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1 Introduction
The theory of singular fractional boundary value problems has become an area of research
investigation in the last three decades (see [1, 3, 6, 7, 16, 21]). One of the equations de-
scribing this type of problems is the very important Lane–Emden equation, which was
published by Lane in 1870 [18] and detailed by Emden [8]. Lane–Emden differential equa-
tions are singular initial value problems of the second order, they describe a variety of phe-
nomena in mathematical physics and astrophysics such as aspects of the stellar structure.
For more information and some applications, one can consult Refs. [2, 13, 23].

The classical Lane–Emden equation has the following form [5, 8]:

x′′(t) +
a
t

x′(t) + f
(
t, x(t)

)
= g(t), t ∈ [0, 1],

under the conditions

x(0) = A, x′(0) = B,

where A and B are constants and f and g are continuous real functions.
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The above problem has attracted many researchers attention. In fact, in [20], the authors
have used the method of collocation to study the following Lane–Emden problem:

⎧
⎨

⎩
Dαy(t) + k

tα–β Dβy(t) + f (t, y(t)) = g(t), t ∈ [0, 1],

k ≥ 0, 1 < α ≤ 2, 0 < β ≤ 1,

Ibrahim [15] has been concerned with the stability of Ulam Hyers for the following frac-
tional Lane–Emden problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ (Dα + a
t )u(t) + f (t, u(t)) = g(t),

u(0) = μ, u(1) = ν,

0 < α,β ≤ 1, 0 ≤ t ≤ 1, a ≥ 0,

under the conditions: Dγ is the Caputo derivative, f is a continuous function and g ∈
C([0, 1]).

Very recently, Y. Gouari et al. [10] have investigated the following nonlocal fractional
problem of Lane–Emden type:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ (Dα + k
tλ )y(t) + �1f (t, y(t), Dδy(t)) + �2g(t, y(t), Iρy(t)) + h(t, y(t)) = l(t),

y(0) = 0, y(1) = b
∫ η

0 y(s) ds, 0 < η < 1, Iqy(u) = y(1), 0 < u < 1,

k > 0, 0 < λ ≤ 1, 1 ≤ β ≤ 2, 0 ≤ α, δ ≤ 1, t ∈ ]0, 1[,

Motivated by the above cited papers, in [25] we have proved the existence and unique-
ness of solutions by application of the Banach contraction principle for the following anti
periodic fractional differential problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DαDβy(t) + k
tλ Dαy(t) + a1F(t, y(t), Dγ y(t), Jpy(t))

+ a2G(t, y(t), Dγ y(t)) + a3H(t, y(t)) = L(t).

y(0) + y(1) = 0, y′(0) + y′(1) = 0, Dγ (0) + Dγ (1) = 0,

k > 0, 1 ≤ β ≤ 2, 0 ≤ γ ≤ α ≤ 1, 0 < λ < 1, p > 0, t ∈ [0, 1],

(1)

where I := [0, 1], the derivatives of the problem are in the sense of Caputo, Jp denotes the
Riemann–Liouville integral of order p and F : I ×R

3 →R, G : I ×R
2 →R, H : I ×R

2 →R

and L : I →R are four given functions, and R being the set of real numbers.
In this work, we continue studying the above problem by investigating certain types of

Ulam stability for the problem (1). Then, using a numerical approach of the derivative
Caputo, we analyze certain behavior of the problem by means of the fourth-order Runge–
Kutta integrator method.

2 Preliminaries
We present some necessary lemmas and theorems which will be used in this paper.

As it is proved in our last work [25], the integral solution of (1) is given by the following
auxiliary result.
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Lemma 1 Let L1 ∈ C([0, 1]), t ∈ I , 0 ≤ γ ≤ α ≤ 1, 1 < β < 2. Then the integral solution of
the problem

⎧
⎨

⎩
Dα(Dβ )y(t) + ( k

tλ )Dαy(t) = L1(t),

y(0) + y(1) = 0, y′(0) + y′(1) = 0, Dγ (0) + Dγ (1) = 0,
(2)

is given by the following expression:

y(t) =
∫ t

0

(t – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L1(u) –

k
uλ

Dαy(u)
]

du ds

+
[
K1tβ + K2t + K3

]
[∫ 1

0

(1 – s)β–2

�(β – 1)

∫ s

0

(s – u)α–1

�(α)

[
L1(u) –

k
uλ

Dαy(u)
]

du ds
]

+
[
K4tβ + K5t – K6

][∫ 1

0

(1 – s)β–γ –1

�(β – γ )

∫ s

0

(s – u)α–1

�(α)

[
L1(u) –

k
uλ

Dαy(u)
]

du ds
]

– [K7]
[∫ 1

0

(1 – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L1(u) –

k
uλ

Dαy(u)
]

du ds
]

, (3)

where

L1(u) = L(u) – a1F
(
u, y(u), Dγ y(u), Jpy(u)

)
– a2G

(
u, y(u), Dγ y(u)

)

– a3H
(
u, y(u)

)
–

k
uλ

Dαy(u)

and

K1 =
�(β – γ + 1)

β[�(β – γ + 1) – 2�(β)�(2 – γ )]
,

K2 =
�(β)�(2 – γ )

2�(β)�(2 – γ ) – �(β – γ + 1)
,

K3 =
�(β + 1)�(2 – γ ) – �(β – γ + 1)

2β�(β – γ + 1) – 4�(β + 1)�(2 – γ )
,

K4 =
2�(2 – γ )�(β – γ + 1)

β[�(β – γ + 1) – 2�(β)�(2 – γ )]
,

K5 =
�(2 – γ )�(β – γ + 1)

2�(β)�(2 – γ ) – �(β – γ + 1)
,

K6 =
2�(2 – γ )�(β – γ + 1) – β�(2 – γ )�(β – γ + 1)

2β�(β – γ + 1) – 4�(β + 1)�(2 – γ )
,

K7 =
�(β – γ + 1) – 2�(β)�(2 – γ )

2�(β – γ + 1) – 4�(β)�(2 – γ )
.

Before presenting our main results, we shall introduce also the Banach space

X :=
{

y ∈ C(I,R), Dαy ∈ C(I,R), Dγ y ∈ C(I,R)
}

,

and the norm

‖y‖X = max
{‖y‖∞,

∥∥Dαy
∥∥∞,

∥∥Dγ y
∥∥∞

}
,
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where

‖x‖∞ = sup
t∈I

∣∣x(t)
∣∣,

∥∥Dαx
∥∥∞ = sup

t∈I

∣∣Dαx(t)
∣∣,

∥∥Dγ x
∥∥∞ = sup

t∈I

∣∣Dγ x(t)
∣∣.

Also, we consider the following hypotheses:
(H1): There exist nonnegative constants Wi, i = 1, . . . , 6, such that for each t ∈ I and for

all x1, x2, x3, y1, y2, y3 ∈R we have

∣∣F(t, x1, x2, x3) – F(t, y1, y2, y3)
∣∣ ≤ W1|x1 – y1| + W2|x2 – y2| + W3|x3 – y3|,

∣∣G(t, x1, x2) – G(t, y1, y2)
∣∣ ≤ W4|x1 – y1| + W5|x2 – y2|,

∣∣H(t, x1) – H(t, y1)
∣∣ ≤ W6|x1 – y1|.

The following quantities are also needed in this paper:

N1 = (a1W1,2 + a2W4,5 + a3W6)
[

1 + |K7|
�(α + β + 1)

+
|K1| + |K2| + |K3|

�(α + β)
+

|K4| + |K5| + |K6|
�(α + β – γ + 1)

]

+ a1W3

[
1 + |K7|

�(α + β + p + 1)
+

|K1| + |K2| + |K3|
�(α + β + p)

+
|K4| + |K5| + |K6|

�(α + β – γ + p + 1)

]

+ |k|�(1 – λ)
[

1 + |K7|
�(α + β – λ + 1)

+
|K1| + |K2| + |K3|

�(α + β – λ)
+

|K4| + |K5| + |K6|
�(α + β – γ – λ + 1)

]
,

N2 = (a1W1,2 + a2W4,5 + a3W6)
[

1 + |K7|
�(β + 1)

+
|K1|�(β + 1)�(2 – α) + |K2|�(β – α + 1)

�(β)�(β – α + 1)�(2 – α)

+
|K4|�(β + 1)�(2 – α) + |K5|�(β – α + 1)

�(β – γ + 1)�(β – α + 1)�(2 – α)

]

+ a1W3

[
1 + |K7|

�(β + p + 1)
+

|K1|�(β + 1)�(2 – α) + |K2|�(β – α + 1)
�(β + p)�(β – α + 1)�(2 – α)

+
|K4|�(β + 1)�(2 – α) + |K5|�(β – α + 1)
�(β – γ + p + 1)�(β – α + 1)�(2 – α)

]

+ |k|�(1 – λ)
[

1 + |K7|
�(β – λ + 1)

+
|K1|�(β + 1)�(2 – α) + |K2|�(β – α + 1)

�(β – λ)�(β – α + 1)�(2 – α)

+
|K4|�(β + 1)�(2 – α) + |K5|�(β – α + 1)
�(β – γ – λ + 1)�(β – α + 1)�(2 – α)

]
,

N3 = (a1W1,2 + a2W4,5 + a3W6)
[

1 + |K7|
�(α + β – γ + 1)

+
|K1|�(β + 1)�(2 – γ ) + |K2|�(β – γ + 1)

�(α + β – γ )�(β – γ + 1)�(2 – γ )

+
|K4|�(β + 1)�(2 – γ ) + |K5|�(β – γ + 1)
�(α + β – 2γ + 1)�(β – γ + 1)�(2 – γ )

]

+ a1W3

[
1 + |K7|

�(α + β – γ + p + 1)
+

|K1|�(β + 1)�(2 – γ ) + |K2|�(β – γ + 1)
�(α + β – γ + p)�(β – γ + 1)�(2 – γ )
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+
|K4|�(β + 1)�(2 – γ ) + |K5|�(β – γ + 1)

�(α + β – 2γ + p + 1)�(β – γ + 1)�(2 – γ )

]

+ |k|�(1 – λ)
[

1 + |K7|
�(α + β – γ – λ + 1)

+
|K1|�(β + 1)�(2 – γ ) + |K2|�(β – γ + 1)
�(α + β – γ – λ)�(β – γ + 1)�(2 – γ )

+
|K4|�(β + 1)�(2 – γ ) + |K5|�(β – γ + 1)

�(α + β – 2γ – λ + 1)�(β – γ + 1)�(2 – γ )

]
,

where W1,2 := max(W1, W2) and W4,5 := max(W4, W5).

We recall the following result [25], which allows us to study the stability phenomena of
the considered problem.

Theorem 2 ([25]) Assume that (H1) holds and suppose that 0 < N < 1, where N =
max(N1, N2, N3). Then the problem (1) has a unique solution on I .

3 Ulam type stabilities
The notion of the stability problem of functional equations originated from a problem
of Stanislaw Ulam [26], posed in 1940: When can we assert that approximate solution of
a functional equation can be approximated by a solution of the corresponding equation.
In 1941, Hyers [14] solved it. This approach can guarantee that there exists a close ex-
act solution useful in many applications. For more details on the recent advances on the
Hyers–Ulam stability (see for example [9, 11, 24, 27]).

In order to study some types of Ulam stability for the problem (1), we consider the fol-
lowing fractional differential equation:

Let 1 ≤ β ≤ 2, 0 ≤ γ ≤ α ≤ 1 and ε a positive real numbers and the function T ∈
C(I,R+). We consider the following fractional differential equation:

DαDβy(t) +
k
tλ

Dαy(t) + a1F
(
t, y(t), Dγ y(t), Jpy(t)

)

+ a2G
(
t, y(t), Dγ y(t)

)
+ a3H

(
t, y(t)

)
= L(t), t ∈ I, (4)

and the following fractional differential inequality:
∣∣
∣∣D

αDβx(t) +
k
tλ

Dαx(t) + a1F
(
t, x(t), Dγ x(t), Jpx(t)

)
+ a2G

(
t, x(t), Dγ x(t)

)

+ a3H
(
t, x(t)

)
– L(t)

∣∣
∣∣ ≤ ε, t ∈ I, (5)

∣
∣∣∣D

αDβx(t) +
k
tλ

Dαx(t) + a1F
(
t, x(t), Dγ x(t), Jpx(t)

)
+ a2G

(
t, x(t), Dγ x(t)

)

+ a3H
(
t, x(t)

)
– L(t)

∣
∣∣
∣ ≤ εT(t), t ∈ I, (6)

∣∣∣
∣D

αDβx(t) +
k
tλ

Dαx(t) + a1F
(
t, x(t), Dγ x(t), Jpx(t)

)
+ a2G

(
t, x(t), Dγ x(t)

)

+ a3H
(
t, x(t)

)
– L(t)

∣∣
∣∣ ≤ T(t), t ∈ I. (7)

Definition 3 The problem (1) is Ulam–Hyers stable, if there exists a real number S > 0,
such that, for each ε > 0, t ∈ I , and for each x ∈ X solution of (5), there exists a solution
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y ∈ X of (4) (with the same conditions as in (1)), such that

‖x – y‖X ≤ Sε, t ∈ I.

Definition 4 The problem (1) is generalized Ulam–Hyers stable, if there exists an increas-
ing function Z ∈ C(R+,R+), Z(0) = 0, such that, for all ε > 0, and for each solution x ∈ X of
(5), there exists a solution y ∈ X of (4) (with the same conditions as in (1)), such that

‖x – y‖X ≤ Z(ε), t ∈ I.

Definition 5 The problem (1) is Ulam–Hyers–Rassias stable, if there exists a function
T ∈ C(I,R+) and σ > 0, such that for each ε > 0 and for all solutions x ∈ X of (6) there
exists a solution y ∈ X of (4) (with the same conditions as in (1)), such that

∣
∣x(t) – y(t)

∣
∣ ≤ σεT(t), t ∈ I.

Definition 6 The problem (1) is generalized Ulam–Hyers–Rassias stable, if there exists
a function T ∈ C(I,R+) and σ > 0, such that for all solutions x ∈ X of (7) there exists a
solution y ∈ X of (4) (with the same conditions as in (1)), such that

∣
∣x(t) – y(t)

∣
∣ ≤ σT(t), t ∈ I.

Now, we are ready to prove the following result.

Theorem 7 Assume that (H1) is fulfilled and N = max(N1, N2, N3) < 1. Then the problem
(1) is Ulam–Hyers stable in X.

Proof Let us note

O =
∣
∣∣∣

∫ t

0

(t – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

du ds

+
[
K1tβ + K2t + K3

] ∫ 1

0

(1 – s)β–2

�(β – 1)

∫ s

0

(s – u)α–1

�(α)

×
[

L(s) – a1F
(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

du ds

+
[
K4tβ + K5t – K6

] ∫ 1

0

(1 – s)β–γ –1

�(β – γ )

∫ s

0

(s – u)α–1

�(α)

×
[

L(s) – a1F
(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

du ds
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– [K7]
∫ t

0

(t – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

du ds

–
∫ t

0

(t – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, y(s), Dγ y(s), Jpy(s)

)

– a2G
(
s, y(s), Dγ y(s)

)
– a3H

(
s, y(s)

)
–

k
sλ

Dαy(s)
]

du ds

–
[
K1tβ + K2t + K3

] ∫ 1

0

(1 – s)β–2

�(β – 1)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, y(s), Dγ y(s), Jpy(s)

)

– a2G
(
s, y(s), Dγ y(s)

)
– a3H

(
s, y(s)

)
–

k
sλ

Dαy(s)
]

du ds

–
[
K4tβ + K5t – K6

] ∫ 1

0

(1 – s)β–γ –1

�(β – γ )

∫ s

0

(s – u)α–1

�(α)

×
[

L(s) – a1F
(
s, y(s), Dγ y(s), Jpy(s)

)

– a2G
(
s, y(s), Dγ y(s)

)
– a3H

(
s, y(s)

)
–

k
sλ

Dαy(s)
]

du ds

+ [K7] ×
∫ t

0

(t – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, y(s), Dγ y(s), Jpy(s)

)

– a2G
(
s, y(s), Dγ y(s)

)
– a3H

(
s, y(s)

)
–

k
sλ

Dαy(s)
]

du ds
∣∣
∣∣,

M1 =
∣
∣∣
∣x(t) –

∫ t

0

(t – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
u, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

du ds

–
[
K1tβ + K2t + K3

]

×
∫ 1

0

(1 – s)β–2

�(β – 1)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
u, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

du ds

–
[
K4tβ + K5t – K6

]

×
∫ 1

0

(1 – s)β–γ –1

�(β – γ )

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
u, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

du ds

+ [K7]

×
∫ t

0

(t – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
u, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

du ds
∣∣
∣∣,
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M2 =
∣∣
∣∣D

αx(t) –
∫ t

0

(t – s)β–1

�(β)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
u, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

ds

–
[

K1�(β + 1)tβ–α

�(β – α + 1)
+

K2t1–α

�(2 – α)

]

×
∫ 1

0

(1 – s)β–2

�(β – 1)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

ds

–
[

K4�(β + 1)tβ–α

�(β – α + 1)
+

K5t1–α

�(2 – α)

]

×
∫ 1

0

(1 – s)β–γ –1

�(β – γ )

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

ds

+ [K7]
∫ t

0

(t – s)β–1

�(β)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

ds
∣
∣∣
∣,

M3 =
∣
∣∣
∣D

γ x(t) –
∫ t

0

(t – s)α+β–γ –1

�(α + β – γ )

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)
– a2

× G
(
u, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

ds

–
[

K1�(β + 1)tβ–γ

�(β – γ + 1)
+

K2t1–γ

�(2 – γ )

]

×
∫ 1

0

(1 – s)α+β–γ –2

�(α + β – γ – 1)

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

ds

–
[

K4�(β + 1)tβ–γ

�(β – γ + 1)
+

K5t1–γ

�(2 – γ )

]

×
∫ 1

0

(1 – s)α+β–2γ –1

�(α + β – 2γ )

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

ds

+ [K7]
∫ t

0

(t – s)α+β–γ –1

�(α + β – γ )

[
L(s) – a1F

(
s, x(s), Dγ x(s), Jpx(s)

)

– a2G
(
s, x(s), Dγ x(s)

)
– a3H

(
s, x(s)

)
–

k
sλ

Dαx(s)
]

ds
∣∣∣
∣.

Let now x ∈ X be a solution of (5). Then, by integrating (5), we obtain

M1 ≤ εtα+β

�(α + β + 1)
.
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Thanks to Theorem 2, the unique solution of (1) is given by

y(t) =
∫ t

0

(t – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, y(s), Dγ y(s), Jpy(s)

)

– a2G
(
s, y(s), Dγ y(s)

)
– a3H

(
s, y(s)

)
–

k
sλ

Dαy(s)
]

du ds

+
[
K1tβ + K2t + K3

]

×
∫ 1

0

(1 – s)β–2

�(β – 1)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, y(s), Dγ y(s), Jpy(s)

)

– a2G
(
s, y(s), Dγ y(s)

)
– a3H

(
s, y(s)

)
–

k
sλ

Dαy(s)
]

du ds

+
[
K4tβ + K5t – K6

]

×
∫ 1

0

(1 – s)β–γ –1

�(β – γ )

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, y(s), Dγ y(s), Jpy(s)

)

– a2G
(
s, y(s), Dγ y(s)

)
– a3H

(
s, y(s)

)
–

k
sλ

Dαy(s)
]

du ds

– [K7] ×
∫ t

0

(t – s)β–1

�(β)

∫ s

0

(s – u)α–1

�(α)

[
L(s) – a1F

(
s, y(s), Dγ y(s), Jpy(s)

)

– a2G
(
s, y(s), Dγ y(s)

)
– a3H

(
s, y(s)

)
–

k
sλ

Dαy(s)
]

du ds.

Then, from all t ∈ I , we get

∣
∣x(t) – y(t)

∣
∣ ≤ εtα+β

�(α + β + 1)
+ O.

This implies that

‖x – y‖∞ ≤ ε

�(α + β + 1)
+ N1‖x – y‖X . (8)

By integrating and differentiating (5), we get

M2 ≤ εtβ

�(β + 1)
.

Similarly, we show that

∥
∥Dαx – Dαy

∥
∥∞ ≤ ε

�(β + 1)
+ N2‖x – y‖X . (9)

On the other hand, we have

M3 ≤ εtα+β–γ

�(α + β – γ + 1)
.

Also, we have

∥∥Dγ x – Dγ y
∥∥∞ ≤ ε

�(α + β – γ + 1)
+ N3‖x – y‖X . (10)
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Using the inequalities (8), (9) and (10), we get

‖x – y‖X ≤ max

(
ε

�(α + β + 1)
,

ε

�(β + 1)
,

ε

�(α + β – γ + 1)

)
+ N‖x – y‖X .

Thus,

‖x – y‖X ≤ Sε,

such that

S =
max( 1

�(α+β+1) , 1
�(β+1) , 1

�(α+β–γ +1) )
1 – N

> 0.

Consequently, the problem (1) shows the Ulam–Hyers stability. �

Taking Z(ε) = Sε, we can state that the problem (1) is generalized Ulam–Hyers stable.
In the following, we introduce the following hypothesis to study Rassias stability.
(H2): T ∈ C(I,R+) is continuous, nondecreasing function, and there exists λT ,α > 0 such

that JαT(t) ≤ λT ,αT(t) for each t ∈ I .
We present the following result.

Theorem 8 Assume that (H1)–(H2) are satisfied and N := max(N1, N2, N3) < 1.
Then the problem (1) is Ulam–Hyers–Rassias stable in X.

Proof Let x ∈ X be a solution of (6). Then, by integrating (6), we obtain

M1 ≤ εJβ JαT(t).

Let y be the unique solution of the problem (1). Then, for each t ∈ I , we have

∣∣x(t) – y(t)
∣∣ ≤ εJβ JαT(t) + O.

In view of (H2), we have

∣
∣x(t) – y(t)

∣
∣ ≤ εJβ JαT(t) + N1‖x – y‖X ≤ ελT ,β+αT(t) + N1‖x – y‖X ,

which implies that
∣∣x(t) – y(t)

∣∣ ≤ ελT ,β+αT(t) + N1‖x – y‖X . (11)

On the other hand, by integrating and differentiating (6), we get

M2 ≤ εJβT(t).

Also, we can show that

∣∣Dαx – Dαy
∣∣ ≤ ελT ,βT(t) + N2‖x – y‖X . (12)

We have also

M3 ≤ εJα+β–γ T(t).
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By the same arguments as before, we observe that

∣∣Dγ x(t) – Dγ y(t)
∣∣ ≤ ελT ,α+β–γ T(t) + N3‖x – y‖X . (13)

Using the inequalities (11), (12) and (13) yields

⎧
⎪⎪⎨

⎪⎪⎩

|x(t) – y(t)| ≤ ε max(λT ,α+β ,λT ,β ,λT ,α+β–γ )T(t) + N1‖x – y‖X , t ∈ I,

|Dαx(t) – Dαy(t)| ≤ ε max(λT ,α+β ,λT ,β ,λT ,α+β–γ )T(t) + N2‖x – y‖X , t ∈ I,

|Dγ x(t) – Dγ y(t)| ≤ ε max(λT ,α+β ,λT ,β ,λT ,α+β–γ )T(t) + N3‖x – y‖X , t ∈ I.

Hence, it follows that there exists a real number

σ =
max(λT ,α+β ,λT ,β ,λT ,α+β–γ )

1 – N
,

such that

‖x – y‖X ≤ σεT(t), t ∈ I.

Consequently, the problem (1) shows the Ulam–Hyers–Rassias stability. �

4 Numerical simulations
In this section, we recall a numerical approach for the Caputo derivative. Then, for some
fixed parameters, we investigate behavior of the above fractional Lane–Emden problem.
To do this, we shall first obtain a reduced fractional differential system that is equivalent to
our studied problem. Using a fourth-order Runge–Kutta integrator, the numerical simula-
tions recover the convective behavior of the integer model in astrophysics [4]. In order to
ensure the effect of the fractional order in Lane–Emden dynamics, we consider judicious
values for α and β .

• Hydrodynamic simulations of giant stars, where the stellar profiles can be modeled in
[12, 22, 28] as

1
t

d
dt

(
t2 dy

dt
+ t2 gc(at)

4aπGp0

)
+ yn = 0,

where y is the polytropic temperature with index n, t ≡ r
a , and p0 the central gas

density. For r ≤ h
2 and x ≡ r

h , the smoothed gravitational force of the core is defined by

gc(r) := Gmc
x( 32

3 + x2( –192
5 + 32x))

h2 .

• Self-similar profiles of nonlinear wave equations in flat space-time were modeled in
[4, 17] as

(
1 – t2)d2y

dt2 +
(

A
t

+ Bt
)

dy
dt

– Cy + DyE = 0.
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4.1 Numerical approach for Caputo derivative
In this subsection, we presented an important numerical approach for the Riemann–
Liouville fractional integral and the Caputo derivative; we recall the theorems of [6, 19].

Theorem 9 Assume that y ∈ C1([0, 1],R). The fractional integration approach is given by

Jαy(ti) 
 hα

�(α + 2)

i∑

j=0

y(tj)σj(α), i = 0, . . . , n + 1,

where

σj(α) =

⎧
⎨

⎩
(n + 2 – j)(α+1) + (n – j)(α+1) – 2(n – j + 1)(α+1), j = 1, . . . , i – 1,

(n)(α+1) – (n – α)(n + 1)α , j = 0, and 1, j = i.

Theorem 10 Assume that y ∈ C1([0, 1],R) and 0 < α ≤ 1. Then we have

Dαy(ti) 
 h1–α

�(1 – α + 2)

i∑

j=0

y(j)(tj)σj(1 – α), i = 0, . . . , n,

where

y(j) =
{

y1–y0
h , j = 0, yj+1–yj–1

2h , j = 1, . . . , i – 1, yi–yi–1
h , j = i.

4.2 Simulation for Lane–Emden behaviors
We note that the problem (1) can be reduced to the following system:

Dβy(t) = z(t),

Dαz(t) = –
k
tλ

Dαy(t) – a1F
(
t, y(t), Dγ y(t), Jpy(t)

)

– a2G
(
t, y(t), Dγ y(t)

)
– a3H

(
t, y(t)

)
+ L(t).

In order to achieve the mentioned phenomena, we take 1 < α + β ≤ 2, and λ = 1. Taking
into account our problem parameters, three cases can be observed:

Case 1: α = β = 1, we get

Dy(t) = z(t),

Dz(t) = –
k
tλ

Dy(t) – a1F
(
t, y(t), Dγ y(t), Jpy(t)

)

– a2G
(
t, y(t), Dγ y(t)

)
– a3H

(
t, y(t)

)
+ L(t).

Case 2: 0 < α ≤ 1, β = 1, we obtain

Dy(t) = z(t),

Dαz(t) = –
k
tλ

Dαy(t) – a1F
(
t, y(t), Dγ y(t), Jpy(t)

)

– a2G
(
t, y(t), Dγ y(t)

)
– a3H

(
t, y(t)

)
+ L(t).
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As a consequence,

Dy(t) = z(t),

Dz(t) = D1–α

(
–

k
tλ

Dαy(t) – a1F
(
t, y(t), Dγ y(t), Jpy(t)

)

– a2G
(
t, y(t), Dγ y(t)

)
– a3H

(
t, y(t)

)
+ L(t)

)
.

Case 3: 0 < α ≤ 1, 1 ≤ β ≤ 2, we have

Dβy(t) = z(t),

Dαz(t) = –
k
tλ

Dαy(t) – a1F
(
t, y(t), Dγ y(t), Jpy(t)

)

– a2G
(
t, y(t), Dγ y(t)

)
– a3H

(
t, y(t)

)
+ L(t),

that is,

J2–βD
[
Dy(t)

]
= z(t),

Dαz(t) = –
k
tλ

Dαy(t) – a1F
(
t, y(t), Dγ y(t), Jpy(t)

)

– a2G
(
t, y(t), Dγ y(t)

)
– a3H

(
t, y(t)

)
+ L(t).

Therefore,

Dy(t) = z(t),

J2–βDz = w(t),

Dαw(t) = –
k
tλ

Dαy(t) – a1F
(
t, y(t), Dγ y(t), Jpy(t)

)

– a2G
(
t, y(t), Dγ y(t)

)
– a3H

(
t, y(t)

)
+ L(t).

Consequently,

Dy(t) = z(t),

Dz(t) = D2–βw(t),

Dw(t) = D1–α

(
–

k
tλ

Dαy(t) – a1F
(
t, y(t), Dγ y(t), Jpy(t)

)

– a2G
(
t, y(t), Dγ y(t)

)
– a3H

(
t, y(t)

)
+ L(t)

)
.

I: As a first simulation, we consider the hydrodynamic simulations of giant stars, where
k = 2, p = γ = 0.01, and f , H , G, H , L are given by

a1F
(
t, y(t), Dγ y(t), Jpy(t)

)
=

16a4mc

πp0h6 t4 +
289
51t

(
Jpy(t)

)n,
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Figure 1 Numerical simulation of Case 1 for different
values of the polytropic index n and α = β = 1

Figure 2 Numerical simulations of Case 2 for
α = {0.55, 0.35, 0.2} and β = 1

a2G
(
t, y(t), Dγ y(t)

)
= –

48a3mc

πp0h5 t3 –
663
255t

(
Dγ y(t)

)n,

a3H
(
t, y(t)

)
=

32a4mc

πp0h6 t4 –
527
255t

(
y(t)

)n,

L(t) =
8amc

πp0h3 t.

For the first case, with initial conditions (0, 0), h = 0.001, and n = {1, 1.5, 2, 2.5}, the numer-
ical simulations are carried out only by the fourth-order Runge–Kutta method, for specific
parameters, we have Fig. 1.

Remark 11 Through ongoing evaluation, we observe that the change in value of n has no
impact on the attitude of the remaining cases.

For the following simulation we take n = 1.5 as it is more adequate. Now, to ensure that
all three cases are convenient, we should be looking for a suitable fractional order.

For the second case, with initial conditions (0, 0), h = 0.001, and α = {0.55, 0.35, 0.2}, nu-
merical simulations are realized by a combination of the Caputo approach and the fourth-
order Runge–Kutta method, we acquire Fig. 2. By comparing the above result with the one
of the first case, we conclude that both cases are adequate for α = 0.35 (see Fig. 3).

For the third case, with initial conditions (0, 0, 0.5), h = 0.001, β = {1.45, 1.3, 1.05}, for
any β value, we take α = {0.55, 0.35, 0.2}. Numerical simulations are carried out by a com-
bination of the Caputo approach and the fourth-order Runge–Kutta method, we see, ac-
cording to Figs. 4–6, that β = 1.3 is the valid value. It is obvious from Fig. 7 that α = 0.35
is the appropriate value.
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Figure 3 Comparative simulation (Case 1–Case 2)

Figure 4 Numerical simulations of Case 3 for
β = 1.45 and α = {0.55, 0.35, 0.2}

Figure 5 Numerical simulations of Case 3 for β = 1.3
and α = {0.55, 0.35, 0.2}

Figure 6 Numerical simulations of Case 3 for
β = 1.05 and α = {0.55, 0.35, 0.2}

II: As a second simulation, we consider self-similar profiles of nonlinear wave equation
in flat space-time, where k = A, p = γ = 0.01, and f , H , G, H , L are given by

a1F
(
t, y(t), Dγ y(t), Jpy(t)

)
=

C
1 – t2 Jpy(t),
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Figure 7 Comparative simulation (Case 1–Case 3)

Figure 8 Numerical simulation of Case 1

Figure 9 Numerical simulation of Case 2

a2G
(
t, y(t), Dγ y(t)

)
= –

Bt
1 – t2 Dγ y(t),

a3H
(
t, y(t)

)
= –

D
1 – t2

(
y(t)

)E ,

L(t) = 0,

with initial conditions (0.576037116, 0.24090), and A = 2, B = –25
12 , C = 1

4 , D = 1, E = 2,
h = 0.01. The integration for the first case is carried out by the fourth-order Runge–Kutta
method, now, we are trying to determine an appropriate fractional order (see Fig. 8).

For the second case, we take the same data as above, and α = {0.95, 0.9, 0.8}. Numerical
simulations are realized by a combination of the Caputo approach and the fourth-order
Runge–Kutta method (see Fig. 9).

Comparing our outcome to that in the first case, we summarize that the two cases are
consistent in terms of α = 0.95 (see Fig. 10).



Tablennehas et al. Advances in Difference Equations        (2021) 2021:324 Page 17 of 19

Figure 10 Comparative simulation (Case 1–Case 2)

Figure 11 Numerical simulations of Case 3 for β = 1.2 and different values of α , on the left side. Comparative
simulation (Case 1–Case 3), on the right side

Figure 12 Numerical simulations of Case 3 for β = 1.15 and different values of α , on the left side.
Comparative simulation (Case 1–Case 3), on the right side

Figure 13 Numerical simulations of Case 3 for β = 1.05 and different values of α , on the left side.
Comparative simulation (Case 1–Case 3), on the right side
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For the third case, with initial conditions (0.576037116, 0.24090, 0), and h = 0.01, β =
{1.2, 1.15, 1.05}, for each β , we take α = {0.95, 0.9, 0.8}. Numerical simulations are carried
out by a combination of the Caputo approach and the fourth-order Runge–Kutta method.

It appeared from Figs. 11–13 that β = 1.2 and α = 0.8 are the most acceptable values too.

5 Conclusions
In this manuscript, we study some types of Ulam stability for a nonlinear fractional differ-
ential equation of Lane–Emden type with antiperiodic conditions. Then, by using a nu-
merical approach for the Caputo derivative, we investigate the behaviors of the considered
system.
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2. Agarwal, R.P., O’Regan, D., Staněk, S.: Positive solutions for mixed problems of singular fractional differential equations.

Math. Nachr. 285(1), 27–41 (2012)
3. Bai, Z., Sun, W.: Existence and multiplicity of positive solutions for singular fractional BVPs. Comput. Math. Appl. 63(9),

1369–1381 (2012)
4. Bizon, P., Maison, D., Wasserman, A.: Self-similar solutions of semilinear wave equations with a focusing nonlinearity.

Nonlinearity 20, 2061–2074 (2007)
5. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. Dover, New York (1967)
6. Dahmani, Z., Belhamiti, M.M., Sarikaya, M.Z.: A three fractional order Jerk equation with anti periodic conditions.

Under review
7. Dahmani, Z., Taeb, A., Bedjaoui, N.: Solvability and stability for nonlinear fractional integro-differential systems of high

fractional orders. Facta Univ., Ser. Math. Inform. 31(3), 629–644 (2016)
8. Emden, R.: Gaskugeln. Teubner, Leipzig (1907)
9. Ferraoun, S., Dahmani, Z.: Existence and stability of solutions of a class of hybrid fractional differential equations

involving RL-operator. J. Interdiscip. Math. 23(4), 885–903 (2020)
10. Gouari, Y., Dahmani, Z., Sarikaya, M.Z.: A non local multi-point singular fractional integro-differential problem of

Lane–Emden type. Math. Methods Appl. Sci. 43(11), 6938–6949 (2020)
11. Govindan, V., Hammachukiattikul, P., Rajchakit, G., Gunasekaran, N., Vadive, R.: A new approach to Hyers–Ulam stability

of variable quadratic functional equations. J. Funct. Spaces 2021, 6628733 (2021)
12. Guidarelli, G., Nordhaus, J., Chamandy, L., Chen, Z., Blackman, E.G., Frank, A., Carroll-Nellenback, J., Liu, B.:

Hydrodynamic simulations of disrupted planetary accretion discsinside the core of an AGB star. Mon. Not. R. Astron.
Soc. 490, 1179–1185 (2019)

13. Hammachukiattikul, P., Unyong, B., Suresh, R., Rajchakit, G., Vadivel, R., Gunasekaran, N., Lim, C.P.: Runge–Kutta
Fehlberg method for solving linear and nonlinear fuzzy Fredholm integro-differential equations. Appl. Math. Inf. Sci.
15(1), 43–51 (2021)

14. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)



Tablennehas et al. Advances in Difference Equations        (2021) 2021:324 Page 19 of 19

15. Ibrahim, R.W.: Stability of a fractional differential equation. Int. J. Math. Comput. Phys. Quantum Eng. 7(3), 300–305
(2013)

16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier,
Amsterdam (2006)

17. Kycia, R.A.: Perturbed Lane–Emden equations as a boundary value problem with singular endpoints. J. Dyn. Control
Syst. 26, 333–347 (2020)

18. Lane, J.H.: On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume
by its internal heat and depending on the laws of gases known to terrestrial experiment. Am. J. Sci. Arts s2-50, 57–74
(1870)

19. Li, C., Chen, A., Ye, J.: Numerical approaches to fractional calculus and fractional ordinary differential equation.
J. Comput. Phys. 230, 3352–3368 (2011)

20. Mechee, S.M., Senu, N.: Numerical study of fractional differential equations of Lane–Emden type by method of
collocation. Appl. Math. 3, 851–856 (2012)

21. Mohanapriya, A., Ganesh, A., Rajchakit, G., Pinelas, S., Govindan, V., Unyong, B., Gunasekaran, N.: New generalization of
Hermite–Hadamard type of inequalities for convex functions using Fourier integral transform. Thai J. Math. 18(3),
1051–1061 (2020)

22. Ohlmann, S.T., Röpke, F.K., Pakmor, R., Springel, V.: Constructing stable 3D hydrodynamical models of giant stars.
Astron. Astrophys. 599, A5 (2017)

23. Okunuga, S.A., Ehigie, J.O., Sofoluwe, A.B.: Treatment of Lane–Emden type equations via second derivative backward
differentiation formula using boundary value technique. In: Proceedings of the World Congress on Engineering
IWCE, London, UK, pp. 4–6 (2012)

24. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
25. Tablennehas, K., Abdenebi, A., Dahmani, Z., Belhamiti, M.M.: An anti-periodic singular fractional differential problem

of Lane–Emden type. J. Interdiscip. Math. (2021). https://doi.org/10.1080/09720502.2020.1848318
26. Ulam, S.M.: Problems in Modern Mathematics. Wiley, New York (1940)
27. Unyong, B., Govindan, V., Bowmiya, S., Rajchakit, G., Gunasekaran, N., Vadivel, R., Lim, C.P., Agarwal, P.: Generalized

linear differential equation using Hyers–Ulam stability approach. AIMS Math. 6(2), 1607–1623 (2021)
28. Winkler, D.: Polytropes: Applications in Astrophysics and Related Fields, Chemistry in Australia (2005)

https://doi.org/10.1080/09720502.2020.1848318

	On a fractional problem of Lane-Emden type: Ulam type stabilities and numerical behaviors
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Ulam type stabilities
	Numerical simulations
	Numerical approach for Caputo derivative
	Simulation for Lane-Emden behaviors

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


