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Abstract
In this work, a numerical technique for solving general nonlinear ordinary differential
equations (ODEs) with variable coefficients and given conditions is introduced. The
collocation method is used with rational Chebyshev (RC) functions as a matrix
discretization to treat the nonlinear ODEs. Rational Chebyshev collocation (RCC)
method is used to transform the problem to a system of nonlinear algebraic
equations. The discussion of the order of convergence for RC functions is introduced.
The proposed base is specified by its ability to deal with boundary conditions with
independent variable that may tend to infinity with easy manner without divergence.
The technique is tested and verified by two examples, then applied to four real life
and applications models. Also, the comparison of our results with other methods is
introduced to study the applicability and accuracy.

Keywords: Nonlinear ordinary differential equations; Collocation method; Rational
Chebyshev functions

1 Introduction
As known, the nonlinear ordinary differential equations (ODEs) have an important role
because of their applications in many fields of science and real life phenomena modeling
for instance the logistic growth model in a population [1], the epidemic model [2], the
kinetic model [3], the model of ozone decomposition [4], happiness dynamical models
[5], the natural convection of Darcian fluid (NCDF) about a vertical full cone embedded
in porous media (PM) with a prescribed wall temperature [6], and the Volterra popula-
tion model [7]. The approximation and numerical techniques are used to treat the non-
linear ODEs, because getting the analytical exact solution is not easy in many cases. Sev-
eral numerical methods have been given to solve nonlinear ODEs such as linearization
method [8] and a sixth-degree B-spline method [9]. Moreover, the Chebshev collocation
matrix method [10] is presented as a numerical solution of nonlinear ODEs. Also, the
semi-analytical techniques, such as the Adomian decomposition method [11, 12], the ho-
motopy perturbation method (HPM) [13, 14], and the decomposition method [15], are
used to find the solution of nonlinear ODEs.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03481-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03481-y&domain=pdf
mailto:chuyuming2005@126.com


Abd El Salam et al. Advances in Difference Equations        (2021) 2021:331 Page 2 of 17

Many works considered solving differential equations in the finite [16–19] and infinite
domain [20–22]. The rational Chebyshev (RC) functions are used in the domain [0, L],
where 0 ≤ L < ∞, which provides great success in dealing with differential equations de-
fined in the open domain [0, L]. Many authors studied RC functions for solving different
problems of differential, integro-differential equations, and some other physical problems
with variable coefficients [23–25]. Saeid Abbasbandy et al. [26] investigated the use of the
RC collocation method to get an approximate solution of magneto hydro dynamic flow of
an incompressible viscous fluid over a stretching sheet. Parand et al. [27] and Ramadan et
al. [28] introduced RC functions for solving natural convection of Darcian fluid about a
vertical full cone embedded in porous media with a prescribed wall temperature. In [29]
Ramadan et al. investigated the use of the RC collocation technique for approximating
bio-mathematical problems of continuous population models for single and interacting
species, systematically the logistic growth model in a population, prey-predator model:
Lotka–Volterra system, the simple two-species Lotka–Volterra competition model, and
the prey-predator model with limit cycle periodic behavior.

In this paper, the RC collocation method (RCC) as matrix discretization is introduced
to obtain the solution of a general form of nonlinear ODEs defined on the semi-infinite
domain. The order of convergence for RC functions is discussed. The validity and appli-
cability of the method are tested through two examples. In addition, four applications as
nonlinear real life models are solved using the proposed technique. On the other hand,
the RC functions inherit many properties of Chebyshev polynomials as completeness, or-
thogonality, and strong convergence. The RC functions [23, 30–35] are defined as follows:

Rn(x) = cos nφ, where cosφ =
(

x – 1
x + 1

)
. (1.1)

The RC functions are orthogonal with respect to the weight function w(x) in the semi-
infinite domain, where

w(x) =
1

(x + 1)
√

x
.

If the substitution v = x–1
x+1 is used in Rn(x), then we have the RC functions as polynomials

in v, then Rn(x) takes the matrix form:

R(x) = V (x)CT , (1.2)

where R (x) and V (x) are vector matrices of the form

R(x) =
[
R0(x) R1(x) . . . RN (x)

]
,

V (x) =
[
v0(x) v1(x) . . . vN (x)

]
,
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and C is a matrix given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
0
0

)
0 0 0 . . . 0 0

0
(

1
0

)
0 0 . . . 0 0

–
(

1
1

)
0 2

(
2
0

)
0 . . . 0 0

0 – 3
2

(
2
1

)
0 22

(
3
0

)
0 0

. . . . . .

. . . . . .

. . . . . .

(–1)l
(

l
l

)
0 (–1)l–12 2l

l+1

(
l + 1
l – 1

)
0 . . . 22l–1

(
2l
0

)
0

0 (–1)l 2l
l+1

(
l + 1

l

)
0 (–1)l–122 2l+1

l+2

(
l + 2
l – 1

)
. . . 0 22l

(
2l + 1

0

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In the matrix C, if N is an odd number, the last row will be used, where N = 2l + 1, while
the second row from below is used for the even case of N and N = 2l. For more instances
of the RC functions and their properties, we provide some suggested references for the
reader [23, 30, 31].

2 The order of convergence
Let us assume that

L2
w(�) =

{
f : ‖f ‖w =

(∫ ∞

0

∣∣f (x)
∣∣2w(x) dx

) 1
2

< ∞
}

, (2.1)

the space functions, and we denote the inner product as 〈v, u〉w such that

〈v, v〉w =
(‖v‖w

)2. (2.2)

Therefore, from the orthogonality relation for RC functions

∫ ∞

0
Rn(x)Rm(x)w(x) dx =

cmπ

2
δnm, (2.3)

we note that the RC functions form a set of orthogonal bases for L2
w(�). Also, let us define

the normed spaces Hr
w(�) and Hr

w,A(�) as follows:

Hr
w(�) =

{
f : ‖f ‖r,w =

( r∑
k=0

∥∥∥∥ dk

dxk f
∥∥∥∥

w

) 1
2

< ∞
}

, (2.4)

Hr
w,θ (�) =

{
f : ‖f ‖r,w,θ =

( r∑
k=0

∥∥∥∥(x + 1)
r
2 +k dk

dxk f
∥∥∥∥

w

) 1
2

< ∞
}

, (2.5)

where r ≥ 0 and k is a positive integer constant, and θ is the Sturm–Liouville operator in
the following form:

θ f = –w–1(w–1f ′)′. (2.6)

Let us define 
N = span{R0, R1, . . . , RN }, N is a positive integer such that N < ∞.
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Theorem 2.1 For any r ≥ 0 and c a generic positive constant independent of any function,
and φ ∈ 
N , then

‖φ‖r,w ≤ cN2r‖φ‖w.

The proof of Theorem 2.1 is found in [36].
Since the set of RC functions is orthogonal and complete, f (x) is defined over �, then it

can be expanded in terms of RC functions as follows:

f (x) =
∞∑

n=0

anRn(x), (2.7)

where

an =
〈f , Rn〉w

(‖Rn‖w)2 =
2

cmπ

∫ ∞

0
Rn(x)f (x)w(x) dx. (2.8)

Relation (2.7) may represent a spectral approximation in the following form:

fN (x) =
N∑

n=0

anRn(x). (2.9)

To obtain the order of convergence of RC functions approximation, we need to inves-
tigate several orthogonal projections. From (2.9), it is evident that fN is the orthogonal
projection of f upon 
N with respect to the weighted inner product (2.2). According to
Theorem 2.1, the following theorem contains the order of convergence of RC functions.

Theorem 2.2 For any f ∈ Hr
w,θ (�), r ≥ 0, and c is a positive constant, then

‖fN – f ‖r,w ≤ cN–r‖f ‖r,w,θ .

The proof of Theorem 2.2 can be found in [26], and for more details see Ref [36]; this
theorem shows that the RC approximation has exponential convergence.

3 Formulation of the problem
In this work, mth order nonlinear ODEs containing unknown y(x) and its derivatives with
variable coefficients can be written in the following general form:

m∑
k=0

n∑
r=0

Pk,r(x)yr(x)y(k)(x) +
m∑

k=1

m∑
r=1

Qk,r(x)y(r)(x)y(k)(x) = g(x), (3.1)

where y(x) is the unknown function, y(k)(x) = y(x) at k = 0, y(x) ∈ Cm[0, L], and L may tend
to infinity. Also, Qk,r(x), Pk,r(x), and g (x) are known functions that are defined on [0,∞)
and m, n ∈ Z+, where m is the order of the differential equation and n represents the great-
est power of unknown function y(x).

Equation (3.1) is subjected to the conditions

y(k)(ak) = μk , k = 0, 1, . . . , m – 1, (3.2)

where ak and μk are real-valued constants.
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The solution of (3.1) according to (2.9) takes the form

y(x) ≈
N∑

n=0

anRn(x), (3.3)

which is the truncated RC functions series, where N is any positive integer greater than
the order of the proposed equation, i.e., N ≥ m and an are the unknown RC coefficients.

4 Fundamental matrix relations
The solution y(x) of (3.1), according to the forms (1.2) and (3.3), can be written in the
matrix form with its derivative y(k)(x) in the following form:

y(x) = R(x)A = V (x)CT A, (4.1)

where

A =
[

a0 a1 · · · aN

]T
.

And

y(k)(x) = R(k)(x)A, k = 0, 1, . . . , m ≤ N , (4.2)

substituting relation (4.1) into Eq. (4.2), we get

y(k)(x) = V (k)(x)CT A, k = 0, 1, . . . , m ≤ N . (4.3)

The collocation points take the following form if the problem is defined in a semi-infinite
domain:

xs =
(1 + cos( sπ

N )
1 – cos( sπ

N )

)
, s = 1, . . . , N , (4.4a)

and at s = 0, x0 → ∞.
But if x ∈ [0, L], where L < ∞, the collocation points will take the following form:

xs =
s
N

L, s = 0, 1, 2, . . . , N . (4.4b)

Putting the collocation points xs ((4.4a) or (4.4b)) in (4.3), we get

[
y(k)(xs)

]
= V (k)(xs)CT A,

or briefly

Y (k) = V (k)CT A, (4.5)
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where

V (k) =

⎡
⎢⎢⎢⎢⎣

V k(x0)
V k(x1)

...
V k(xN )

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

(v0(x0))k (v1(x0))k . . . (vN (x0))k

(v0(x1))k (v1(x1))k . . . (vN (x1))k

...
...

. . .
...

(v0(xN ))k (v1(xN ))k . . . (vN (xN ))k

⎤
⎥⎥⎥⎥⎦ .

Now, we turn to treat the matrix representation for the nonlinear terms in (3.1).
As previous, using the collocation points xs into yr(x), we get

⎡
⎢⎢⎢⎢⎣

yr(x0)
yr(x1)

...
yr(xN )

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

y(x0) 0 · · · 0
0 y(x1) · · · 0
...

...
. . .

...
0 0 · · · y(xN )

⎤
⎥⎥⎥⎥⎦

r–1⎡
⎢⎢⎢⎢⎣

y(x0)
y(x1)

...
y(xN )

⎤
⎥⎥⎥⎥⎦ = (Ỹ )r–1Y

and

Ỹ = Ṽ CT A, (4.6)

where

Ṽ =

⎡
⎢⎢⎢⎢⎣

V (x0) 0 · · · 0
0 V (x1) · · · 0
...

...
. . .

...
0 0 · · · V (xN )

⎤
⎥⎥⎥⎥⎦ , CT =

⎡
⎢⎢⎢⎢⎣

CT 0 · · · 0
0 CT · · · 0
...

...
. . .

...
0 0 · · · CT

⎤
⎥⎥⎥⎥⎦ ,

A =

⎡
⎢⎢⎢⎢⎣

A0

A1
...

Ak

⎤
⎥⎥⎥⎥⎦ .

In addition, substituting xs into the nonlinear term y(r)y(k), we get

⎡
⎢⎢⎢⎢⎣

y(r)(x0)y(k)(x0)
y(r)(x1)y(k)(x1)

...
y(r)(xN )y(k)(xN )

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

y(r)(x0) 0 · · · 0
0 y(r)(x1) · · · 0
...

...
. . .

...
0 0 · · · y(r)(xN )

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y(k)(x0)
y(k)(x1)

...
y(k)(xN )

⎤
⎥⎥⎥⎥⎦ = Ỹ (r)Y (k),

by using (4.5), one gets

Ỹ (r)Y (k) = Ṽ (r)CT AV (k)CT A. (4.7)

Substituting xs into Eq. (3.1), we get

m∑
k=0

n∑
r=0

Pk,r(Ỹ )rY (k) +
m∑

k=1

m∑
r=1

Qk,rỸ (r)Y (k) = G, (4.8)
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where

Pk,r =

⎡
⎢⎢⎢⎢⎣

Pk(x0) 0 . . . 0
0 Pk(x1) . . . 0

0 0
. . .

...
0 0 . . . Pk(xN)

⎤
⎥⎥⎥⎥⎦ ,

Qk,r =

⎡
⎢⎢⎢⎢⎣

Qk,r(x0) 0 . . . 0
0 Qk,r(x1) . . . 0

0 0
. . .

...
0 0 . . . Qk,r(xN)

⎤
⎥⎥⎥⎥⎦ , G =

⎡
⎢⎢⎢⎢⎣

g(x0)
g(x1)

...
g(xN )

⎤
⎥⎥⎥⎥⎦ .

Using (4.5), (4.6), and (4.7) into (4.8), we get

m∑
k=0

n∑
r=0

Pk,r
(
Ṽ CT A

)rV (k)CT A +
m∑

k=1

m∑
r=1

Qk,rṼ (r)CT AV (k)CT A = G. (4.9)

Substituting the corresponding matrix y(k)(ak), which depends on the RC coefficients
matrix A, into (3.2) and simplifying the result, we obtain

V (k)(ak)CT A = μk . (4.10)

5 Main results
The fundamental matrix Eq. (4.9) for problem (3.1) transforms to a system of nonlinear
algebraic equations for (N + 1) unknown.

Equation (4.9) can be written briefly as follows:

ψA = G, (5.1)

where

ψ =
m∑

k=0

n∑
r=0

Pk,r
(
Ṽ CT A

)rV (k)CT +
m∑

k=1

m∑
r=1

Qk,rṼ (r)CT AV (k)CT ,

the matrix form for the subjected conditions (3.2), by using (4.10), is in the following form:

UiA = μi; or [Ui;μi], i = 0, 1, . . . , m – 1, (5.2)

where

Ui = V (k)(ak).

Then the solution of (3.1) under the subjected conditions (3.2) can be found by replacing
the produced Eqs. (5.2) with the last equations of system (5.1). Therefore, we get (N + 1)
nonlinear algebraic equations in terms of RC coefficient. This nonlinear system can be
solved with the aid of a suitable solver. The well-known Newton iterative method can be
used here with 100 iterations. Therefore, the corresponding approximate solution y(x) can
be obtained.
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6 Test examples
Two examples are considered to illustrate the effectiveness and accuracy properties of the
proposed method. The calculations are carried out on the PC using our written codes
using Mathematica 7.0.

Example 6.1 Consider the nonlinear equation

f (2)(x) + f 2(x)f (1)(x) + (x + 1)f 5(x) =
2

(1 + x)3 , x ∈ [0, 4], (6.1)

with the following subjected conditions:

f (0) = 1, f ′(4) = –
1

25
.

The collocation points at N = 2 are x0 = 0, x1 = 1.3̄, x2 = 2.6̄, x3 = 4.
The fundamental matrix Eq. (4.9) corresponding to (6.1) becomes

{
V (2)CT +

(
Ṽ CT A

)2V (1)CT + P0,5
(
Ṽ CT A

)4VCT}A = G,

where Ṽ , CT , A, V (2), CT , V (1), V , G, and P0,5 are matrices given as follows:

Ṽ =

⎡
⎢⎣

1 –1 1 0 0 0 0 0 0
0 0 0 1 1

3
1
9 0 0 0

0 0 0 0 0 0 1 3
5

9
25

⎤
⎥⎦ , V (2) =

⎡
⎢⎣

0 –4 16
0 –4

27 0
0 –4

125
–16
625

⎤
⎥⎦ ,

CT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 –1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 1 0 –1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 1 0 –1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 0 0
a1 0 0
a2 0 0
0 a0 0
0 a1 0
0 a2 0
0 0 a0

0 0 a1

0 0 a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎣

2
2

27
2

127

⎤
⎥⎦ , P0,5 =

⎡
⎢⎣

1 0 0
0 3 0
0 0 5

⎤
⎥⎦ , CT =

⎡
⎢⎣

1 0 –1
0 1 0
0 0 2

⎤
⎥⎦ ,

V (1) =

⎡
⎢⎣

0 2 4
0 2

9
4

27
0 2

25
12

125

⎤
⎥⎦ , V =

⎡
⎢⎣

1 –1 1
1 1

3
1
9

1 3
5

9
25

⎤
⎥⎦ .

We get the RC coefficient as

A =
[

1
2 – 1

2 0
]T

,
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Table 1 Absolute errors for the RCC method at different N

xi e5 e8 e10

0.0 0 0 0
0.1 8.09945 × 10–6 2.10677 × 10–7 7.75121 × 10–8

0.2 7.19997 × 10–5 1.36228 × 10–6 4.47100 × 10–7

0.3 2.13045 × 10–4 3.45067 × 10–6 1.09107 × 10–6

0.4 4.16020 × 10–4 6.35635 × 10–6 1.97909 × 10–6

0.5 6.67314 × 10–4 9.99044 × 10–6 3.08286 × 10–6

0.6 9.70708 × 10–4 1.42644 × 10–5 4.37683 × 10–6

0.7 1.34619 × 10–3 1.91020 × 10–5 5.83775 × 10–6

0.8 1.82307 × 10–3 2.44326 × 10–5 7.44486 × 10–6

0.9 2.43308 × 10–3 3.02070 × 10–5 9.16450 × 10–6

1.0 3.20542 × 10–3 3.64697 × 10–5 1.08977 × 10–5

Table 2 Comparison of the L2, L∞ error norms

L2 L∞
Proposed method Method in [37] Proposed method Method in [37]

N = 5 3.24915 × 10–5 7.04723 × 10–6 3.20542 × 10–3 1.19252 × 10–4

N = 8 4.20596 × 10–9 1.58113 × 10–7 3.64697 × 10–5 4.45095 × 10–6

N = 10 3.75552 × 10–10 4.24679 × 10–12 1.08977 × 10–5 5.24856 × 10–12

therefore, the solution is

f (x) =
5∑

n=0

anRn(x) =
1
2

R0 –
1
2

R1,

after simplifying

f (x) = (x + 1)–1,

which represents the exact solution of (6.1).

Example 6.2 Consider the nonlinear ODE [37]

f ′′′(x) + f ′′(x) + f ′(x)f (x) = –e–2x, x ∈ [0, 1], (6.2)

subject to the initial conditions

f (0) = 1, f ′(0) = –1, f ′′(0) = 1.

The exact solution of the present problem (6.2) is f (x) = e–x. In Table 1 the comparison
of absolute errors eN of the presented method at N = 5, 8, and 10 is listed. Also, Table 2
contains a comparison of the error norms (L2 and L∞ [29]) for the RCC method and the
shifted Chebyshev collocation method [37].

7 Applications
In this section four applications are introduced as nonlinear real life models, solved using
the proposed technique. The introduced applications are defined on finite and infinite do-
mains as nonlinear differential equations. The proposed method deals with the boundary
value problems defined on the semi-infinite domain without divergence.
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Table 3 A comparison between the RCC method and other existing methods with the values for
f ′′(0)

λ Runge–Kutta HAM [6] RCT [27] Method in [38] RCC method N = 26

0 –0.76854 –0.77363 –0.76600 –0.769 –0.768659
1/4 –0.88498 –0.88800 –0.88830 – –0.885073
1/3 –0.92101 –0.92433 –0.92100 –0.921 –0.921085
1/2 –0.98956 –0.99382 –0.98581 –0.992 –0.989664
3/4 –1.08518 –1.08840 –1.08598 – –1.08526
1 –1.17372 –1.17686 –1.17040 – –1.17375

Table 4 Comparison between the RCC method and other existing methods for f ′(0) with λ = 0

η Runge– Kutta RCT [27] HAM [6] Proposed method

N = 26 N = 30

0 1.0000 1.0000 0.9999 1.0000 1.0000
0.2 0.8478 0.8477 0.8474 0.8477 0.8478
0.4 0.7036 0.7036 0.7028 0.7036 0.7036
0.6 0.5733 0.5732 0.5720 0.5732 0.5732
0.8 0.4599 0.4598 0.4583 0.4598 0.4598
1 0.3643 0.3641 0.3623 0.3641 0.3641
1.2 0.2855 0.2853 0.2833 0.2854 0.2854
1.4 0.2218 0.2218 0.2200 0.2218 0.2218
1.6 0.1713 0.1713 0.1698 0.1713 0.1713
1.8 0.1315 0.1316 0.1301 0.1316 0.1316
2 0.1007 0.1007 0.0991 0.1007 0.1007

Application 7.1 In this application the proposed method is introduced to solve NCDF
about a vertical full cone embedded in PM with a prescribed wall temperature [6, 27].
Consider the governing equation of fluid flow and heat transfer of full cone embedded
in PM that can be written by the following third-order nonlinear ODE, with boundary
conditions that naturally have infinity:

f ′′′ +
(

λ + 3
2

)
ff ′′ – λ

(
f ′)2 = 0, (7.1)

for wall temperature the boundary conditions are

f (0) = 0, f ′(0) = 1 and f ′(η) = 0 at η → ∞.

When the RCC method is applied for N = 26, the approximate solution for f (η) is given.
Table 3 shows the comparison of the approximate values for f ′′(0) of the RCC method at
N = 26 with previous results obtained from different methods. Our obtained results are
close to the ones of the following methods: fourth-order Runge–Kutta method, homotopy
analysis method [6], and RCT method [27] along the given domain. Also, the results for
f ′(0) are shown in Tables 4 and 5 with two selected λ as 0 and 1/2, and the comparison
between results of Runge–Kutta, [6], and [27] methods is given. Figure 1 shows the RCC
approximation of f ′(0) with different values for λ.

Application 7.2 The Riccati equation [39]

f ′(x) – 2f (x) + f 2(x) = 1, x ∈ [0, 1], (7.2)
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Table 5 Comparison between RCC and other methods for f ′(0) with λ = 1/2

η Runge– Kutta RCT [27] HAM [6] Proposed method

N = 26 N = 30

0 1.0000 0.9999 1.0004 1.0000 1.0000
0.2 0.8130 0.8130 0.8125 0.8129 0.8129
0.4 0.6500 0.6500 0.6491 0.6499 0.6499
0.6 0.5124 0.5125 0.5111 0.5124 0.5124
0.8 0.3994 0.3994 0.3977 0.3993 0.3993
1 0.3084 0.3084 0.3063 0.3084 0.3084
1.2 0.2364 0.2364 0.2347 0.2364 0.2364
1.4 0.1802 0.1802 0.1785 0.1802 0.1802
1.6 0.1367 0.1367 0.1352 0.1368 0.1367
1.8 0.1034 0.1034 0.1020 0.1034 0.1034
2 0.0780 0.0779 0.0763 0.0780 0.0780

Figure 1 RC approximation of f ′(0) with different values for λ

with the subjected initial condition f (0) = 0, and the exact analytical solution is

f (x) = 1 +
√

2 tanh

[√
2x +

1
2

log

(√
2 – 1√
2 + 1

)]
.

By the RCC method, the solution of the Riccati equation is presented for deferent val-
ues of N . In Table 6 the comparison of the L2 error norm of the present technique for
deferent values of N (N = 5, 8, and 12) with the other methods is given. We substituted
by the Chebyshev coefficient [40] and the relation, which give us Adomian and homo-
topy perturbation solutions [39]. The RCC method is compared with the exact solution
at N = 5, 8, and 12 in Fig. 2. Also, the RCC solution at N = 5 is compared with the ex-
act solution, shifted Chebyshev collection method [40], Adomian and homotopy pertur-
bation solutions [39] in Fig. 3. It is clear that present numeric results are more conver-
gent to the exact solution, especially, when x > 1, while the other methods are diver-
gent.

We have to observe that the shifted Chebyshev domain is defined in the interval
[0, 1], therefore, we find it is divergent out from its domain [40]. Although, Adomian
and homotopy perturbation methods defend in whole numbers, from Fig. 3 we see
that the Adomian method is divergent when x > 1. Also, the homotopy perturbation
method diverges when x > 2, while the RCC method is convergent along the inter-
val.
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Table 6 Comparison of the L2, error norm

L2 proposed method L2 shift Chebyshev [40] L2 Adomian [39] L2 homotopy perturbation [39]

N = 5 1.13349 × 10–4 9.41458 × 10–5 3.86133 × 10–2 –
N = 8 2.01918 × 10–5 – – 2.93357 × 10–1

N = 10 3.43867 × 10–7 – – –

Figure 2 Comparison of the solution of Riccati equation for N = 5, 8, and 12

Figure 3 Comparison of the solution of Riccati equation with other methods

Application 7.3 An application of the RCC method is approximating bio-mathematical
problems of continuous population models for single and interacting species(CPM). The
logistic growth model in a population of CPM [41] is nonlinear ODE of the following form:

⎧⎨
⎩

df
dτ

= f (1 – f ),

f (0) = 2,
(7.3)

with N0
K = 2, and the analytical solution is f (τ ) = 2

2–e–τ .
The approximate solution for f (τ ) is obtained by applying the presented method at N =

10 by the truncated RC series. Table 7 shows the comparison of the absolute errors for the
presented method at N = 10 and other methods [42–45], where the comparison shows
that our method obtains best accuracy along the interval [0, 1]. The error functions for



Abd El Salam et al. Advances in Difference Equations        (2021) 2021:331 Page 13 of 17

Table 7 Comparing absolute errors for pervious work

Bessel
collocation
method [42]

Shifted
Chebyshev
collocation
method [43]

Adomian
decomposition
method [44]

He’s homotopy
perturbation
method [45]

Present method

τi e10 e10 e8 e8 e10
0.0 0.0 0.0 0.0 0.0 2.21096 ×10–8

0.2 6.5844 ×10–7 4.75702 ×10–8 1.5521 ×10–5 1.8643 ×10–4 1.44351 ×10–8

0.4 4.4035 ×10–7 6.02884 ×10–7 6.4928 ×10–3 1.9497 ×10–2 9.92748 ×10–9

0.6 2.9727 ×10–7 7.12326 ×10–7 2.1100 ×10–1 2.8160 ×10–1 7.10665 ×10–9

0.8 1.4041 ×10–7 3.90601 ×10–7 2.433800 1.827000 3.45884 ×10–9

1.0 2.3094 ×10–5 1.46765 ×10–5 15.99100 7.682900 2.21096 ×10–8

Figure 4 Comparing error function for the RCC method and [42]

the RCC method at N = 10 and 16 are compared with the Bessel collocation method [42]
in Fig. 4; it is clear that our results are more accurate.

Application 7.4 We apply the RCC method for the Lane–Emden equation (LEE) which
has the general form

y′′(x) +
α

x
y(x) + q(x)p(y) = g(x), x ≥ 0, (7.4)

with the initial conditions y(0) = λ, y′(0) = β , where α,β , and λ are appropriate constants
and q(x), p(y), and g(x) are given functions. The forms of p(y) give us various types of LEE
which model several phenomena. In this application we study deferent cases of LEE types.

The standard LEE when q(x) = 1, p(y) = ym,λ = 1, and β = 0,we get the standard LEE that
was used to model the thermal behavior of a spherical cloud of gas acting under the mutual
attraction of its molecules and subject to the classical laws of thermodynamics [46–51]

y′′(x) +
2
x

y′(x) + ym = 0, x ≥ 0, (7.5)
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Table 8 Comparing numerical results of the RCC method with Runge–Kutta of fourth order atm = 5

x Exact values Runge–Kutta RCC method

N = 20 N = 25

0.0 1 1 1 1
0.2 0.9933992678 0.9933992543126849 0.9933992939 0.9933992684
0.4 0.9743547036 0.9743546989480394 0.9743547291 0.9743547043
0.6 0.9449111825 0.9449111812575188 0.9449112047 0.9449111830
0.8 0.9078412990 0.9078412996319103 0.9078413170 0.9078412994
1.0 0.8660254037 0.8660254054870272 0.8660254037 0.8660254041
1.2 0.8219949365 0.8219949387903671 0.8219949365 0.8219949367
1.4 0.7777137711 0.7777137735378965 0.7777137710 0.7777137716
1.6 0.7345531603 0.7345531628136189 0.7345531609 0.7345531712
1.8 0.6933752452 0.6933752476639488 0.6933752245 0.6933753566
2.0 0.6546536707 0.6546536728956738 0.6546535327 0.6546543517

Table 9 Comparing absolute errors atm = 5

x Runge–Kutta RCC method

e20 e25

0.0 0 0 0
0.2 1.3486 × 10–8 2.60697 × 10–8 6.07152 × 10–10

0.4 4.7444 × 10–9 2.53963 × 10–8 5.69494 × 10–10

0.6 1.2655 × 10–9 2.21944 × 10–8 4.90154 × 10–10

0.8 6.287 × 10–10 1.79881 × 10–8 3.92929 × 10–10

1.0 1.7025 × 10–9 1.35314 × 10–8 2.92358 × 10–10

1.2 2.2635 × 10–9 9.29598 × 10–9 2.02582 × 10–10

1.4 2.49 × 10–9 5.48337 × 10–9 5.82489 × 10–10

1.6 2.502 × 10–9 6.28875 × 10–10 1.08966 × 10–8

1.8 2.3824 × 10–9 2.06909 × 10–8 1.11352 × 10–7

2.0 2.1877 × 10–9 1.37968 × 10–7 6.81077 × 10–7

with the initial conditions y(0) = 1, y′(0) = 0, where m is a real constant m ≥ 0, if m = 0, 1,
and 5, we get the analytical solution

y(x) = 1 –
1
3!

x2, y(x) =
sin(x)

x
and y(x) =

(
1 +

x2

3

)–1/2

,

respectively, the other values of m have no analytical solution. Now, we apply the RCC
method to deal with the standard LEE for m = 3, 4, and 5. Table 8 shows the comparing
of numerical results of the RCC method, the exact solution, and Runge–Kutta of fourth
order at m = 5, while Table 9 compares absolute errors. Tables 10 and 11 compare the
approximate solution of the RCC method with Runge–Kutta of fourth order at m = 4 and
3 respectively.

We note that the results at m = 5 with the exact solution for the proposed method are
better than the given results by Runge–Kutta at N = 25 as Tables 8 and 9 show, so we
expected that the results are also stable and better than those of fourth-order Runge–
Kutta in other cases.

8 Conclusion
In this work, the rational Chebyshev collection method is applied to solve general non-
linear ordinary differential equations (ODEs) with variable coefficients and given condi-
tions. The proposed method is applied as a matrix discretization to treat the nonlinear
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Table 10 Comparing approximate solution of the RCC method with Runge–Kutta of fourth order at
m = 4

x Runge–Kutta RCC method

N = 20 N = 25

0.0 1 1 1
0.2 0.9933861998 0.9933861701 0.9933862093
0.4 0.9741584037 0.9741583659 0.9741584049
0.6 0.944011289 0.9440112521 0.9440112873
0.8 0.9053459238 0.9053458911 0.9053459209
1.0 0.8608138133 0.8608137861 0.8608138098
1.2 0.8129249433 0.8129249221 0.8129249398
1.4 0.7637988358 0.7637988205 0.7637988312
1.6 0.7150639513 0.7150639437 0.7150639123
1.8 0.6678666657 0.6678666855 0.6678662631
2.0 0.6229407738 0.62294092500 0.6229382065

Table 11 Comparing approximate solution of the RCC method with Runge–Kutta of fourth order at
m = 3

x Runge–Kutta RCC method

N = 20 N = 25

0.0 1 1 1
0.2 0.99337307946 0.9933731281 0.9933730891
0.4 0.97395825015 0.9739582909 0.9739582516
0.6 0.94307317012 0.9430732051 0.9430731688
0.8 0.90267208835 0.9026721177 0.9026720857
1.0 0.85505756895 0.8550575927 0.8550575657
1.2 0.80259192167 0.8025919339 0.8025919183
1.4 0.74746481001 0.7474648231 0.7474648054
1.6 0.69154411316 0.6915439103 0.6915440763
1.8 0.63630944306 0.6363094342 0.6363090646
2.0 0.58285051702 0.5828504530 0.5828481005

ODEs which take a block matrix form that is transformed to a nonlinear algebraic system
of equations. The order of convergence for RC functions has been discussed. The tech-
nique has been tested and verified by two examples, then applied to natural convection of
Darcian fluid (NCDF) about a vertical full cone embedded in porous media (PM) with a
prescribed wall temperature which is a third-order nonlinear ODE with condition natu-
rally tending to infinity. The second application is the Riccati equation, and the third one
is continuous population models for single and interacting species (CPM). The standard
Lane–Emden equation (LEE) is the last application, and we compare our results with other
existing methods to study the applicability and accuracy.
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42. Yüzbaşı, Ş.: Bessel collocation approach for solving continuous population models for single and interacting species.

Appl. Math. Model. 36(8), 3787–3802 (2012)
43. Ozturk, Y., Gulsu, M.: An efficient algorithm for solving nonlinear system of differential equations and applications.

New Trends Math. Sci. 3(3), 192 (2015)
44. Pamuk, S.: The decomposition method for continuous population models for single and interacting species. Appl.

Math. Comput. 163(1), 79–88 (2005)
45. Pamuk, S., Pamuk, N.: He’s homotopy perturbation method for continuous population models for single and

interacting species. Comput. Math. Appl. 59(2), 612–621 (2010)
46. Shawagfeh, N.T.: Nonperturbative approximate solution for Lane–Emden equation. J. Math. Phys. 34(9), 4364–4369

(1993)
47. Aslanov, A.: Determination of convergence intervals of the series solutions of Emden–Fowler equations using

polytropes and isothermal spheres. Phys. Lett. A 372(20), 3555–3561 (2008)
48. Parand, K., Dehghan, M., Rezaei, A.R., Ghaderi, S.M.: An approximation algorithm for the solution of the nonlinear

Lane–Emden type equations arising in astrophysics using Hermite functions collocation method. Comput. Phys.
Commun. 181(6), 1096–1108 (2010)

49. Agarwal, P., Berdyshev, A., Karimov, E.: Solvability of a nonlocal problem with integral transmitting condition for
mixed type equation with Caputo fractional derivative. Results Math. 71(3–4), 1235–1257 (2017)

50. Agarwal, P., Ntouyas, S.K., Jain, S., Chand, M., Singh, G.: Fractional kinetic equations involving generalized k-Bessel
function via Sumudu transform. Alex. Eng. J. 57(3), 1937–1942 (2018)

51. Agarwal, P., Deniz, S., Jain, S., Alderremy, A.A., Aly, S.: A new analysis of a partial differential equation arising in biology
and population genetics via semi analytical techniques. Phys. A, Stat. Mech. Appl. 542, 122769 (2020)


	Matrix computational collocation approach based on rational Chebyshev functions for nonlinear differential equations
	Abstract
	Keywords

	Introduction
	The order of convergence
	Formulation of the problem
	Fundamental matrix relations
	Main results
	Test examples
	Applications
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Conﬂicts of interest
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


