q(t)M ≤ 0.

Since v1(0) = v(0) – M ≤ 0, by virtue of Lemma 3.1 we have v1 = v – M ≤ 0, or

v ≤ M. (3.3)

Analogously, let v2 = –M – v, then

Pα,β (v2) = a1
dv2

dt
+ a2

(ABC
0Dα,βv2

)
(t) + q(t)v2(t)

= –a1
dv
dt

– a2
(ABC

0Dα,βv
)
(t) – q(t)(–M – v)

= –h(t) – q(t)M ≤ 0,

which together with v2(0) = –M – v(0) ≤ 0, implies v2 = –v – M ≤ 0, or

v ≥ –M. (3.4)

If we use both of (3.3) and (3.4), then we have |v(t)| ≤ M, t ∈ [0, 1] and hence the result. �

Lemma 3.3 The multi-term fractional initial value problem

a1
dv
dt

+ a2
(ABC

0Dα,βv
)
(t) + q(t)u(t) = h(t), t > 0, 0 < α < β < 1, (3.5)

v(0) = v0, (3.6)

where q(t) > 0 is continuous on [0, 1], possesses at most one solution v(t) ∈ H1(0, 1).
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Proof Let v1 and v2 be possible solutions to (3.5)–(3.6). Define z(t) = v1(t) – v2(t), then

a1
dz
dt

+ a2
(ABC

0Dα,βz
)
(t) + q(t)z(t) = 0, z(0) = 0.

Applying the result in Lemma 3.2, we have

‖z‖[0,1] ≤ M = 0,

which implies z(t) = 0, on [0, 1] and completes the proof. �

4 The nonlinear equation
We consider the nonlinear multi-term initial value problem

a1
dv
dt

+ a2
(ABC

0Dα,βv
)
(t) = h(t, v), t > 0, (4.1)

v(0) = v0. (4.2)

We apply Banach fixed point theorem to show the existence of a unique solution to the
problem (4.1)–(4.2). Since

(ABC
0Dα,βv

)
(t) =

(ABR
0Dα,βv

)
(t) –

B(α)
1 – α

v0Eα,β
(
–εαtα

)
,

see [2], Eq. (4.1) is equivalent to

a1
dv
dt

+ a2
(ABR

0Dα,βv
)
(t) = a2

B(α)
1 – α

v0Eα,β
(
–εαtα

)
+ h(t, v), t > 0,

or

a1
dv
dt

+ a2
B(α)
1 – α

d
dt

∫ t

0
(t – s)β–1Eα,β

(
–εα(t – s)α

)
v(s) ds

= a2
B(α)
1 – α

v0Eα,β
(
–εαtα

)
+ h(t, v).

Applying the integral operator to the above equations yields

a1v(t) = a1v0 + a2
B(α)
1 – α

v0

∫ t

0
Eα,β

(
–εαsα

)
ds

– a2
B(α)
1 – α

∫ t

0
(t – s)β–1Eα,β

(
–εα(t – s)α

)
v(s) ds +

∫ t

0
h(s, v) ds. (4.3)

Theorem 4.1 For 0 < α < β < 1, and h : [0, T] × R → R be a continuous function that
satisfy the Lipschitz condition

∣
∣h(t, u) – h(t, v)

∣
∣ ≤ K(u – v), K > 0, for all u, v ∈ C(R).

If a2
B(α)
1–α

1
�(β+1) Tβ + KT < 1, then the fractional initial value problem (4.1)–(4.2) has a

unique solution on H1(0, T).
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Proof On H1(0, T) define the norm

‖f ‖ = sup
t∈[0,T]

∣∣f (t)
∣∣,

and consider the linear operator T : H1(0, T) → H1(0, T) defined by

L
(
a1v(t)

)
= a1v0 + a2v0

B(α)
1 – α

∫ t

0
Eα,β

(
–εαsα

)
ds

– a2
B(α)
1 – α

∫ t

0
(t – s)β–1Eα,β

(
–εα(t – s)α

)
v(s) ds

+
∫ t

0
h(s, v) ds. (4.4)

Let v1, v2 ∈ H1(0, T), t ∈ (0, T) then

∣∣L(a1v1) – L(a1v2)
∣∣

=
∣∣
∣∣–a2

B(α)
1 – α

∫ t

0
(t – s)β–1Eα,β

(
–εα(t – s)α

)(
v1(s) – v2(s)

)
ds

+
∫ t

0

(
h(s, v1) – g(s, v2)

)
ds

∣
∣∣
∣

≤ a2
B(α)
1 – α

‖v1 – v2‖
∥
∥Eα,β

(
–εα(t – s)α

)∥∥
∫ t

0
(t – s)β–1 ds + K‖v1 – v2‖

∫ t

0
ds

=
(

a2
B(α)
1 – α

∥∥Eα,β
(
–εα(t – s)α

)∥∥ tβ

β
+ Kt

)
‖v1 – v2‖.

Since Eα,β (–x) is decreasing for x > 0, we have Eα,β (–εα(t – s)α) ≤ Eα,β (0) = 1
�(β) , 0 ≤ s ≤

t ≤ T , and thus

∣∣L(a1v1) – L(a1v2)
∣∣ ≤

(
a2

B(α)
1 – α

1
�(β)

Tβ

β
+ KT

)
‖v1 – v2‖

=
(

a2
B(α)
1 – α

1
�(β + 1)

Tβ + KT
)

‖v1 – v2‖.

Since a2
B(α)
1–α

1
�(β+1) Tβ + KT < 1, then L is a contraction and by the contraction fixed point

principle on Banach spaces, L has a unique fixed point. �

5 Concluding remarks
We have considered linear and nonlinear multi-term fractional differential equations with
fractional derivative of Caputo type involving the kernel k(t) = tβ–1Eα,β (t), 0 < α,β < 1. We
have established several comparison principles for related fractional linear equations and
inequalities and used them to analyze the solutions of the multi-term linear fractional
differential equations. These results are obtained under the condition 0 < α < β < 1, which
quarantines the monotonicity property of the kernel k(t), t > 0. Whether the results are
extendable for arbitrary 0 < α,β < 1 is left for a future work. For the nonlinear equation
we have established existence and uniqueness results via the Banach fixed point theorem.
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