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Abstract
Since credit risk in the over-the-counter (OTC) market has undoubtedly become very
important issue, credit risk has to be considered when the options in the OTC market
are priced. In this paper, we consider the valuation of foreign equity options with
credit risk. In order to derive a closed-form pricing formula of this option, we adopt
the partial differential equation (PDE) approach and use the Mellin transform method
to solve the PDE. Specifically, triple Mellin transforms are used, and the pricing
formula is presented as 3-dimensional normal cumulative distribution functions.
Finally, we verify that our closed-form formula is accurate by comparing it with the
numerical result from the Monte-Carlo simulation.
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1 Introduction
Since the financial crisis in 2008, credit risk has been definitely the most important is-
sue for researchers and practitioners in the financial market. Black–Scholes model [1],
which is used widely for pricing of the financial derivatives, assumes that the counter-
party has no credit risk. However, there is credit risk of the conunterparty in the over-the-
counter (OTC) markets when trading various derivatives. Since the OTC markets have
grown tremendously, it is very important to consider the credit risk when pricing the fi-
nancial derivatives.

The options which are considered the credit risk of the counterparty have been called
vulnerable options. Vulnerable options first were considered by Johnson and Stulz [2].
They assumed that the credit risk depends on the potential liability of the option writer.
Klein [3] improved the result of Johnson and Stulz by allowing for the correlation between
the asset of the option writer and the underlying asset of the option. Klein and Inglis [4]
considered the stochastic interest rate model when the vulnerable option is priced. Addi-
tionally, Liao and Huang [5] studied the valuation of vulnerable options with early coun-
terparty risk. The analytic pricing formula of vulnerable American options was provided
under the Black–Scholes model by Chang and Hung [6]. Recently, many researchers have
studied the pricing of vulnerable options with the improvement of dynamics of underly-
ing assets to overcome the limit of the Black–Scholes model. In fact, two types models
have been studied for the improved asset dynamics: the jump–diffusion models and the
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stochastic volatility models. In [7–10], the jump–diffusion models of underlying assets
were considered for valuing of the vulnerable options. In [11–14], the stochastic volatility
models, which describe the volatility smile in the real market, were used for the improve-
ment of the vulnerable option pricing.

We study the vulnerable options with multiple assets in this paper. Specifically, we derive
a closed-form solution of foreign equity option price with credit risk based on the partial
differential equation (PDE) approach. Kwok and Wong [15] first derived the pricing for-
mulas of different foreign equity options under the Black–Scholes model. Since the study
of [15], there have been the extended results under various extensions of the Black–Scholes
model, such as the Lévy process [16], stochastic volatility [17, 18], regime switching [19]
and jump diffusion [20, 21]. However, there have been no studies on foreign equity op-
tions with credit risk. We adopt the structural model of Klein [3] for modeling of credit
risk and the PDE approach to find the pricing formula of options. Moreover, we use the
Mellin transforms to solve the PDE for the price of foreign equity options with credit risk.
The Mellin transforms have been widely used for pricing of vulnerable options by many
researchers. Yoon and Kim [22] first used the Mellin transforms to obtain vulnerable Eu-
ropean option prices. Recently, many studies showed that the Mellin transforms are useful
to solve the PDE for various types of financial derivatives with credit risk (Asian option
[23], exchange option [24], path-dependent option [25, 26], dynamic fund protection [27]
European option with early credit risk [28], lookback option [29]). This paper deals with
the valuation of foreign equity option price with credit risk based on the PDE approach
and provides a closed-form pricing formula of the options using the Mellin transforms.

The rest of this paper is organized as follows. Section 2 introduces the model used in
this paper and indicates the PDE for the foreign equity option with credit risk. Section 3
presents the pricing formula of foreign equity options with credit risk solving the PDE with
the Mellin transforms and shows the accuracy of our formula by a comparison between the
price by the derived pricing formula and Monte-Carlo simulation price. Section 4 presents
concluding remarks. Finally, in Appendices A and B, we provide the detailed components
and supplements for our theorem.

2 Model
Let Sf (t) and Sd(t) be the prices of foreign and domestic stocks, respectively. We denote
the exchange rate specified in domestic currency per unit of the foreign currency at time t
by Y (t), so that the relation between Sf (t) and Sd(t) is formulated as Sd(t) = Y (t)Sf (t). We
also assume that rd and rf are the domestic and foreign risk-free interest rates, respectively.
The value processes for Sf (t) and Sd(t) are given by

dSd(t) =
(
rd – q

)
Sd(t) dt + σSSd(t) dW 1

t , (1)

dSf (t) =
(
rf – q – ρ13σSσY

)
Sd(t) dt + σSSf (t) dW 1

t , (2)

where q is the dividend of the stock, σS is the volatility of the foreign stock and W 1
t is

the standard Brownian motion under risk-neutral probability measure P
∗ In addition, we

assume that value process of the firm Vt is given by

dV (t) = rdV (t) dt + σV V (t) dW 2
t , (3)
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where σV is the volatility of the firm value. As mentioned in [15], under the risk-neutral
measure P

∗, the dynamic of the exchange rate Y (t) is given by

dY (t) =
(
rd – rf )Y (t) dt + σY Y (t) dW 3

t , (4)

where σY is the volatility of the exchange rate, and W 2
t and W 3

t are standard Brow-
nian motions under risk-neutral probability measure P

∗ satisfying d〈W 1
t , W 2

t 〉 = ρ12 dt,
d〈W 2

t , W 3
t 〉 = ρ23 dt, and d〈W 1

t , W 3
t 〉 = ρ13 dt.

Let � be the portfolio value in the domestic market and P be a no-arbitrage price of a
European vulnerable call option. Then the portfolio value is given by

� = P – α1Sf – α2V – α3Y ,

where α1, α2, α3 are the number of units of Sf , V , Y , respectively.
Applying Ito’s lemma, we obtain the following stochastic differential equation:

d� = dP – α1 dSf – α2 dV – α3 dY – α1
(
rd – rf + q + ρ13σSσY

)
Sf dt – α3rf Y dt. (5)

From the equation d� = rd�dt, the governing PDE for the foreign equity option price in
foreign currency with credit risk of a contingent claim C = C(t, s, v, y) � E∗[e–rd(T–t)u(Sf

T ,
VT , YT ) | Sf

t = s, Vt = v, Yt = y], where u is the pay off function, is obtained. The PDE is

∂C
∂t

+
1
2
σ 2

S Sf 2 ∂2C
∂Sf 2 +

1
2
σ 2

V V 2 ∂2C
∂V 2 +

1
2
σ 2

Y Y 2 ∂2C
∂Y 2

+ ρ12σSσV Sf V
∂2C

∂Sf ∂V
+ ρ13σSσY Sf Y

∂2C
∂Sf ∂Y

+ ρ23σV σY VY
∂2C

∂V∂Y

+
(
rf – q – ρ13σf σY

)
Sf ∂C

∂Sf + rdV
∂C
∂V

+
(
rd – rf )Y

∂C
∂Y

– rdC = 0, (6)

with the terminal condition

C
(
T , Sf , V , Y

)
= Y (T)

(
Sf (T) – K

)+
(

1{V (T)>D} + 1{V (T)<D}
(1 – α)V (T)

D

)
,

where T is the maturity, K is the strike price, α is the deadweight cost related with the
bankruptcy, and D is the value of the liabilities of the option issuer.

3 Pricing of foreign equity option in foreign currency with credit risk
In this section, we provide the exact pricing formula of foreign equity options using Mellin
transform methods to solve PDE (6). Specifically, we provide the closed-form formula of
options and present the implications with the Monte Carlo simulations to show the accu-
racy of the pricing formulas.

3.1 Pricing of foreign equity option
In this subsection, we derive the closed-form pricing formula of foreign equity options
in foreign currency with credit risk. To derive the formula, we rewrite the dynamics in-



Kim et al. Advances in Difference Equations        (2021) 2021:332 Page 4 of 17

troduced in the previous section. The dynamics used for valuing of the options is as fol-
lows:

dSd(t) =
(
rd – q

)
Sd(t) dt + σsSd(t) dW 1

t , (7)

dSf (t) =
(
rf – q – ρ13σsσy

)
Sd(t) dt + σsSf (t) dW 1

t , (8)

dV (t) = rdV (t) dt + σvV (t) dW 2
t , (9)

dY (t) =
(
rd – rf )Y (t) dt + σyY (t) dW 3

t . (10)

Let us define Cn(t, s, v, y) as Cn(t, s, v, y) = C(t, s, v, y) ∧ n so that the boundedness of Cn is
ensured. Due to its construction, the governing PDE for Cn(t, s, v, y) is analogously derived
as

⎧
⎨

⎩
LCn = 0 in [0, T) ×R≥0 ×R≥0 × [ȳ,∞),

Cn = h(s, v, y) on {t = T} ×R≥0 ×R≥0 ×R≥0,
(11)

where ȳ ∈ R and the differential operator L is given by

∂

∂t
+

1
2
σ 2

S Sf 2 ∂2

∂Sf 2 +
1
2
σ 2

V V 2 ∂2

∂V 2 +
1
2
σ 2

Y Y 2 ∂2

∂Y 2

+ ρ12σSσV Sf V
∂2

∂Sf ∂V
+ ρ13σSσY Sf Y

∂2C
∂Sf ∂Y

+ ρ23σV σY VY
∂2

∂V∂Y

+
(
rf – q – ρ13σf σY

)
Sf ∂

∂Sf + rdV
∂

∂V
+

(
rd – rf )Y

∂

∂Y
– rdI = 0.

The terminal condition is expressed as

Cn
(
T , Sf , V , Y

)
= Y (T)

(
Sf (T) – K

)+
(

1{V (T)>D} + 1{V (T)<D}
(1 – α)V (T)

D

)

� h
(
S(T), V (T), Y (T)

)
,

where α, D, and K are nonnegative constants. We define a sequence of functions hn(s, v, y)
for n = 1, 2, . . . such that hn(s, v, y) → h(s, v, y) as n → ∞. That is,

hn(s, v, y) = h1
n(s)h2

n(v)h3
n(y), (12)

where

h1
n(s) �

⎧
⎨

⎩
∀s ∈ [K , n), s – K ,

∀s /∈ [K , n), 0,

h2
n(v) �

⎧
⎨

⎩
∀v ∈ [D, n), 1,

∀v /∈ [D, n), (1 – α)v/D,

h3
n(y) �

⎧
⎨

⎩
∀y ∈ [ȳ, n), y,

∀y /∈ [ȳ, n), 0.
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Let us define the triple Mellin transform for Cn(t, s, v, y) by Ĉn(t, s∗, v∗, y∗). Then the relation
between Cn(t, s, v, y) and Ĉn(t, s∗, v∗, y∗) becomes

Cn(t, s, v, y) =
1

(2π i)3

∫ c3+i∞

c3–i∞

∫ c2+i∞

c2–i∞

∫ c1+i∞

c1–i∞
s–s∗v–v∗

y–y∗
Ĉn(t, s∗, v∗, y∗) ds∗ dv∗ dy∗ (13)

for c1, c2, c3 ∈R.
Assigning (13) into (11), we have the differential equation for Ĉn:

∂tĈn +
[

1
2
σ 2

s (s∗ + 1)s∗ +
1
2
σ 2

v (v∗ + 1)v∗ +
1
2
σ 2

y (y∗ + 1)y∗

+ ρ12σsσvs∗v∗ + ρ13σsσys∗y∗ + ρ23σvσyv∗y∗

–
(
rf – q – ρ13σsσy

)
s∗ – rdv∗ –

(
rd – rf )y∗ – rd

]
Ĉn = 0. (14)

Let us replace the coefficient of Ĉn in (14) by �(s∗, v∗, y∗). Then we have

�(s∗, v∗, y∗) =
σ 2

s
2

s2
∗ +

σ 2
v

2
v2
∗ +

σ 2
y

2
y2
∗ + ρ12σsσvs∗v∗ + ρ13σsσys∗y∗ + ρ23σvσyv∗y∗

–
(

rs –
σ 2

s
2

)
s∗ –

(
rv –

σ 2
v

2

)
v∗ –

(
ry –

σ 2
y

2

)
y∗ – rv. (15)

Here, rs � rf –q–ρ13σsσy, rv � rd , and ry � rd –rf . Since Eq. (14) is the ordinary differential
equation (ODE) in a time variable, Ĉn satisfies

Ĉn(t) = ĥn(T)e�(s∗ ,v∗ ,y∗)(T–t).

By the inverse triple Mellin transform, Ĉn becomes

Cn(t, s, v, y)

=
1

(2π i)3

∫ c3+i∞

c3–i∞

∫ c2+i∞

c2–i∞

∫ c1+i∞

c1–i∞
ĥn(T)e�(s∗ ,v∗ ,y∗)(T–t)s–s∗v–v∗y–y∗ ds∗ dv∗ dy∗. (16)

To compute Eq. (16), we define C(t, s, v, y) as

C(t, s, v, y) � 1
(2π i)3

∫ c3+i∞

c3–i∞

∫ c2+i∞

c2–i∞

∫ c1+i∞

c1–i∞
e�(s∗ ,v∗ ,y∗)(T–t)s–s∗v–v∗

y–y∗
ds∗ dv∗ dy∗ (17)

which is the inverse triple Mellin transform of exp[�(s∗, v∗, y∗)(T – t)]. Now, we introduce
the lemmas for computing of the inverse triple Mellin transform.

Lemma 1 Given z0, z1 ∈ C such that Re(z0) ≥ 0,

1
2π i

∫ c+i∞

c–i∞
ez0(w+z1)2

x–w dw =
1

2√
πz0

xz1 exp

[
–

1
4z0

(ln x)2
]

. (18)

Proof Refer to Yoon and Kim [22]. �
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Lemma 2 The pricing kernel C(t, s, v, y) in Eq. (17) is given by

C(τ , s, v, y) = exp

[
–

1
2

(
ln s

σs
√

τ

)2

–
1
2

(
ln v

σv
√

R12τ

)2

–
1
2

(
ln y

σy
√

Rτ

)2

+ θ3(τ , s, v)
]

× sθ0

σs
√

2πτ

vθ1(τ ,s)

σv
√

2πR12τ

yθ2(τ ,s,v)

σy
√

2πRτ
, (19)

where the parameters used for simplicity are

p(x1, x2, x3) � R23x2
1 + R13x2

2 + R12x2
3 – 2(ρ̂12x1x2 + ρ̂13x1x3 + ρ̂23x2x3),

R23 � 1 – ρ2
23, R13 � 1 – ρ2

13, R12 � 1 – ρ2
12,

ρ̂12 � ρ12 – ρ13ρ23, ρ̂13 � ρ13 – ρ12ρ23, ρ̂23 � ρ23 – ρ12ρ13,

p � (1 – α)v
D

.

(20)

Proof From Lemma 1, we define

C1(τ , s, v∗, y∗) � 1
2π i

∫ c1+i∞

c1–i∞
e�(s∗ ,v∗ ,y∗)τ ds∗.

Then C1(τ , s, v∗, y∗) becomes

C1(τ , s, v∗, y∗) = eφ1(τ ,v∗ ,y∗) ×
(

1
2π i

∫ c1+i∞

c1–i∞
exp

[
1
2
σ 2

s τ (s∗ + f1)2
]

s–s∗ ds∗
)

= exp
[
φ1(τ , v∗, y∗) + ρ ′

12(ln s)v∗ + ρ ′
13(ln s)y∗

]

× sθ0

σs
√

2πτ
exp

[
–

1
2

(
ln s

σs
√

τ

)2]
,

where k1 � 2rs/σ 2
s , f1(v∗, y∗) � ρ ′

12v∗ + ρ ′
13y∗ + θ0, and

φ1(τ , v∗, y∗) � σ 2
v (1 – ρ2

12)
2

v2
∗τ

+
{

ρ12σsσv(k1 – 1)
2

–
(

rv –
σ 2

v
2

)
+ σvσy(ρ23 – ρ12ρ13)y∗

}
v∗τ

+
σ 2

y (1 – ρ2
13)

2
y2
∗τ

+
{

ρ13σsσy(k1 – 1)
2

–
(

ry –
σ 2

y

2

)}
y∗τ –

(
rv +

σ 2
s (k1 – 1)2

8

)
τ ,

� 1
2
σ 2

v R12v2
∗τ + (H1 + σvσyρ̂23y∗)v∗τ +

1
2
σ 2

y R13y2
∗τ + H2y∗τ + ατ .

In this way,

C2(τ , s, v, y∗) � 1
2π i

∫ c2+i∞

c2–i∞
C1(τ , s, v∗, y∗) dv∗

=
sθ0

σs
√

2πτ
exp

[
–

1
2

(
ln s

σs
√

τ

)2]
eφ2
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×
(

1
2π i

∫ c2+i∞

c2–i∞
exp

[
1
2
σ 2

v R12τ
(
v∗ + f2(τ , s, y∗)

)2
]

dv∗
)

=
sθ0

σs
√

2πτ

vθ1(τ ,s)

σv
√

2πR12τ
exp

[
φ2(τ , s, y∗) +

ρ̂23σy

σvR12
(ln v)y∗

]

× exp

[
–

1
2

(
ln s

σs
√

τ

)2

–
1
2

(
ln v

σv
√

R12τ

)2]
,

where

H1 � 1
2
ρ12σsσv(k1 – 1) –

(
rv –

1
2
σ 2

v

)
,

θ1(τ , s) � H1τ + ρ ′
12 ln s

σ 2
v R12τ

,

f2(τ , s, y∗) � H1τ + ρ ′
12 ln s

σ 2
v R12τ

+
ρ̂23σy

σvR12
y∗,

and

φ2(τ , s, y∗) � 1
2
σ 2

y Rτy2
∗ +

(
–

σyρ̂23

σvR12
H1τ + H2τ +

σyρ̂13

σsR12
ln s

)
y∗ –

(H1τ + ρ ′
12 ln s)2

2σ 2
v R12τ

+ ατ ,

R � |�|
|�′| .

Finally,

C3(τ , s, v, y) � 1
2π i

∫ c3+i∞

c3–i∞
C2(τ , s, v, y∗) dy∗

=
sθ0

σs
√

2πτ

vθ1(τ ,s)

σv
√

2πR12τ
exp

[
–

1
2

(
ln s

σs
√

τ

)2

–
1
2

(
ln v

σv
√

R12τ

)2]
eφ3

×
(

1
2π i

∫ c3+i∞

c3–i∞
e

1
2 σ 2

y Rτ (y∗+f3(τ ,s,v))2
dy∗

)

=
sθ0

σs
√

2πτ

vθ1(τ ,s)

σv
√

2πR12τ

yθ2(τ ,s,v)

σy
√

2πRτ

× exp

[
–

1
2

(
ln s

σs
√

τ

)2

–
1
2

(
ln v

σv
√

R12τ

)2

–
1
2

(
ln y

σy
√

Rτ

)2

+ θ3(τ , s, v)
]

,

where

φ3 � –
1

2σ 2
y Rτ

{
–

σyρ̂23

σvR12
H1τ + H2τ +

σyρ̂13

σsR12
ln s +

σyρ̂23

σvR12
ln v

}2

–
(H1τ + ρ ′

12 ln s)2

2σ 2
v R12τ

+ ατ

� θ3(τ , s, v),

f3(τ , s, v) � ρ̂13

σsσy|�|τ ln s +
ρ̂23

σvσy|�|τ ln v –
ρ̂23H1

σvσy|�| +
H2

σ 2
y R

� θ2(τ , s, v).
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Therefore,

C(τ , s, v, y) = exp

[
–

1
2

(
ln s

σs
√

τ

)2

–
1
2

(
ln v

σv
√

R12τ

)2

–
1
2

(
ln y

σy
√

Rτ

)2

+ θ3(τ , s, v)
]

× sθ0

σs
√

2πτ

vθ1(τ ,s)

σv
√

2πR12τ

yθ2(τ ,s,v)

σy
√

2πRτ
. (21)

�

Lemma 3 Let f , g : R3
+ → C. If F(w1, w2, w3) and G(w1, w2, w3) are the triple Mellin trans-

forms of f (x, y, z) and g(x, y, z), respectively. Then the triple Mellin convolution of f and g is
given by

f (x, y, z) ∗ g(x, y, z) �M–1
w1w2w3

[
F(w1, w2, w3)G(w1, w2, w3); x, y, z

]

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
f
(

x
u1

,
y
v

,
z
w

)
g(u, v, w)

du1

u1

du2

u2

du3

u3
. (22)

With the above lemmas and parameters, the price of foreign equity options in foreign
currency with credit risk at time t is given by the following theorem.

Theorem 1 The price of foreign equity options with credit risk is given by

C(t, s, v, y) = syδ1N3
[
κ1

1 (t, s),κ1
2 (t, v),κ1

3 (t, y)
]

– yKδ2N3
[
κ2

1 (t, s),κ2
2 (t, v),κ2

3 (t, y)
]

+ psδ3N3
[
κ3

1 (t, s),κ3
2 (t, v),κ3

3 (t, y)
]

– pKδ4N3
[
κ4

1 (t, s),κ4
2 (t, v),κ4

3 (t, y)
]
, (23)

where N3 is the 3-dimensional standard normal cumulative function (CDF)1 defined by

N3(a, b, c) =
1

(2π )3/2|�|1/2

∫ a

–∞

∫ b

–∞

∫ c

–∞
exp

[
–

p(x1, x2, x3)
2|�|

]
dx1 dx2 dx3. (24)

Here,

κ2
1 (t, s), κ1

2 (t, v), κ1
3 (t, y), κ2

1 (t, s), κ2
2 (t, v), κ2

3 (t, y),

κ3
1 (t, s), κ3

2 (t, v), κ3
3 (t, y), κ4

1 (t, s), κ4
2 (t, v), κ4

3 (t, y),

δ1, δ2, δ3, δ4

are given in Appendix A.

1For more details, see Appendix B.
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Proof By the triple Mellin convolution property in Lemma 2, Eq. (16) yields

Cn(t, s, v, y) =
∫ n

0

∫ n

0

∫ n

0
hn(u1, u2, u3)C

(
τ ,

s
u1

,
v

u2
,

y
u3

)
du1

u1

du2

u2

du3

u3

= eατ

∫ n

ȳ

∫ n

D

∫ n

K
eψ1(τ ,u1,u2)(u1 – K)u3ψ2(u1, u2, u3)

du1

u1

du2

u2

du3

u3

+
(1 – α)eατ

D

∫ n

ȳ

∫ D

0

∫ K

0
eψ1(τ ,u1,u2)(u1 – K)u2u3

× ψ2(u1, u2, u3)
du1

u1

du2

u2

du3

u3
,

where ψ1(τ , u1, u2) � θ3(τ , s/u1, v/u2) and

ψ2(τ , u1, u2, u3) �
(

s
u1

)θ0( v
u2

)θ1(τ ,s/u1)( y
u3

)θ2(τ ,s/u1,v/u2)

× e– 1
2 a2(τ ,s/u1)

σs
√

2πτ
· e– 1

2 b2(τ ,v/u2)

σv
√

2πR12τ
· e– 1

2 c2(τ ,y/u3)

σy
√

2πRτ
.

If n → ∞, then we have

C(t, s, v, y)

= lim
n→∞ Cn(t, s, v, y)

= eατ

∫ ∞

ȳ

∫ ∞

D

∫ ∞

K
eψ1(τ ,u1,u2)(u1 – K)u3ψ2(u1, u2, u3)

du1

u1

du2

u2

du3

u3
︸ ︷︷ ︸

�C1(t,s,v,y)

+
(1 – α)eατ

D

∫ ∞

ȳ

∫ D

0

∫ K

0
eψ1(τ ,u1,u2)(u1 – K)u2u3ψ2(u1, u2, u3)

du1

u1

du2

u2

du3

u3
︸ ︷︷ ︸

�C2(t,s,v,y)

.

(25)

Now, we use the following change of variables:

x1 =
ln(s/u1)
σs

√
τ

, x2 =
ln(v/u2)
σv

√
τ

, and x3 =
ln(y/u3)
σy

√
τ

. (26)

This transformation replaces (u1, u2, u3) with (x1, x2, x3). To solve the C1(t, s, v, y), we apply
(26) to (25). If we define C10(t, s, v, y) as

C10(t, s, v, y) � sy
(2π )3/2|�|

∫ ln(y/ȳ)
σy

√
τ

–∞

∫ ln(v/D)
σv

√
τ

–∞

∫ ln(s/K )
σs

√
τ

–∞
e�1(τ ,x1,x2,x3) dx1 dx2 dx3,

C20(t, s, v, y) � –
Ky

(2π )3/2|�|
∫ ln(y/ȳ)

σy
√

τ

–∞

∫ ln(v/D)
σv

√
τ

–∞

∫ ln(s/K )
σs

√
τ

–∞
e�2(τ ,x1,x2,x3) dx1 dx2 dx3,
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then C1(t, s, v, y) = C10(t, s, v, y) + C11(t, s, v, y) where

�1(τ , x1, x2, x3) � –
1

2|�|
(
R23x2

1 + R13x2
2 + R12x2

3
)

+
(

σsθ0
√

τ – σs
√

τ –
ρ̂12H1

σv|�|
√

τ –
ρ̂13H2

σy|�|
√

τ

)
x1

+
(

R13H1

σv|�|
√

τ –
ρ̂23H2

σy|�|
√

τ

)
x2

+
(

H2

σyR
√

τ –
ρ̂23H1

σv|�|
√

τ – σy
√

τ

)
x3

+
ρ̂12

|�|x1x2 +
ρ̂13

|�|x1x3 +
ρ̂23

|�|x2x3 –
H2

3τ

2σ 2
y R

–
H2

1τ

2σ 2
v R12

+ ατ ,

�2(τ , x1, x2, x3) � –
1

2|�|
(
R23x2

1 + R13x2
2 + R12x2

3
)

+
(

σsθ0
√

τ –
ρ̂12H1

σv|�|
√

τ –
ρ̂13H2

σy|�|
√

τ

)
x1

+
(

R13H1

σv|�|
√

τ –
ρ̂23H2

σy|�|
√

τ

)
x2

+
(

H2

σyR
√

τ –
ρ̂23H1

σv|�|
√

τ – σy
√

τ

)
x3

+
ρ̂12

|�|x1x2 +
ρ̂13

|�|x1x3 +
ρ̂23

|�|x2x3 –
H2

3τ

2σ 2
y R

–
H2

1τ

2σ 2
v R12

+ ατ .

Here, �1 has the form of

δ1 –
1

2|�|
{

R23(x1 + a1)2 + R13(x2 + a2)2 + R12(x3 + a3)2}

+
1

|�|
{
ρ̂12(x1 + a1)(x2 + a2) + ρ̂13(x1 + a1)(x3 + a3) + ρ̂23(x2 + a2)(x3 + a3)

}
,

where

δ1 =
R23a2

1 + R13a2
2 + R12a2

3 – 2(ρ̂12a1a2 + ρ̂13a1a3 + ρ̂23a2a3)
2|�| + d,

a1 =
rf – q + 1

2σ 2
s

σs

√
τ ,

a2 =
ρ12σsσv + ρ23σvσy + (rd – 1

2σ 2
v )

σv

√
τ ,

a3 =
ρ13σsσy + rd – rf + 1

2σ 2
y

σy

√
τ ,

d = –
H2

3τ

2σ 2
y R

–
H2

1τ

2σ 2
v R12

+ ατ , and H3 = H2 –
σyρ̂23

σvR12
H1.

These constants can be determined by the method of undetermined coefficients. In other
words, to determine these constants, we have to solve the following three-variable system



Kim et al. Advances in Difference Equations        (2021) 2021:332 Page 11 of 17

of linear equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– R23
2|�| a1 + ρ̂12

|�| a2 + ρ̂13
|�| a3 = x1 term in �1

ρ̂12
|�| a1 – R13

2|�| a2 + ρ̂23
|�| a3 = x2 term in �1

ρ̂13
|�| a1 + ρ̂23

|�| a2 – R13
2|�| a3 = x3 term in �1

δ1 = constant term in �1.

(27)

Similarly, �2 has the form of

δ2 –
1

2|�|
{

R23(x1 + b1)2 + R13(x2 + b2)2 + R12(x3 + b3)2}

+
1

|�|
{
ρ̂12(x1 + b1)(x2 + b2) + ρ̂13(x1 + b1)(x3 + b3) + ρ̂23(x2 + b2)(x3 + b3)

}
,

where

δ2 =
R23b2

1 + R13b2
2 + R12b2

3 – 2(ρ̂12b1b2 + ρ̂13b1b3 + ρ̂23b2b3)
2|�| + d,

b1 =
rf – q – 1

2σ 2
s

σs

√
τ ,

b2 =
ρ23σvσy + (rd – 1

2σ 2
v )

σv

√
τ ,

b3 =
ρ13σsσy + rd – rf + 1

2σ 2
y

σy

√
τ .

Let us define ξ1 = x1 + a1, ξ2 = x2 + a2, ξ3 = x3 + a3, ξ4 = x1 + b1, ξ5 = x2 + b2, and ξ6 = x3 + b3,
then C1(t, s, v, y) becomes

C1(t, s, v, y) = syδ1N3
[
κ1

1 (t, x),κ1
2 (t, v),κ1

3 (t, y)
]

– yKδ2N3
[
κ2

1 (t, x),κ2
2 (t, v),κ2

3 (t, y)
]
. (28)

In this way, if we define C20(t, s, v, y) and C21(t, s, v, y) as

C20(t, s, v, y) =
(1 – α)sv

(2π )3/2D|�|
∫ –∞

ln(y/y0)
σy

√
τ

∫ ln(v/D)
σv

√
τ

∞

∫ –∞

ln(s/K )
σs

√
τ

e�3(τ ,x1,x2,x3) dx1 dx2 dx3,

C21(t, s, v, y) =
(1 – α)vK

(2π )3/2D|�|
∫ –∞

ln(y/y0)
σy

√
τ

∫ ln(v/D)
σv

√
τ

∞

∫ –∞

ln(s/K )
σs

√
τ

e�4(τ ,x1,x2,x3) dx1 dx2 dx3,

(29)
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respectively, then C2(t, s, v, y) = C20(t, s, v, y) + C21(t, s, v, y) where

�3(τ , x1, x2, x3) � –
1

2|�|
(
R23x2

1 + R13x2
2 + R12x2

3
)

+
(

σsθ0
√

τ – σs
√

τ –
ρ̂12H1

σv|�|
√

τ –
ρ̂13H2

σy|�|
√

τ

)
x1

+
(

R13H1

σv|�|
√

τ –
ρ̂23H2

σy|�|
√

τ – σv
√

τ

)
x2

+
(

H2

σyR
√

τ –
ρ̂23H1

σv|�|
√

τ – σy
√

τ

)
x3

+
ρ̂12

|�|x1x2 +
ρ̂13

|�|x1x3 +
ρ̂23

|�|x2x3 –
H2

3τ

2σ 2
y R

–
H2

1τ

2σ 2
v R12

+ ατ ,

�4(τ , x1, x2, x3) � –
1

2|�|
(
R23x2

1 + R13x2
2 + R12x2

3
)

+
(

σsθ0
√

τ –
ρ̂12H1

σv|�|
√

τ –
ρ̂13H2

σy|�|
√

τ

)
x1

+
(

R13H1

σv|�|
√

τ –
ρ̂23H2

σy|�|
√

τ – σv
√

τ

)
x2

+
(

H2

σyR
√

τ –
ρ̂23H1

σv|�|
√

τ – σy
√

τ

)
x3

+
ρ̂12

|�|x1x2 +
ρ̂13

|�|x1x3 +
ρ̂23

|�|x2x3 –
H2

3τ

2σ 2
y R

–
H2

1τ

2σ 2
v R12

+ ατ .

�3 has the form of

δ3 –
1

2|�|
{

R23(x1 + c1)2 + R13(x2 + c2)2 + R12(x3 + c3)2}

+
1

|�|
{
ρ̂12(x1 + c1)(x2 + c2) + ρ̂13(x1 + c1)(x3 + c3) + ρ̂23(x2 + c2)(x3 + c3)

}
.

By the method of undetermined coefficients we have the system of linear equations,

δ3 =
R23c2

1 + R13c2
2 + R12c2

3 – 2(ρ̂12c1c2 + ρ̂13c1c3 + ρ̂23c2c3)
2|�| + d,

c1 =
ρ12σsσv + (rf – q + 1

2σ 2
s )

σs

√
τ ,

c2 =
ρ12σsσv + ρ23σvσy + (rd + 1

2σ 2
v )

σv

√
τ ,

c3 =
ρ13σsσy + ρ23σvσy + (rd – rf + 1

2σ 2
y )

σy

√
τ .
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And, �4 has the form of

δ4 –
1

2|�|
{

R23(x1 + d1)2 + R13(x2 + d2)2 + R12(x3 + d3)2}

+
1

|�|
{
ρ̂12(x1 + d1)(x2 + d2) + ρ̂13(x1 + d1)(x3 + d3) + ρ̂23(x2 + d2)(x3 + d3)

}
,

where

δ4 =
R23d2

1 + R13d2
2 + R12d2

3 – 2(ρ̂12d1d2 + ρ̂13d1d3 + ρ̂23d2d3)
2|�| + d,

d1 =
ρ12σsσv + (rf – q – 1

2σ 2
s )

σs

√
τ ,

d2 =
ρ23σvσy + (rd + 1

2σ 2
v )

σv

√
τ ,

d3 =
ρ23σvσy + (rd – rf + 1

2σ 2
y )

σy

√
τ .

Therefore, by ξ7 = x1 + c1, ξ7 = x2 + c2, ξ9 = x3 + c3, ξ10 = x1 + d1, ξ11 = x2 + d2, and ξ12 =
x3 + d3, C2(t, s, v, y) becomes

C2(t, s, v, y) =
(1 – α)sv

D
δ3N3

[
κ3

1 (t, x),κ3
2 (t, v),κ3

3 (t, y)
]

–
(1 – α)Kv

D
δ4N3

[
κ4

1 (t, x),κ4
2 (t, v),κ4

3 (t, y)
]
. (30)

Finally, the price of the foreign equity options with credit risk is obtained by combining
(28) and (30). �

3.2 Implications
In this subsection, we investigate the accuracy of the closed-form solution of the foreign
equity options with credit risk obtained in Theorem 1 using a Monte-Carlo simulation.
For the numerical experiments, the model parameters chosen are Sd(0) = Sf (0) = s = 40,
K = 40, V (0) = v = 100, Y (0) = y = 0.44, D = 85, α = 0.25, T – t = 1, ȳ = 10–4, rd = rf = 0.05,
q = 0.011, σS = σV = σY = 0.2 and ρ12 = ρ13 = ρ23 = 0.25. These parameters are based on
the work of Klein [3] and Dai et al. [30].

In Table 1, we present the Monte-Carlo value (CMC) according to the number of simula-
tions, the closed-form pricing formula (C) in Theorem 1, and the price difference between
them. We also provide Fig. 1 to verify visually the accuracy of our formula. As shown in

Table 1 Comparison between Monte-Carlo simulation result and the closed-form formula. Note that
CMC implies the Monte-Carlo results based on the stochastic dynamics presented in (7)–(10)

Number of simulations CMC C |CMC – C|
5000 1.6934 1.6721 0.0213

10,000 1.6764 1.6721 0.0043
15,000 1.6725 1.6721 0.0004
20,000 1.6718 1.6721 0.0003
25,000 1.6725 1.6721 0.0004
30,000 1.6720 1.6721 0.0001
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Figure 1 Price convergence of Monte-Carlo simulation for foreign equity option with credit risk

Table 1 and Fig. 1, one can observe that the number of the simulations increases, the price
difference |CMC – C| goes to zero. It implies that the numerical value from the Monte-
Carlo simulation, which is regarded as the best approximation of a real-world solution,
gets closer to our closed solution. In other words, we conclude that our closed-form pric-
ing formula for the foreign equity options with credit risk is accurately derived.

4 Concluding remarks
Foreign equity options belong to the popular exotic options in the over-the-counter mar-
kets, and credit risk is an indeed important issue in the OTC market. In this sense, we study
the pricing of the foreign equity options with credit risk. To the best of our knowledge, we
are first to consider the credit risk when the foreign equity option is priced. Among sev-
eral foreign equity options, we deal with the foreign equity option in a foreign currency. In
this study, we use the PDE approach to obtain a closed-form pricing formula of the foreign
equity option with credit risk based on the structural model of Klein [3]. In particular, to
solve the PDE problems, the properties of triple Mellin transform are used as an important
tool, and they enable us to provide the explicit closed-form pricing formula of the option
price with 3-dimensional normal cumulative distribution functions. Finally, we show that
our formula is accurate by comparing it to the numerical price by the Monte-Carlo simu-
lation.

Appendix A: Black–Scholes components
The Black–Scholes components presented in Theorem 1 are as follows:

κ1
1 (t, s) � 1

σs
√

T – t

[
ln

(
s
K

)
+

(
rf – q +

1
2
σ 2

s

)
(T – t)

]
,

κ1
2 (t, v) � 1

σv
√

T – t

[
ln

(
v

D∗

)
+

(
ρ12σsσv + ρ23σvσy + rd –

1
2
σ 2

v

)
(T – t)

]
,
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κ1
3 (t, y) � 1

σy
√

T – t

[
ln

(
y
ȳ

)
+

(
ρ13σsσy + rd – rf +

1
2
σ 2

y

)
(T – t)

]
,

κ2
1 (t, s) � 1

σs
√

T – t

[
ln

(
s
K

)
+

(
rf – q –

1
2
σ 2

s

)
(T – t)

]
,

κ2
2 (t, v) � 1

σv
√

T – t

[
ln

(
v

D∗

)
+

(
ρ23σvσy + rd –

1
2
σ 2

v

)
(T – t)

]
,

κ2
3 (t, y) � 1

σy
√

T – t

[
ln

(
y
ȳ

)
+

(
ρ13σsσy + rd – rf +

1
2
σ 2

y

)
(T – t)

]
,

κ3
1 (t, s) � 1

σs
√

T – t

[
ln

(
s
K

)
+

(
ρ12σsσv + rf – q +

1
2
σ 2

s

)
(T – t)

]
,

κ3
2 (t, v) � –

1
σv

√
T – t

[
ln

(
v

D∗

)
+

(
ρ12σsσv + ρ23σvσy + rd +

1
2
σ 2

v

)
(T – t)

]
,

κ3
3 (t, y) � 1

σy
√

T – t

[
ln

(
y
ȳ

)
+

(
ρ13σsσy + ρ23σvσy + rd – rf +

1
2
σ 2

y

)
(T – t)

]
,

κ4
1 (t, s) � 1

σs
√

T – t

[
ln

(
s
K

)
+

(
ρ12σsσv + rf – q –

1
2
σ 2

s

)
(T – t)

]
,

κ4
2 (t, v) � –

1
σv

√
T – t

[
ln

(
v

D∗

)
+

(
ρ23σvσy + rd +

1
2
σ 2

v

)
(T – t)

]
,

κ4
3 (t, y) � 1

σy
√

T – t

[
ln

(
y
ȳ

)
+

(
ρ23σvσy + rd – rf +

1
2
σ 2

y

)
(T – t)

]
,

δ1 � exp

[
R23a2

1 + R13a2
2 + R12a2

3 – 2(ρ̂12a1a2 + ρ̂13a1a3 + ρ̂23a2a3)
2|�| + d

]
,

δ2 � exp

[
R23b2

1 + R13b2
2 + R12b2

3 – 2(ρ̂12b1b2 + ρ̂13b1b3 + ρ̂23b2b3)
2|�| + d

]
,

δ3 � exp

[
R23c2

1 + R13c2
2 + R12c2

3 – 2(ρ̂12c1c2 + ρ̂13c1c3 + ρ̂23c2c3)
2|�| + d

]
,

δ4 � exp

[
R23d2

1 + R13d2
2 + R12d2

3 – 2(ρ̂12d1d2 + ρ̂13d1d3 + ρ̂23d2d3)
2|�| + d

]
.

Here, a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, d3, and d are given in the proof of Theorem 1.

Appendix B: n-Dimensional normal cumulative distribution
For n = 1, 2, . . . , a random variable X = [X1 · · ·Xn]T is said to have a n-dimensional nor-
mal distribution with expectation E[X] = μ ∈R

n and covariance matrix � in the space of
symmetric positive definite n × n matrices if its probability density function is given by

f (x) =
1

(2π )n/2(det�)1/2 exp

(
–

1
2

(x – μ)T�–1(x – μ)
)

. (31)

If n = 3, the standard normal distribution is

f (x1, x2, x3) =
1

(2π )3/2(det�∗)1/2 exp

(
p(x1, x2, x3)

det�∗

)
, (32)
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where

p(x1, x2, x3) � –R23x2
1 – R13x2

2 – R12x2
3 + 2(ρ̂12x1x2 + ρ̂13x1x3 + ρ̂23x2x3),

det�∗ � 1 – ρ2
12 – ρ2

13 – ρ2
23 + 2ρ12ρ13ρ23,

and R23, R13, R12, ρ̂12, ρ̂13, ρ̂23 are presented in Theorem 1.

Acknowledgements
The authors would like to thank the editors and reviewers.

Funding
J.-H. Yoon was supported by a National Research Foundation of Korea grant funded by the South Korean government
(Grant No. NRF-2019R1H1A1079498). G. Kim was supported by a National Research Foundation of Korea grant funded by
the South Korean government (Grant No. NRF-2017R1E1A1A03070886).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DK proved theorems in the paper. J-HY proposed the methods to solve the problems. GK designed and wrote the paper.
All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Pusan National University, 46241 Busan, Republic of Korea. 2School of Liberal Arts, Seoul
National University of Science and Technology, 01811 Seoul, Republic of Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 September 2020 Accepted: 27 June 2021

References
1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)
2. Johnson, H., Stulz, R.: The pricing of options with default risk. J. Finance 42(2), 267–280 (1987)
3. Klein, P.: Pricing Black–Scholes options with correlated credit risk. J. Bank. Finance 20(7), 1211–1229 (1996)
4. Klein, P., Inglis, M.: Valuation of European options subject to financial distress and interest rate risk. J. Deriv. 6(3), 44–56

(1999)
5. Liao, S.-L., Huang, H.-H.: Pricing Black–Scholes options with correlated interest rate risk and credit risk: an extension.

Quant. Finance 5(5), 443–457 (2005)
6. Chang, L.-F., Hung, M.-W.: Valuation of vulnerable American options with correlated credit risk. Rev. Deriv. Res. 9(2),

137–165 (2006)
7. Xu, W., Xu, W., Li, H., Xiao, W.: A jump-diffusion approach to modelling vulnerable option pricing. Finance Res. Lett.

9(1), 48–56 (2012)
8. Tian, L., Wang, G., Wang, X., Wang, Y.: Pricing vulnerable options with correlated credit risk under jump-diffusion

processes. J. Futures Mark. 34(10), 957–979 (2014)
9. Ma, Y., Shrestha, K., Xu, W.: Pricing vulnerable options with jump clustering. J. Futures Mark. 37(12), 1155–1178 (2017)
10. Zhou, Q., Wang, Q., Wu, W.: Pricing vulnerable options with variable default boundary under jump-diffusion

processes. Adv. Differ. Equ. 2018(1), 465 (2018)
11. Yang, S.-J., Lee, M.-K., Kim, J.-H.: Pricing vulnerable options under a stochastic volatility model. Appl. Math. Lett. 34,

7–12 (2014)
12. Lee, M.-K., Yang, S.-J., Kim, J.-H.: A closed form solution for vulnerable options with Heston’s stochastic volatility. Chaos

Solitons Fractals 86, 23–27 (2016)
13. Wang, G., Wang, X., Zhou, K.: Pricing vulnerable options with stochastic volatility. Phys. A, Stat. Mech. Appl. 485,

91–103 (2017)
14. Lee, M.-K., Kim, J.-H.: Pricing of defaultable options with multiscale generalized Heston’s stochastic volatility. Math.

Comput. Simul. 144, 235–246 (2018)
15. Kwok, Y.-K., Wong, H.-Y.: Currency-translated foreign equity options with path dependent features and their

multi-asset extensions. Int. J. Theor. Appl. Finance 3(2), 257–278 (2000)
16. Huang, S.-C., Hung, M.-W.: Pricing foreign equity options under Lévy processes. J. Futures Mark. 25(10), 917–944

(2005)
17. Ma, J.: Pricing foreign equity options with stochastic correlation and volatility. Ann. Econ. Financ. 10(2), 303–327

(2009)
18. Sun, Q., Xu, W.: Pricing foreign equity option with stochastic volatility. Phys. A, Stat. Mech. Appl. 437, 89–100 (2015)



Kim et al. Advances in Difference Equations        (2021) 2021:332 Page 17 of 17

19. Fan, K., Shen, Y., Siu, T.K., Wang, R.: Pricing foreign equity options with regime-switching. Econ. Model. 37, 296–305
(2014)

20. Xu, W., Wu, C., Li, H.: Foreign equity option pricing under stochastic volatility model with double jumps. Econ. Model.
28(4), 1857–1863 (2011)

21. Ma, Y., Pan, D., Shrestha, K., Xu, W.: Pricing and hedging foreign equity options under Hawkes jump-diffusion
processes. Phys. A, Stat. Mech. Appl. 537, 122645 (2020)

22. Yoon, J.-H., Kim, J.-H.: The pricing of vulnerable options with double Mellin transforms. J. Math. Anal. Appl. 422(2),
838–857 (2015)

23. Jeon, J., Yoon, J.-H., Kang, M.: Valuing vulnerable geometric Asian options. Comput. Math. Appl. 71(2), 676–691 (2016)
24. Kim, G., Koo, E.: Closed-form pricing formula for exchange option with credit risk. Chaos Solitons Fractals 91, 221–227

(2016)
25. Jeon, J., Yoon, J.-H., Kang, M.: Pricing vulnerable path-dependent options using integral transforms. J. Comput. Appl.

Math. 313, 259–272 (2017)
26. Guardasoni, C., Rodrigo, M.R., Sanfelici, S.: A Mellin transform approach to barrier option pricing. IMA J. Manag. Math.

31(1), 49–67 (2019)
27. Jeon, J., Yoon, J.-H., Park, C.-R.: The pricing of dynamic fund protection with default risk. J. Comput. Appl. Math. 333,

116–130 (2018)
28. Jeon, J., Kim, G.: Pricing of vulnerable options with early counterparty credit risk. N. Am. J. Econ. Finance 47, 645–656

(2019)
29. Choi, S.-Y., Yoon, J.-H., Jeon, J.: Pricing of fixed-strike lookback options on assets with default risk. Math. Probl. Eng.

2019, Article ID 8412698 (2019)
30. Dai, M., Wong, H.Y., Kwok, Y.K.: Quanto lookback options. Math. Finance 14(3), 445–467 (2004)


	Closed-form pricing formula for foreign equity option with credit risk
	Abstract
	Keywords

	Introduction
	Model
	Pricing of foreign equity option in foreign currency with credit risk
	Pricing of foreign equity option
	Implications

	Concluding remarks
	Appendix A: Black-Scholes components
	Appendix B: n-Dimensional normal cumulative distribution
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


