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Abstract
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1 Introduction
Many phenomena of the physical sciences are associated with the idea of diffusion like
populations of different kinds diffuse; particles in a solvent and other substances diffusing;
ions diffusing and electrons; and the momentum of a viscous fluid diffusing. The older
work concerns the description of mass diffusion and heat propagation by means of partial
differential equations (PDEs). The type of PDEs used is the so-called parabolic equations, a
family based on the properties of the most classical model, the linear heat equation, which
is called in this context the diffusion equation (see [1]). Nonlinear diffusion equations are
a generalization of diffusion and it comes from a variety of diffusion phenomena which
appear widely in nature. The detailed derivation of the nonlinear diffusion equation can
be found in [2].

Presently, fractional differential equations play an important role in various fields like en-
gineering, biology, special functions, geophysics, acoustic dissipation, biomedical, signal
and image processing, control theory, integral representations and singularities analysis,
special functions, viscoelasticity, non-Fourier heat conduction, electricity, mechanics and
fluid dynamics. To study fractional calculus, a lot of material is freely available. For more
details about fractional calculus and its applications see [3–19].

2 Atangana–Baleanu fractional derivative
In 2016, Atangana and Baleanu [20] suggested a fractional derivative operator based on
the well-known generalized Mittag-Leffler function. Many researchers have applied this
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operator in various mathematical model, for example, Chua’s circuit model [21], RC, LC,
and RL electircal circuits [22], the Cattaneo–Hristov model of elastic heat diffusion, and
the Casson fluid model with heat generation and chemical reaction [23]. In this section,
we briefly review the fractional order Atangana–Baleanu derivative (AB-derivative) and
its properties.

Definition 2.1 ([24]) Consider g ∈ H1[a, b], a < b, then the Caputo sense AB-derivative is
defined as

ABC
a Dα

t g(t) =
N(α)
1 – α

∫ t

a
g ′(θ )Eα

[
–α

(t – θ )α

1 – α

]
dθ , α ∈ [0, 1] (2.1)

where Eα is the Mittag-Leffler function and N(α) is a normalization function with N(0) =
N(1) = 1.

We now consider the Laplace transform for the fractional differential operator for n = 1.

Definition 2.2 ([24]) Consider g is a function continuous on [a, b], the Laplace transform
for AB-derivative is defined as

L
{ABC

0 Dα
t g(t)

}
(p) =

B(α)
1 – α

pαL{g(t)}(p) – pα–1g(0)
pα + α

1–α

, (2.2)

where 0 < α ≤ 1.

Theorem 2.1 ([25]) Consider g is a function continuous on [a, b], then

∥∥ABR
0 Dα

t g(t)
∥∥ <

B(α)
1 – α

∥∥g(x)
∥∥, (2.3)

where 0 < α < 1.

Theorem 2.2 ([25]) The Atangana–Baleanu Caputo fractional derivative operator sat-
isfies the Lipschitz condition

∥∥ABC
0 Dα

t f (t) – ABC
0 Dα

t g(t)
∥∥ ≤ H

∥∥f (t) – g(t)
∥∥. (2.4)

Theorem 2.3 ([25]) For the time-fractional ordinary differential equation

ABC
0 Dα

t f (t) = U (t), (2.5)

the unique solution is given by using the Laplace transform

f (t) =
1 – α

B(α)U (t)
+

α

B(α)�(α)

∫ t

a

U (y)
(t – y)1–α

dy. (2.6)

The detailed proof of the above theorems can be found in [26].
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Remark From the above theorem, the AB-fractional integral is the average between the
given function and the function’s Riemann–Liouville fractional integral. Hence this is
more general than the Riemann–Liouville fractional derivative as well as the Caputo op-
erator. Also from the definition of the Atangana–Baleanu operator, it is clear that if α = 0
is zero, we obtain the initial function and if α is 1, we get the ordinary integral.

Definition 2.3 ([24]) The fractional integral of order α is defined as

AB
a Iα

t g(t) =
1 – α

B(α)
g(t) +

α

B(α)�(α)

∫ t

a
g(y)(t – y)α–1 dy. (2.7)

If we take α = 0, we get the initial function and taking α = 1 we obtain the classical integral
of order one. In a recent paper of Tetashi et al. [27], they compared the model of anoma-
lous diffusion using the Riemann–Liouville [3], Caputo–Fabrizio [8] and AB-derivative
[26]. By analyzing the corresponding fractional diffusion equations within the continu-
ous time random walk framework, they obtained waiting time distributions characterized
by exponential, stretched exponential, and power-law functions, as well as a crossover
between two behaviors. Further, the authors discussed the effect of non-singular kernel
K(t) = B(α)

1–α
Eα[–α tα

1–α
] using the solution of anomalous diffusion.

In this paper, we will extend an idea for fractional diffusion equation using the Atangana–
Baleanu operator to nonlinear fractional diffusion model by considering the following
equation:

ABC
0 Dα

t U (x, t) =
∂

∂x

(
Ua ∂U (x, t)

∂x

)
, (2.8)

with

U (x, 0) = φ(x). (2.9)

Our main goal of this paper is to solve Eq. (2.8) under the condition (2.9). In Sect. 3, we start
with existence and uniqueness of the solution of nonlinear fractional diffusion equation.
Section 4 is devoted to finding an approximate solution of Eq. (2.8) using a q-homotopy
analysis method and in Sect. 5, we discuss the special cases of (2.8) by taking a = 0, a > 0
and a < 0.

3 Existence of solution for the diffusion equation model
Assume that the function f (x, t,U ,U ′,U ′′) satisfies the Lipschitz condition

‖f
(
x, t,U ,U ′,U ′′) – f

(
x, t,U1,U ′

1(t),U ′′
1 (t)

)‖
≤ M|U – U1| + K |U ′ – U ′

1(t)| + L|U ′′ – U ′′
1 (t)|.

Further, assume that

∥∥U ′ – U ′
1(t)

∥∥ ≤ δ1‖U – U1‖,
∥∥U ′′ – U ′′

1 (t)
∥∥ ≤ δ2‖U – U1‖,
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where

δ1, δ2 ∈R
+

such that M + Kδ1 + Lδ2 ≤ 1; then the solution for the time-fractional differential equation

ABC
0 Dα

t U (x, t) = f
(
x, t,U ,U ′,U ′′) (3.1)

exists if we are able to find tmax such that

(
1 – α

B(α)
+

tα
max

B(α)�(α)

)
< 1.

Proof Using the fundamental theorem of fractional calculus, Eq. (3.1) can be written as

U (x, t) – U (x, 0) =
1 – α

B(α)
f
(
x, t,U ,U ′,U ′′)

+
α

B(α)�(α)

∫ t

0
(t – y)α–1f

(
x, t,U ,U ′,U ′′)dy. (3.2)

We now present the recursive formula

Un(x, t) =
1 – α

B(α)
f
(
x, t,Un–1,U ′

n–1,U ′′
n–1

)

+
α

B(α)�(α)

∫ t

0
(t – y)α–1f

(
x, t,Un–1,U ′

n–1,U ′′
n–1

)
dy. (3.3)

Take the difference of consecutive terms γn = Un – Un–1.
This gives

γn =
1 – α

B(α)
(
f
(
x, t,Un–1,U ′

n–1,U ′′
n–1

)

– f
(
x, t,Un–2,U ′

n–2,U ′′
n–2

))

+
α

B(α)�(α)

∫ t

0
(t – y)α–1(f

(
y, t,Un–1,U ′

n–1,U ′′
n–1

)

– f
(
y, t,Un–2,U ′

n–2,U ′′
n–2

))
dy. (3.4)

We observe that

Un =
n∑

i=1

γi; (3.5)

taking the norm of (3.4), and using the well-known triangular inequality, we get

‖γn‖ = ‖Un – Un–1‖
≤ 1 – α

B(α)
∥∥f

(
x, t,Un–1,U ′

n–1,U ′′
n–1

)

– f
(
x, t,Un–2,U ′

n–2,U ′′
n–2

)∥∥
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+
α

B(α)�(α)

∥∥∥∥
∫ t

0
(t – y)α–1(f

(
y, t,Un–1,U ′

n–1,U ′′
n–1

)

– f
(
y, t,Un–2,U ′

n–2,U ′′
n–2

))
dy

∥∥∥∥. (3.6)

Now, use the fact that f (x, t,U ,U ′,U ′′) satisfies the Lipschitz condition, defined as

∥∥f (x, t,U ,U ′,U ′′) – f (x, t, u1,U ′
1(t),U ′′

1 (t))
∥∥

≤ M|U – U1| + K
∣∣U ′ – U ′

1(t)
∣∣ + L

∣∣U ′′
1 (t) – U ′′

1 (t)
∣∣.

We have

‖γn‖ ≤ 1 – α

B(α)
[
M‖Un–1 – Un–2‖

+ K
∥∥U ′

n–1 – U ′
n–2

∥∥ + L
∥∥U ′′

n–1 – U ′′
n–2

∥∥]

+
α

B(α)�(α)
[
M‖Un–1 – Un–2‖

+ K
∥∥U ′

n–1 – U ′
n–2

∥∥ + L
∥∥U ′′

n–1 – U ′′
n–2

∥∥]∫ t

0
(t – y)α–1 dy. (3.7)

It gives

[
M‖Un–1 – Un–2‖ + K

∥∥U ′
n–1 – U ′

n–2
∥∥ + L

∥∥U ′′
n–1 – U ′′

n–2
∥∥]

×
[

1 – α

B(α)
+

α

B(α)�(α)

∫ t

0
(t – y)α–1 dy

]
(3.8)

using γn = Un – Un–1, we have γn–1 = Un–1 – Un–2 and assuming

∥∥γ ′
n–1

∥∥ ≤ δ1‖γn–1‖,
∥∥γ ′′

n–1
∥∥ ≤ δ2‖γn–1‖,

where

δ1, δ2 ∈R,

gives

‖γn‖ ≤ (
M‖γn–1‖ + Kδ1‖γn–1‖ + Lδ2‖γn–1‖

)

×
[

1 – α

B(α)
+

α

B(α)�(α)

∫ t

0
(t – y)α–1 dy

]

= ‖γn–1‖(M + Kδ1 + Lδ2)
[

1 – α

B(α)
+

α

B(α)�(α)

∫ t

0
(t – y)α–1 dy

]
. (3.9)

Finally, we have

‖γn‖ ≤
(

1 – α

B(α)
+

α

B(α)�(α)

∫ t

0
(t – y)α–1 dy

)n

(M + Kδ1 + Lδ2)n‖γ0‖.
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Now let us consider

M + Kδ1 + Lδ2 < 1

and let

M + Kδ1 + Lδ2 = δ3.

Then we have

‖γn‖ = δn
3‖γ0‖

(
1 – α

B(α)
+

tα
max

B(α)�(α)

)n

. (3.10)

The fractional differential equation (2.8) has a solution, which is unique, if we are able to
find tmax such that

(
1 – α

B(α)
+

tα
max

B(α)�(α)

)
δ3 < 1. �

4 Uniqueness of the solution
In this section we will show that the above defined problem has a unique solution.

If possible, let U (t) and U1(t) be two solutions of the problem (3.1). Consider

U (x, t) – U1(x, t) =
1 – α

B(α)
[
f (t,U ) – f (t,U1)

]

+
α

B(α)�(α)

∫ t

0
(t – y)α–1[f (s,U ) – f (s,U1)

]
ds; (4.1)

applying the norm to both sides of Eq. (4.1),

U (x, t) – U1(x, t) ≤ 1 – α

B(α)
∥∥f (t,U ) – f (t,U1)

∥∥

+
α

B(α)�(α)

∫ t

0

∥∥(t – y)α–1[f (s,U ) – f (s,U1)
∥∥ds. (4.2)

Using the Lipchitz condition and keeping in mind that the obtained result is bounded, we
obtain U (t) = U1(t). This shows the uniqueness of the solution for Eq. (3.1)

Remark On taking f (x, t,U ,U ′,U ′′) as ∂
∂x (Ua ∂U (x,t)

∂x ) and following the same assumptions,
the solution for the time-fractional diffusion equation

ABC
0 Dα

t U (x, t) =
∂

∂x

(
Ua ∂U (x, t)

∂x

)
,

0 < α ≤ 1, a ∈R, 0 ≤ x, t ≤ 1, (4.3)

exists and is unique.
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5 q-Homotopy analysis transform method
Perturbation techniques are widely used to find an approximate solution of nonlinear dif-
ferential equations. In this technique, we use perturbation quantities to create infinitely
many linear sub-problems and using a solution of these sub-problems, we obtain the ap-
proximate solution in the form of an infinite series. But it is difficult to find an approximate
analytical solution for the nonlinear problems having strong nonlinear quantities. This
indicates that perturbation approximations are only valid for nonlinear problems having
weak nonlinearity. To overcome this, a kind of analytic technique namely a homotopy
analysis method was proposed by means of homotopy (a concept of topology). The ho-
motopy analysis method (HAM) [28, 29] is one of the best methods to obtain the solution
of linear as well as nonlinear differential equations. In HAM, we have h as an auxiliary
parameter, which is useful to adjust and control the convergence of some series solution.
In 2012, El-Tawil and Huseen [30] proposed the q-homotopy analysis method (q-HAM),
which is a generalization of the HAM. The essential idea of this method is to introduce a
homotopy parameter, say q, which varies from 0 to 1/n, and a nonzero auxiliary parame-
ter h. The q-HAM method is more useful than HAM because q-HAM provides us with
auxiliary parameters h and n used to adjust and control the convergence of series solution
(see [31, 32]).

We will apply the q-homotopy Laplace transform method to solving (2.8) and (2.9). On
taking the Laplace transform of (2.8) and using the initial conditions

U (x, 0) = φ(x), (5.1)

we obtain

B(α)
1 – α

pαL{U (x, t)}(p) – pα–1U (x, 0)
pα + α

1–α

= L
{

f
(
U ,U ′,U ′′)} (5.2)

where f(t,U ,U ′,U ′′) = ∂
∂x (Ua ∂U (x,t)

∂x ), = aUa–1( ∂U
∂x )2 +Ua ∂2U

∂x2 ; then a simple calculation yields

L
{
U (x, t)

}
=

pα–1U (x, 0)
pα

+
(1 – α)
B(α)pα

(
pα +

α

1 – α

)

× L
{

aUa–1
(

∂U
∂x

)2

+ Ua ∂2U
∂x2

}
.

(5.3)

We have the nonlinear operator

N
[
σ (x, t : q)

]

=
(

pα–1U (x, 0)
pα

)
+

[
(1 – α)
B(α)pα

(
pα +

α

1 – α

)]

×
(

L
{

a
(
σ (x, t : q)

)a–1
(

∂σ (x, t : q)
∂x

)2

+
(
σ (x, t : q)

)a ∂2σ (x, t : q)
∂x2

})
,

(5.4)

where q ∈ [0, 1
n ], n ≥ 1 is known as an embedding parameter. To solve our problem we will

use q-HATM [32] to construct the homotopy in such a way that

(1 – nq)L
{
σ (x, t : q) – U0(x, t)

}
= hqN

[
σ (x, t : q)

]
(5.5)
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where U0(x, t) is the initial value of U (x, t), σ (x, t) is an unknown function and h �= 0 is an
auxiliary parameter.

Now, on taking q = 0 and q = 1/n, we obtain from Eq. (5.5)

σ (x, t : 0) = U0(x, t), ρ

(
x, t;

1
n

)
= U (x, t). (5.6)

From Eq. (5.6), we see that, on increasing q from 0 to 1/n, our solution σ (x, t : q) moves
from the initial solution U0(x, t) to the exact solution U (x, t).

On expanding σ (x, t : q) by a Taylor series, we get

ρ(x, t; q) = U0(x, t) +
∞∑

m=1

Um(x, t)qm, (5.7)

where

Um(x, t) =
1

m!
∂mρ(x, t; q)

∂qm

∣∣∣∣
q=0

. (5.8)

If we choose U0(x, t), n, and h, in a perfect manner, Eq. (5.7) converges at q = 1/n,

U (x, t) = U0(x, t) +
∞∑

m=1

Um(x, t)
(

1
n

)m

, (5.9)

the result defined in (5.9) is the solution of (2.8) Defining the vectors Ūr = {U0,U1, . . . ,Ur},
differentiating m times of Eq. (5.5) w.r.t. q, and then substituting q = 0, and lastly dividing
by m!, we get

L
[
Um(x, t) – kmUm–1(x, t)

]
= h	m

(
Um–1(x, t)

)
, (5.10)

where

	m(Um(x, t) =
1

(m – 1)!
∂m–1N(x, t; q)

∂qm–1

∣∣∣∣
q=0

(5.11)

and

km =

⎧⎨
⎩

0, m ≤ 1,

n, otherwise.
(5.12)

Applying the inverse Laplace transform to Eq. (5.10), we have

Um(x, t) = kmUm–1(x, t) + hL–1[	m(Um–1)
]
. (5.13)

With the help of the initial condition which is given in Eq. (2.9) and using Eq. (5.13), we
obtain

U (x, t) = lim
n→∞

∞∑
m=0

Um(x, t)
(

1
n

)m

. (5.14)

Due to the factor (1/n)m, it gives speedy convergence to the exact solution.
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6 Special cases to the nonlinear diffusion equation
By substituting various values of a, we get the following special cases.

6.1 Case 1: fractional heat equation
If we take a = 0 in Eq. (1.1), we have the following fractional diffusion equation:

ABC
0 Dα

t U (x, t) =
∂2U (x, t)

∂x2 , 0 < α ≤ 1, (6.1)

with

φ(x) = sin(πx), (6.2)

On comparing with Eq. (4.3), and using Eq. (5.4) we get

N
[
ρ(x, t, q)

]
=

1
p

(sinπx) +
[

1 – α

B(α)

(
1 +

α

(1 – α)pα

)]
L
{

∂2σ (x, t : q)
∂x2

}
;

using q-HATM, which is discussed in Sect. 3, we get

U0(x, t) = sin(πx), (6.3)

U1(x, t) = hπ2(sinπx)
(

1 – α

B(α)

)[
1 +

α

(1 – α)
tα

�(α + 1)

]
, (6.4)

U2(x, t) = (n + h)u1 + h2π4(sinπx)
(

1 – α

B(α)

)2

(6.5)

×
[

1 +
2αtα

(1 – α)�(α + 1)
+

(
α

1 – α

)2 t2α

�(2α + 1)

]
,

...

By substituting the values obtained from Eqs. (6.3), (6.4), (6.5), . . . in Eq. (5.14), we obtain
the solution of fractional heat equation.

6.2 Case 2: slow diffusion processes of fractional order
Taking a = 2, we get

ABC
0 Dα

t U (x, t) =
∂

∂x

(
U2 ∂U (x, t)

∂x

)
, (6.6)

known as a slow diffusion equation, having the initial condition

φ(x) =
x + b

2c
. (6.7)

By q-HATM, we get the respective successive terms:

U0(x, t) =
x + b

2c
, (6.8)
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Figure 1 Results of Case 1

U1(x, t) = –h
(

x + b
4c3

)(
1 – α

B(α)

)[
1 +

α

(1 – α)�(α + 1)
tα

]
, (6.9)

U2(x, t) = (n + h)u1 + 3h2 (x + b)
8c5

(
1 – α

B(α)

)2

(6.10)

×
[

1 +
2αtα

(1 – α)�(α + 1)
+

(
α

1 – α

)2 t2α

�(2α + 1)

]
,

... (6.11)

By substituting the values obtained from Eqs. (6.8), (6.9), (6.10), . . . in Eq. (5.14), we obtain
the solution.

6.3 Case 3: fast diffusion equation of fractional order
If we take a = –2 in Eq. (1.1), we have following equation:

ABC
0 Dα

t U (x, t) =
∂

∂x

(
U–2 ∂U (x, t)

∂x

)
, (6.12)

known as the fractional fast diffusion equation with

φ(x) =
1√

(1 + x2)
. (6.13)
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Figure 2 Results of Case 2

By the help of q-HATM, we found the following iterative terms:

U0(x, t) =
(
1 + x2)–1/2, (6.14)

U1(x, t) = –h
(

1 – α

B(α)

)[
1 +

α

(1 – α)
tα

�(α + 1)

][
–1

(1 + x2)3/2

]
, (6.15)

u2(y, t) = (n + h)u1 – h2
(

1 – α

B(α)

)2( 1 – 2x2

(1 + x2)5/2

)
(6.16)

×
[

1 +
2αtα

(1 – α)�(α + 1)
+

(
α

1 – α

)2 t2α

�(2α + 1)

]
,

...

By substituting the values obtained from Eqs. (6.14), (6.15), . . . in Eq. (5.14) we obtain the
approximate result of the above problem.

Remark In this method, we have a free hand to give certain values to h and n, which helps
in the convergence of the result.
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Figure 3 Results of Case 3

7 Conclusion
Besides the mathematical satisfactions of the Atangana–Baleanu derivative with fractional
order, the focus on this derivative is because of the necessity of employing a model por-
traying the behavior of orthodox viscoelastic materials, thermal medium and others. The
approximate solution of nonlinear fractional diffusion equations is obtained using a q-
homotopy analysis transform method. Further, we discuss the effect of various values of
α, h, n in the solution. These results are given in the form of a graphical representation (see
Figs. 1(a)–(e) to 5 for Case 1, Figs. 2(a)–(e) for Case 2 and Figs. 3(a)–(e) for Case 3). The
method indicates that, for various values n and h, the solution converges. In our future
work, we can compare the applicability of various fractional derivatives on this equation
and can try to compare their solutions as discussed in [33]
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