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Abstract
Since the stenosis geometry of some cardiovascular patients cannot be described by
a vertically symmetric function throughout the stenosis, so it motivates us to study
the blood flow through a vertically asymmetric stenosis. In addition, we compare the
flow quantities in bothvertically symmetric and asymmetric stenoses. The vertically
symmetric stenosis is explained by a vertically symmetric function such as an
exponential function in bell shape and a cosine function in cosine shape. The
vertically asymmetric stenosis is interpreted by a vertically asymmetric function such
as the combination of two different stenosis shapes. Blood is treated as a
non-Newtonian fluid which is represented in the power-law model. The finite
difference scheme is used to solve governing equations for obtaining the flow
quantities such as axial velocity, radial velocity, flow rate, resistance to flow, and skin
friction. We investigated the way that the stenosis height, stenosis length, and
non-Newtonian behavior affect the flow quantities through three various stenoses.
The flow quantities in the bell shape and cosine shape of stenosis show significantly
different behavior. Moreover, we found that the flow quantities in the single shape
(bell shape or cosine shape) have the same behavior as the flow quantities in the
combined shape in the first half part, but have a slightly different behavior in the last
half part.
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1 Introduction
Arterial stenosis is the major cause of many cardiovascular diseases such as myocardial
infarction and cerebral stroke. Thus, the study of blood flow through the stenosed artery
is necessary. Some researchers treat blood as Newtonian fluid [1, 2]. The Newtonian be-
havior not only describes blood flow in a large radius of the artery but also explains the gas
transportation in the atmosphere [3]. However, Z. Ismail and his co-workers suggest that
non-Newtonian behavior is an important factor [4]. Their investigation shows that blood
becomes non-Newtonian when the radius of an artery is smaller than one mm. There

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03492-9
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03492-9&domain=pdf
https://orcid.org/0000-0002-8809-5563
mailto:somchai.sriyab@gmail.com


Owasit and Sriyab Advances in Difference Equations        (2021) 2021:340 Page 2 of 20

are various non-Newtonian models that are widely applied in representing blood flow be-
havior. The non-Newtonian models that are frequently used are power-law [4–7], Casson
[8–10], and the Herschel–Bulkley model [11]. The power-law and Herschel–Bulkley mod-
els have more advantages than the Casson model, and the power index can be adjusted to
a desired value, while the Casson model has a fixed power index. The yield stress affects
the Herschel–Bulkley and Casson models but is not considered in the power-law model.
However, P. Easthope and D. Brooks found that power-law is highly effective in modeling
the blood flow [12].

The geometry of stenosis may be complicated as it is based on each individual patient.
Different types of stenosis models have been studied. We can classify the model into three
groups based on mathematical expressions such as the exponential shape or bell shape
stenosis, cosine shape, and polynomial shape. S. Nadeem and his co-workers [6], P. K.
Mandel [7], S. Chakravarty and P. K. Mandel [2], added the taper effect to the stenosis.
Moreover, S. Nadeem and his co-workers studied microvascular blood flow with heat
transfer in complex wavy channel [13]. Z. Ismail and his co-workers [4] considered over-
lapping stenosis and N. Mustapha and her co-workers studied multi-stenosis shapes [1].
Moreover, Y. Bin Tan and N. Mustapha added the gravity effect in stenosed artery [14, 15]

From the above literature reviews, the researchers studied only the blood flow through
a vertically symmetric stenosis. In our work, we study the two-dimensional steady flow of
the power-law fluid through vertically symmetric and asymmetric stenoses. The vertically
symmetric stenosis is classified in two types such as bell shape and cosine shape. The verti-
cally asymmetric stenosis is the combined shape between bell shape and cosine shape that
the first half part is bell shape or cosine shape, but the last half part is a different one. We
applied the finite difference method to solve the governing equation, and important flow
quantities were obtained such as axial velocity, radial velocity, flow rate, resistance to flow,
and skin friction. Moreover, the effect of the stenosis depth, length, and non-Newtonian
behavior inflow quantities was investigated.

2 Stenosis model
The stenotic models in our study are classified into four different shapes such as the bell
shape, the cosine shape, the combination of bell and cosine shape, and the combination of
cosine and bell shape. The vertically symmetric stenosis is explained by a vertically sym-
metric function throughout entire stenosis geometry, namely an exponential function in
bell shape and a cosine function in cosine shape. The vertically asymmetric stenosis is
described by a vertically asymmetric function such as the combination of two different
stenosis shapes. The combination of bell and cosine shapes means that the first half part
is bell shape, but the last half part is cosine shape. The combination of cosine and bell
shape means that the cosine and bell shapes are located in the first half part and the sec-
ond half part, respectively. The geometries of a stenosed artery are shown in Fig. 1. Since
the stenosis geometry of some cardiovascular patients cannot be described by a vertically
symmetric stenosis, we propose to study the blood flow through a vertically asymmetric
stenosis, for example, the combination of two different stenosis geometries.

The equations that describe the geometry of the stenosis models in the bell shape and
cosine shape are as expressed in Eq. (1) and Eq. (2), respectively [10, 16].

R(z) = –R0
(
1 – ae–b(z–L)2)

, (1)
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Figure 1 Geometry of stenosed artery with bell shape and cosine shape

where a = δ
R0

and b = ( m
L0

)2,

R(z) = –R0 +
δ

2

[
1 + cos

π (z – L)
L0

]
. (2)

There are common parameters in both models such as R0, R(z), L0, and L, where R0 is
the radius of a normal artery, R(z) is the radius of a stenosed artery, δ is the highest depth
of the stenosis, L is the half-length of an artery, and L0 is the half-length of the stenosis.

For bell-shaped stenosis, a and b are the dimensionless parameters, where a is the ratio
of stenosed depth and the radius of a normal artery, b is the square of the ratio of constant
value m and the half-length of the stenosis.

3 Mathematical analysis
3.1 Governing equations
The study of the stenotic blood flow in an arterial segment is considered to be lami-
nar, steady, two-dimensional, axisymmetric, and fully developed, and the flowing blood
is treated to be an incompressible, power-law fluid. The non-Newtonian behavior will be
established to study the blood flow through the stenosis when the shear rate is less than
100 s–1. Under these assumptions, the governing equations can be written in the cylindri-
cal coordinates system (r, θ , z) as follows.

Equation of continuity

∂vr

∂r
+

vr

r
+

∂vz

∂z
= 0. (3)

Equation of momentum

vr
∂vz

∂r
+ vz

∂vz

∂z
= –

1
ρ

∂p
∂z

–
1
ρ

[
1
r

∂(rτrz)
∂r

+
∂τzz

∂z

]
, (4)

vr
∂vr

∂r
+ vz

∂vr

∂z
= –

1
ρ

∂p
∂r

–
1
ρ

[
1
r

∂(rτrr)
∂r

+
∂τrz

∂z

]
. (5)
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Here, τrz , τrr , and τzz are shear stress of the power-law model respectively as defined in
[4, 17], vz is the axial velocity, vr is the radial velocity, ρ is the density of the fluid, and p is
the pressure of the fluid.

τrz = –kγ ·n–1
(

∂vr

∂z
+

∂vz

∂r

)
, (6)

τzz = –2kγ ·n–1
(

∂vz

∂z

)
, (7)

τrr = –2kγ ·n–1
(

∂vr

∂r

)
, (8)

where γ · =
√

2[( ∂vr
∂r )2 + ( vr

r )2 + ( ∂vz
∂z )2] + ( ∂vr

∂z + ∂vz
∂r )2, and k is the flow consistency index.

Boundary condition. There is no radial flow along the axis of the artery. The axial velocity
gradient is assumed to be zero, which means there is no shear rate of fluid along the axis.
On the arterial wall, axial velocity and radial velocity are assumed to be zero. The boundary
conditions can be expressed as:

vr(r, z) = 0,
∂vz

∂r
(r, z) = 0, τrz = 0, on r = 0, (9)

vr(r, z) = 0, vz(r, z) = 0, on r = R(z). (10)

3.2 Transformation of governing equations
In order to immobilize the arterial wall [2, 4, 7], we used the radial coordinate transfor-
mation y = r

R(z) . Then Eq. (3)–(5) and Eq. (6)–(7) may be written as follows:

1
R

∂vr

∂y
+

vr

yR
+

∂vz

∂z
–

y
R

dR
dz

∂vz

∂y
= 0, (11)

[
–

vr

R
+ vz

y
R

dR
dz

]
∂vz

∂y
– vz

∂vz

∂z
–

1
ρ

∂p
∂z

–
1
ρ

[
τyz

yR
+

1
R

∂τyz

∂y
+

∂τzz

∂z
–

y
R

dR
dz

∂τyz

∂y

]
= 0, (12)

τyz = –kγ ·n–1
(

∂vr

∂z
–

y
R

dR
dz

∂vr

∂y
+

1
R

∂vz

∂y

)
, (13)

τzz = –2kγ ·n–1
(

∂vz

∂z
–

y
R

dR
dz

∂vz

∂y

)
, (14)

where

γ · =

√

2
[(

1
R

∂vr

∂y

)2

+
(

vr

yR

)2

+
(

∂vz

∂z
–

y
R

dR
dz

∂vz

∂y

)2]
+

(
∂vr

∂z
–

y
R

dR
dz

∂vr

∂y
+

1
R

∂vz

∂y

)2

. (15)

The transformation boundary and initial conditions are:

vr(y, z) = 0,
∂vz

∂y
(y, z) = 0, τyz = 0, on y = 0, (16)

vr(y, z) = 0, vz(y, z) = 0, on y = 1. (17)
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3.3 Method of solution
We obtain the radial velocity by the multiplication of yR in Eq. (11) and then integrate this
with respect to y from 0 to 1, and we get

[vr]1
0 =

[
y

dR
dz

vz

]1

0
–

R
y

∫ 1

0
y
∂vz

∂z
dy –

2
y

dR
dz

∫ 1

0
yvz dy. (18)

Using boundary condition (16), Eq. (18) takes the following form:

∫ 1

0
y
∂vz

∂z
dy = –

2
R

dR
dz

∫ 1

0
yvz dy. (19)

Since R = R(z), Eq. (19) can be written as follows:

∫ 1

0
y
∂vz

∂z
dy = –

∫ 1

0
y

2
R

dR
dz

vz dy. (20)

Comparing both sides of the equation, we have

∂vz

∂z
= –

2
R

dR
dz

vz. (21)

Substituting Eq. (21) into Eq. (11) and multiplying by yR, we obtain

y
∂vr

∂y
+ vr = 2y

dR
dz

vz + y2 dR
dz

∂vz

∂y
. (22)

Equation (22) can be rewritten as follows:

∂

∂y
(yvr) =

∂

∂y

(
y2 dR

dz
vz

)
. (23)

Finally, the radial velocity is obtained

vr = y
dR
dz

vz. (24)

In order to obtain vr , we plug vr into Eq. (12), and the equations of axial momentum are
reduced to

–vz
∂vz

∂z
–

1
ρ

∂p
∂z

–
1
ρ

[
τyz

yR
+

1
R

∂τyz

∂y
+

∂τzz

∂z
–

y
R

dR
dz

∂τyz

∂y

]
= 0. (25)

The volumetric flow rate (Q) is given by the following equation:

Q =
∫ R

0

∫ 2π

0
vzr dθ dr = 2π

∫ R

0
vrr dr.

By using the radial coordinate transformation, r = yR, we get

Q = 2πR2
∫ 1

0
vzy dy. (26)
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4 Numerical procedure
The discretization of vz(y, z), vr(y, z), τyz(y, z), and τyz(y, z) is written as vz(yi, zj), vr(yi, zj),
τyz(yi, zj), and τyz(yi, zj). Here we define yi = –1 + (i – 1)	y, i = 1, 2, . . . , N + 1, where 	y = 1

N ,
–1 ≤ y ≤ 0. zj = (j – 1)	zj = 1, 2, . . . , M + 1, where 	z = 2L

M , 0 ≤ z ≤ 2L.
The finite difference scheme is applied to solve Eq. (25). ∂vz

∂y , ∂vr
∂y , ∂vr

∂z , and ∂vz
∂z are approx-

imated based on forward difference as shown below:
(

∂vz

∂y

)

i,j
=

(vz)i+1,j – (vz)i,j

	y
, (27)

(
∂vz

∂z

)

i,j
=

(vz)i,j+1 – (vz)i,j

	z
, (28)

(
∂vr

∂y

)

i,j
=

(vr)i+1,j – (vr)i,j

	y
, (29)

(
∂vr

∂z

)

i,j
=

(vr)i,j+1 – (vr)i,j

	z
. (30)

However, ∂vz
∂z will be obtained by discretizing Eq. (21).

(
∂vz

∂z

)

i,j
= –

2
Rj

(
dR
dz

)

j
(vz)i,j. (31)

We can find (vz)i,j+1 by plugging Eq. (31) into Eq. (28), and we obtain

(vz)i,j+1 =
[

1 –
2	z
Rj

(
dR
dz

)

j

]
(vz)i,j. (32)

The derivatives of τyz and τzz are discretized by the forward differences also.

(
∂τyz

∂y

)

i,j
=

(τyz)i+1,j – (τyz)i,j

	y
, (33)

(
∂τyz

∂z

)

i,j
=

(τyz)i,j+1 – (τyz)i,j

	z
, (34)

(
∂τzz

∂y

)

i,j
=

(τzz)i+1,j – (τzz)i,j

	y
, (35)

(
∂τzz

∂z

)

i,j
=

(τzz)i,j+1 – (τzz)i,j

	z
. (36)

Using Eq. (27)–(36), the discretization of Eq. (25), (13), (14), and (15) can be written as
follows:

–(vz)i,j

(
∂vz

∂z

)

i,j
–

	p
2L · ρ

–
1
ρ

[
(τyz)i,j

yiRj
+

1
Rj

(
∂τyz

∂y

)

i,j
+

(
∂τzz

∂z

)

i,j
–

yi

Rj

(
dR
dz

)

j

(
∂τyz

∂y

)

i,j

]
= 0, (37)

(τyz)i,j = –kγ ·n–1
i,j

[(
∂vr

∂z

)

i,j
–

yi

Rj

(
dR
dz

)

j

(
∂vr

∂y

)

i,j
+

1
Rj

(
∂vz

∂y

)

i,j

]
, (38)



Owasit and Sriyab Advances in Difference Equations        (2021) 2021:340 Page 7 of 20

Table 1 The value of the parameter ranges

Parameter Values

L 8–10 cm
L0 3–8 cm
R0 0.1 cm
δ 0.03–0.08 cm
m 1.4–1.8
ρ 1.06 g/cm3

–	p/2L 50 g/cm2s2

k 0.02
n 0.61–1

(τzz)i,j = –2kγ ·n–1
i,j

[(
∂vr

∂z

)

i,j
–

yi

Rj

(
dR
dz

)

j

(
∂vz

∂y

)

i,j

]
, (39)

γ̇i,j =

√√
√√
√

2{[ 1
Rj

( ∂vr
∂y )i,j]2 + [ (vr )i,j

yiRj
]2 + [( ∂vz

∂z )i,j – yi
Rj

( dR
dz )j( ∂vz

∂y )i,j]2}
+[( ∂vr

∂z )i,j – yi
Rj

( dR
dz )j( ∂vr

∂y )i,j + 1
Ri

( ∂vz
∂y )i,j]2 , (40)

The boundary conditions are discretized as follows:

(vr)N+1,j = 0, (vz)N ,j = (vz)N+1,j, (τyz)N+1,j = 0. (41)

(vr)1,j = 0, (vz)1,j = 0. (42)

The axial velocity will be solved by using Eq. (37)–(40) with boundary conditions (41)–
(42). Then, the radial velocity can be solved by the discretization of Eq. (24) as follows:

(vr)i,j = yi

(
dR
dz

)

j
(vz)i,j. (43)

While the volumetric flow rate can be approximated by discretizing Eq. (26):

Qj = 2πR2
j 	y

N+1∑

i=1

(vz)i,jyi for j = 1, 2, . . . , M + 1. (44)

The resistance to flow (λ) can be obtained by using Eq. (45).

λj =
	p
Qj

. (45)

5 Numerical results
This research provides data to study important factors such as the axial velocity, radial
velocity, flow rate, and resistance to flow. The values of the parameter ranges are shown
in Table 1. The parameter values correspond to reference no. [11, 12, 17, 18].

5.1 Axial velocity
The behavior of axial velocity flowing through various stenosis arteries is shown in Figs. 2
to 12. The axial velocity is zero at the arterial wall (y = –1) and increases along the radial
axis. The highest axial velocity is located at the center of the stenotic region (z̄ = 0.5) and
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Figure 2 Variation of axial velocity with radial
distance for different stenosis heights in bell shape
and combined shape of bell and cosine stenosis at
z̄ = 0.8

Figure 3 Variation of axial velocity with axial
distance for different stenosis heights in bell shape
and combined shape of bell and cosine stenosis at
y = –0.5

Figure 4 Variation of axial velocity with radial
distance for different stenosis heights in cosine
shape and combined shape of cosine and bell
stenosis at z̄ = 0.8

decreases exponentially in other regions along the axial axis. These results correspond to
those of Mandel [7], Molla [19, 20], and Shupti [21].

The effect of the stenosis height has been investigated in Figs. 2 to 5. It is observed that
the axial velocity increases considerably with the increasing stenosis height around the
center of the stenosis region (z̄ = 0.5), but the effect seems less significant near the entrance
and the exit of the stenotic region. This result corresponds to that of Malota [22].

The effect of the stenosis length has been studied in Figs. 6 and 7. The results are similar
to the effect of stenosis height in that the axial velocity in a long stenosis length gives
higher values than the axial velocity in a short stenosis. The stenosis length affects the
axial velocity more near the entrance and exit of the artery than stenosis height.
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Figure 5 Variation of axial velocity with axial
distance for different stenosis heights in cosine
shape and combined shape of cosine and bell
stenosis at y = –0.5

Figure 6 Variation of axial velocity with radial
distance for different stenosis lengths in bell shape
stenosis at z̄ = 0.5

We compare the behavior of the Newtonian fluid (n = 1) with non-Newtonian (power-
law fluid in Figs. 8 and 9. We can obviously see that the axial velocity is higher in the
Newtonian than in the non-Newtonian model. When blood acts as a non-Newtonian fluid,
the axial velocity in the combined shape of bell and cosine shape is higher than the axial
velocity in the combined shape of cosine and bell shape. However, the axial velocity is
higher in the combined shape of cosine and bell than in the combined shape of bell and
cosine when the blood behaves as a Newtonian fluid. Figure 10 shows that the geometry of
the bell shape looks like the geometry of the cosine shape when m is 1.8. The axial velocity
in different shapes of stenosis along the axial and radial distance is studied in Figs. 11 to
12, respectively. It is indicated that axial velocity in the cosine shape is much lower than
in the bell shape.

The comparative results of the bell shape, cosine shape, combined shape of bell and co-
sine, and combined shape of cosine and bell are shown in Figs. 2 to 5. From the entrance
of the stenosed region to the center of the stenosed region, the bell shape, and combined
shape of bell and cosine shapes give the same value of axial velocity due to the same ge-
ometry. However, from the center to the exit of the stenosed region, the axial velocity in
the bell shape is slightly higher than in the combined shape of bell and cosine shapes be-
cause of the geometric difference. Axial velocity in the cosine shape and combined shape
of cosine and bell shapes is equal in the first half of the stenosed region too, but the axial
velocity in the cosine shape is slightly higher than in the combined shape of cosine and
bell shapes in the other part of stenosis.
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Figure 7 Variation of axial velocity with axial
distance for different stenosis lengths in bell shape
stenosis at y = –0.5

Figure 8 Variation of axial velocity with radial
distance for non-Newtonian (n = 0.61 and n = 0.828)
and Newtonian fluid (n = 1) in combined shape of
cosine and bell and combined shape of bell and
cosine stenosis at z̄ = 0.8

Figure 9 Variation of axial velocity with axial
distance for non-Newtonian (n = 0.61 and n = 0.828)
and Newtonian fluid (n = 1) in combined shape of
cosine and bell and combined shape of bell and
cosine stenosis at y = –0.5

5.2 Radial velocity
Figures 13 to 24 show the radial velocity of blood flow through various shaped stenoses.
The radial velocity gives a much lower value than the axial velocity which is in accordance
with Mandel [7]. The radial velocity gives a negative value when the dimensionless axial
position (z) is less than 0.5, but it gives a positive value with the same magnitude when
the dimensionless axial position (z) is greater than 0.5. The radial velocity changes from a
negative to positive value which indicates the change in direction of radial velocity.

The effect of stenosis height and stenosis length on radial velocity is similar to axial ve-
locity. When stenosis height and stenosis length increase, the magnitude of radial velocity
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Figure 10 Geometry of stenosis artery of bell shape
with differentm and cosine shape where δ/R0 = 0.8
and L0/L = 1

Figure 11 The comparison between bell shape
with differentm and cosine shape of axial velocity
along radial axis at z̄ = 0.5

Figure 12 The comparison between bell shape
with differentm and cosine shape of axial velocity
along axial axis at y = –0.5

increases too. The magnitude of the radial velocity of Newtonian fluid is higher than the
power-law fluid according to axial velocity. The radial velocity in the bell and cosine shapes
is observed in Figs. 23 and 24. This clearly indicates that radial velocity in the cosine shape
is lower than that of the bell shape.

The effect of the combined shape in radial velocity is in accordance with axial velocity
as shown in Figs. 13 to 16 and Figs. 19 to 22. When z̄ ≤ 0.5, the radial velocity in the
cosine shape is equivalent to the radial velocity in the combined shape of cosine and bell
shapes, and the radial velocity in the bell shape is also equivalent to the radial velocity in
the combined shape of bell and cosine shapes. When z̄ > 0.5, the radial velocities of the
combined shapes and the radial velocities of a single shape are slightly different.
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Figure 13 Variation of radial velocity with radial
distance for different stenosis heights in bell shape
and combined shape of bell and cosine stenosis at
z̄ = 0.8

Figure 14 Variation of radial velocity with axial
distance for different stenosis heights in bell shape
and combined shape of bell and cosine stenosis at
y = –0.5

Figure 15 Variation of radial velocity with radial
distance for different stenosis heights in cosine
shape and combined shape of cosine and bell
stenosis at z̄ = 0.8

5.3 Flow rate and resistance to flow
Figures 25 to 27 show that when z̄ < 0.4, the flow rate in the single and combined shape
exhibits a downward trend, and when 0.4 < z̄ < 0.6, the flow rate is an upward trend, and
when 0.6 < z̄ < 1, the rate is downward again. Whereas the flow rate from Venkatsan’s [9]
and Sriyab’s study [10] shows a downward trend when z̄ < 0.5 and an upward trend when
z̄ > 0.5. The effect of the stenosis height shown in Figs. 25 and 26 is in accordance with
the axial and radial velocity where flow rate increases with the increase of stenosis height
in the bell shape and combined shape of bell and cosine shape. However, the flow rate
decreases with the increase of stenosis height in the cosine shape and combined shape
of cosine and bell shape. In Fig. 27, the flow rate in the cosine shape is considerably lower
than that in the bell shape. The flow rate increases suddenly when the value of m increases.
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Figure 16 Variation of radial velocity with axial
distance for different stenosis heights in cosine
shape and combined shape of cosine and bell
stenosis at y = –0.5

Figure 17 Variation of radial velocity with radial
distance for different stenosis lengths in bell shape
stenosis at z̄ = 0.6

Figure 18 Variation of radial velocity with axial
distance for different stenosis lengths in bell shape
stenosis at y = –0.5

The results of resistance to the blood flow are shown in Figs. 28 to 30. The resistance to
the flow of blood shows an upward trend that is contrary to the flow rate. The resistance
to the flow is low when the stenosed height rises in the bell shape and combined shape
of bell and cosine, but it has a high value in the cosine shape and combined shape of co-
sine and bell with the increasing stenosed height, which corresponds to Venkatsan and
Sriyab’s analysis [9, 10]. Figure 30 indicates that the resistance to the flow in cosine shape
displays the highest value. The flow rate and resistance to flow of the combined shapes are
compared in Figs. 25 and 26, and Figs. 28 and 29. The flow rate and the resistance to the
flow of blood in the combined shape shows the same behavior with the single shape when
the geometry of stenosis is the same in the first half of the stenosis. While they are slightly
different in a different geometry in the second half of the stenosis.
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Figure 19 Variation of radial velocity with radial
distance for non-Newtonian (n = 0.61 and n = 0.828)
and Newtonian fluid (n = 1) in bell shape and
combined shape of bell and cosine stenosis at
z̄ = 0.8

Figure 20 Variation of radial velocity with axial
distance for non-Newtonian (n = 0.61 and n = 0.828)
and Newtonian fluid (n = 1) in bell shape and
combined shape of bell and cosine stenosis at
y = –0.5

Figure 21 Variation of radial velocity with radial
distance for non-Newtonian (n = 0.61 and n = 0.828)
and Newtonian fluid (n = 1) in cosine shape and
combined shape of cosine and bell stenosis at
z̄ = 0.8

5.4 Skin friction
The behavior of skin friction (τf ) that is shear stress at the surface of the stenosis artery has
been studied in Figs. 31 to 35. The highest value of skin friction is located at the peak of the
stenosis region and decreases in other regions, which is in accordance with J. Venkatsan,
S. Sriyab, M.M. Molla, and S.P. Shupti. Figures 31 and 32 show that the value of skin friction
increases when stenosis height increases. In Fig. 33, the skin friction increases with the
increase of stenosis length, which qualitatively agrees with J. Venkatsan and S. Sriyab [9,
10]. The effect of non-Newtonian fluid is shown in Fig. 35. It is observed that skin friction
increases considerably with the increase of n. The skin friction for a cosine shape stenosis
artery exhibits a much lower value than the bell shape as seen in Fig. 34. However, the skin
friction in the cosine shape is higher than the results of J. Venkatsan and S. Sriyab’s study
[9].



Owasit and Sriyab Advances in Difference Equations        (2021) 2021:340 Page 15 of 20

Figure 22 Variation of radial velocity with axial
distance for non-Newtonian (n = 0.61 and n = 0.828)
and Newtonian fluid (n = 1) in cosine shape and
combined shape of cosine and bell stenosis at
y = –0.5

Figure 23 The comparison between the bell shape
with differentm and cosine shape of radial velocity
with radial distance at z̄ = 0.6

Figure 24 The comparison between the bell shape
with differentm and cosine shape of radial velocity
with axial distance at y = –0.5

The effect of the combined shape on skin friction is shown in Figs. 31, 32, and 35. It shows
similar results with the velocity and flow rate in that the skin friction in the combined
shape has a different behavior from the skin friction in a single shape when z̄ > 0.5.

6 Conclusion
In this study, we investigated the steady flow of the two-dimensional blood flow through
the different stenosed arteries: the bell shape, cosine shape, and combined shape. The
power-law model was used to represent the blood flow in non-Newtonian behavior. The
flow quantities, which were axial velocity, radial velocity, flow rate, resistance to flow, and
skin friction, were obtained by using the finite difference method. These results were com-
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Figure 25 Variation of flow rate with axial distance
for different stenosis heights in bell shape and the
combined shape of bell and cosine stenosis

Figure 26 Variation of flow rate with axial distance
for different stenosis heights in cosine shape and the
combined shape of cosine and bell stenosis

Figure 27 The flow rate comparison between the
bell shape with differentm and cosine shape

Figure 28 Variation of resistance to the flow with
axial distance for different stenosis heights in bell
shape and the combined shape of bell and cosine
stenosis

pared with the results of studies by Mandal [7], Venkatsan [9], Sriyab [10], Molla [15, 16],
and Shupti [19]. The main results are as follows:

i. Axial velocity and radial velocity
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Figure 29 Variation of resistance to the flow with
axial distance for different stenosis heights in cosine
shape and the combined shape of cosine and bell
stenosis

Figure 30 The resistance to the flow comparison
between the bell shape with differentm and cosine
shape

Figure 31 Variation of skin friction with axial
distance for different stenosis heights in bell shape
and combined shape of bell and cosine stenosis

Axial velocity is the highest at the center of the stenosed artery which corresponds to the
results of P.K. Mandal, M. M. Molla, and S. P. Shupti. Radial velocity shows a much lower
value than axial velocity which is in accordance with P.K. Mandal also. Axial and radial
velocity increase with the increase of stenosed height and stenosed length. The effect of
non-Newtonian fluid shows that the velocity in axial and radial directions of Newtonian
fluid is higher than the non-Newtonian fluid. Axial velocity and radial velocity in the cosine
shape are much lower than in the bell shape. From the entrance of the stenosed region to
the center of stenosed region, the single shape (bell shape or cosine shape) and combined
shape display the same value of axial and radial velocity. However, from the center to the
exit of the stenosed region, axial velocity in the single shape is slightly different from the
combined shape.

ii. Flow rate and resistance to flow
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Figure 32 Variation of skin friction with axial
distance for different stenosis heights in cosine
shape and combined shape of cosine and bell
stenosis

Figure 33 Variation of skin friction with axial
distance for different stenosis lengths in bell shape
stenosis

Figure 34 The skin friction comparison between
bell shape with differentm and cosine shape

The flow rate behavior of our work and that of J. Venkatsan and S Sriyab’s study with the
same single shape are quite different phenomena because of the different non-Newtonian
model. The resistance to the flow behavior contradicts the flow rate. The flow rate de-
creases with the increase of stenosis height in the bell shape and combined shape (bell
shape and cosine shape), which is contrary to the results of J. Venkatsan and S. Sriyab.
However, it increases with the increase of stenosis height in the cosine shape and com-
bined shape (cosine shape and bell shape), which accords with the results of J. Venkatsan
and S. Sriyab. The flow rate in the cosine shape is considerably lower than in the bell shape,
while the resistance to the flow in the cosine shape is higher than in the bell shape. The
resistance to flow in the combined shape is different from the single shape from the center
to the exit of the stenosed region.
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Figure 35 Variation of skin friction with axial
distance for non-Newtonian (n = 0.61 and n = 0.828)
and Newtonian fluid (n = 1) in bell shape and
combined shape of bell and cosine stenosis

iii. Skin friction
The skin friction or the wall shear stress in power-law is lower than the Newtonian

model but the skin friction in Cross model is higher than that in the Newtonian. The
maximum shear stress occur near the center of the stenosis, which is in accordance with
J. Venkatsan, S. Sriyab, and M. M. Molla. It increases with stenosis height and stenosis
length, which is also in accordance with J. Venkatsan and S. Sriyab. The effect of non-
Newtonian fluid indicates that skin friction in the Newtonian case shows a higher value
than in the non-Newtonian case. The skin friction in the bell shape is much higher than
in the cosine shape, which is contrary to J. Venkatsan and S. Sriyab. The effect of the com-
bined shape on skin friction has a similar behavior as other flow quantities in which the
skin friction in the combined shape and single shape displays the same behavior in the first
half of stenosis, but the effect is slightly different in the last half of the stenosis.

The hemodynamics of blood flow in the arterial segment containing different steno-
sis geometry has been studied in presence of non-Newtonian effect. The non-Newtonian
model is applied with the arterial segment whose radius is less than 1 mm. Results show
that the flow quantities are affected by stenosis geometry and non-Newtonian model. The
flow quantities in different stenosis geometry indicates different blood flow behavior. It
may help the doctor to diagnose the stenosis types in the patient who suffers from cardio-
vascular diseases. The arterial segment that is in vivo experiment, cosine or bell stenosis
shapes, small radius (less than 1 mm) is chosen to validate the simulation data. The in-
terpolation of stenosis geometry and unsteady flow should be taken into consideration
highlighting the scope of further work. The mechanical and biochemical aspects related
to biofluid dynamics need adequate physiological value in the in vivo situation to under-
stand the blood flow in biological and clinical facts [23].
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