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Abstract
A stochastic two-prey one-predator system with distributed delays is proposed in this
paper. Firstly, applying the linear chain technique, we transform the predator–prey
system with distributed delays to an equivalent system with no delays. Then, by use
of the comparison method and the inequality technique, we investigate the stability
in mean and extinction of species. Further, by constructing some suitable functionals,
using M-matrix theory and three important lemmas, we establish sufficient
conditions assuring the existence of distribution and the attractivity of solutions.
Finally, some numerical simulations are given to illustrate the main results.
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1 Introduction
Predator–prey system is very popular in the world. In order to reveal the dynamical re-
lationship between predator and prey, a lot of predator–prey systems have been widely
investigated and many good results have been obtained in the last decades, which has long
been one of the hot topics in ecology [1–3]. Since two-species ecological models cannot
describe the natural phenomena accurately and many vital behaviors can only be exhibited
by systems with three or more species, for example, in the natural world, the predator of-
ten feeds on some competing prey, and hence, a three- or multi-species population system
attracts more and more attention [4–7].

On the other hand, all species are inevitably affected by environmental noise. To better
describe ecological phenomena, the white noise is introduced into a predator–prey model
to reveal richer and more complex dynamics [8–15]. There are many kinds of stochastic
perturbation. Considering the stochastic influence on the intrinsic growth rates of popu-
lations, we have ai → ai + ξi dω(t), where ω(t) is a standard Brownian motion defined on
a complete probability space (�,F ,P) with a filtration {Ft}t≥0, ξ 2 is the intensity of white
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noise. For example, Liu [6] proposed the following three-species predator–prey model:

⎧
⎪⎪⎨

⎪⎪⎩

dN1(t) = N1(t)(a1 – d11N1(t) – d12N2(t) – d13N3(t)) dt + ξ1N1(t) dω(t),

dN2(t) = N2(t)(a2 – d21N1(t) – d22N2(t) – d23N3(t)) dt + ξ2N2(t) dω(t),

dN3(t) = N3(t)(a3 – d31N1(t) – d32N2(t) – d33N3(t)) dt + ξ3N3(t) dω(t),

where N1(t) and N2(t) are the population sizes of prey species, N3(t) is the population size
of predator species, ai > 0 (i = 1, 2) are the intrinsic rates of increase, a3 < 0 is the intrinsic
rate of decrease, d12 > 0 and d21 > 0 are the parameters representing competitive effects
between two prey, d13 > 0 and d23 > 0 are the coefficients of decrease of prey species due
to predation, d31 < 0 and d32 < 0 are the predation rate of predator, dii > 0 (i = 1, 2, 3) are
the rate of competition within the same species.

As we know, predator–prey interaction is a frequently observed phenomenon. Almost
all species should exhibit some delays. Considering the inevitability, more and more re-
searchers have taken delay into an ecological model and obtained some nice results [16–
19]. Recently, infinite delay has been widely introduced into the ecological model since the
works of Volterra to translate the cumulative effect of the past history of a system [20–24].
Chen [22] et al. proposed the following model with distributed delays:

⎧
⎨

⎩

dN1(t)/dt = b1N1(t)(1 – N1(t)
K ) – a12N1(t)N2(t),

dN2(t)/dt = –b2N2(t) + a21
∫ t

–∞ K(t – s)N1(s)N2(s) ds,

where the kernel K : [0,∞) → [0,∞) is a normalized L1 function such that
∫ ∞

0 K(s) ds = 1.
For distributed delay, MacDonald [25] initially proposed that it was reasonable to use
gamma distribution as a kernel function, that is, f (t) = tnσn+1e–σ t

n! , where σ > 0, n is a non-
negative integer. If n = 0, then the kernel f (t) = σ e–σ t is called a weak kernel, otherwise it
is called a strong kernel.

Motivated by the above discussion, in this paper, we consider a stochastic two-prey one-
predator system with distributed delays. For convenience, we mainly consider the weak
kernel case, i.e., f (t) = σ e–σ t . Our model is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN1(t) = N1(t)(r1 – a11N1(t) – a12
∫ t

–∞ σ2e–σ2(t–s)N2(s) ds

– a13
∫ t

–∞ σ3e–σ3(t–s)N3(s) ds) dt + ξ1N1(t) dω1(t),

dN2(t) = N2(t–)(r2 – a21
∫ t

–∞ σ1e–σ1(t–s)N1(s) ds – a22N2(t)

– a23
∫ t

–∞ σ3e–σ3(t–s)N3(s) ds) dt + ξ2N2(t) dω2(t),

dN3(t) = N3(t)(–r3 + a31
∫ t

–∞ σ1e–σ1(t–s)N1(s) ds – a33N3(t)

+ a32
∫ t

–∞ σ2e–σ2(t–s)N2(s) ds) dt + ξ3N3(t) dω3(t),

(1.1)

with the initial data

Ni(θ ) = ϕi(θ ) ∈ C((–∞, 0], R+), i = 1, 2, 3,

where C((–∞, 0], R+) is the set of all continuous functions from (–∞, 0) to R+ = (0,∞),
ωi(t) (i = 1, 2, 3) is a standard and independent Brownian motion defined as above. All
parameters are positive constants and their biological meanings refer to [6].
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Define

yi(t) =
∫ t

–∞
σie–σi(t–s)Ni(s) ds, i = 1, 2, 3.

Computing the derivative of yi(t), then dyi(t) = σi(Ni(t)–yi(t)) dt, i = 1, 2, 3. Using the linear
chain technique to (1.1) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dN1(t) = N1(t)(r1 – a11N1(t) – a12y2(t) – a13y3(t)) dt + ξ1N1(t) dω1(t),

dN2(t) = N2(t)(r2 – a21y1(t) – a22N2(t) – a23y3(t)) dt + ξ2N2(t) dω2(t),

dN3(t) = N3(t)(–r3 + a31y1(t) + a32y2(t) – a33N3(t)) dt + ξ3N3(t) dω3(t),

dy1(t) = σ1(N1(t) – y1(t)) dt,

dy2(t) = σ2(N2(t) – y2(t)) dt,

dy3(t) = σ3(N3(t) – y3(t)) dt.

(1.2)

According to the equivalent property of (1.1) and (1.2), in what follows, we mainly consider
(1.2) to reveal the dynamical properties of (1.1). Our main aims are as follows.

Firstly, we study the stability in mean and extinction of all species of (1.2), which have
long been and will still be two important topics for the study of stochastic population
systems.

Secondly, for a stochastic population system, instead of the positive equilibrium state of
the determinate system, it is interesting and important to study the existence and unique-
ness of the distribution of (1.2).

The rest work of this paper is organized as follows. Section 2 begins with some nota-
tions, definitions, and important lemmas. Section 3 focuses on the stability in mean and
extinction of species of (1.2). Section 4 is devoted to the existence and uniqueness of dis-
tribution. Some numerical simulations are given in Sect. 5. Finally, we conclude the paper
with a brief conclusion and discussion in Sect. 6.

2 Preliminaries
For simplicity, we give the following notations.

α1 = (a11, a21, –a31)T , α2 = (a12, a22, –a32)T , α3 = (a13, a23, a33)T ,

r = (r1, r2, –r3)T , ξ =
(
ξ 2

1 /2, ξ 2
2 /2, ξ 2

3 /2
)
, A = det(α1,α2,α3),

b1 = r1 – ξ 2
1 /2, b2 = r2 – ξ 2

2 /2, b3 = –r3 – ξ 2
3 /2,

A1 = det(r,α2,α3), A2 = det(α1, r,α3), A3 = det(α1,α2, r),

Ã1 = det(ξ ,α2,α3), Ã2 = det(α1, ξ ,α3), Ã3 = det(α1,α2, ξ ),

	1 = r2a32 + r3a22, 	2 = r1a31 + r3a11, 	3 = –r1a21 + r2a11,

	̃1 =
ξ 2

2
2

a32 +
ξ 2

3
2

a22, 	̃2 =
ξ 2

1
2

a31 +
ξ 2

3
2

a11, 	̃3 = –
ξ 2

1
2

a21 +
ξ 2

2
2

a11,

	∗
1 = r2a33 – r3a23, 	∗

2 = r1a33 – r3a13, 	∗
3 = r1a22 – r2a12,

	̃∗
1 =

ξ 2
2
2

a33 –
ξ 2

3
2

a23, 	̃∗
2 =

ξ 2
1
2

a33 –
ξ 2

3
2

a13, 	̃∗
3 =

ξ 2
1
2

a22 –
ξ 2

2
2

a12.
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Throughout this paper, we denote the complement minor of aij in determinant A by Aij

(i, j = 1, 2, 3), and assume that A > 0, Ai > 0, i.e., when there is no stochastic perturbation,
a positive equilibrium state exists for model (1.1). Further, for convenience, we always as-
sume that K stands for a generic positive constant whose value may be different at different
places. And for any function x(t), t > 0, we denote

〈
x(t)

〉
= t–1

∫ t

0
x(s) ds, x∗ = lim sup

t→∞
x(t), x∗ = lim inf

t→∞ x(t).

Now we give assumptions, definitions, and some important lemmas, which are used in
our main proof.

Assumption 2.1 A13 > 0, A23 < 0, A33 > 0, A31 < 0, A32 > 0.

Assumption 2.2 aii >
∑3

j=1,j �=i aji, i, j = 1, 2, 3.

Remark 2.1 Assumption 2.2 means that the intra-specific competitive rates are stronger
than the interaction competitive rates or predation rates among different species.

Definition 2.1 Let P(t) = (N1(t), N2(t), N3(t), y1(t), y2(t), y3(t))T ∈ C((–∞, 0], R6
+) be a so-

lution of system (1.2), then
(I) The population P(t) is said to be extinct if limt→∞ P(t) = 0;

(II) The population P(t) is said to be stable in mean if limt→∞〈P(t)〉 = K , a.s., where K is
a constant.

Definition 2.2 Let P(t) = (N1(t), N2(t), N3(t), y1(t), y2(t), y3(t))T ∈ C((–∞, 0], R6
+) and

P̄(t) = (N̄1(t), N̄2(t), N̄3(t), ȳ1(t), ȳ2(t), ȳ3(t))T ∈ C((–∞, 0], R6
+) be any two positive solutions

of (1.2) with the initial value P(0) > 0, P̄(0) > 0, then system (1.2) is said to be globally
attractive if

lim
t→∞

∣
∣Ni(t) – N̄i(t)

∣
∣ = 0, lim

t→∞
∣
∣yi(t) – ȳi(t)

∣
∣ = 0, i = 1, 2, 3.

Lemma 2.1 ([26]) Suppose that Z(t) ∈ C[� × [0, +∞), R+] and limt→∞ F(t)/t = 0, a.s.
(a) If there exist two positive constants T > 0, λ0 > 0 such that, for all t > T ,

ln Z(t) ≤ λt – λ0

∫ t

0
z(s) ds + F(t), a.s.,

then

⎧
⎨

⎩

〈Z〉∗ ≤ λ/λ0, a.s., if λ ≥ 0,

limt→+∞ Z(t) = 0, a.s., if λ < 0.

(b) If there exist some constants T > 0, λ0 > 0,λ such that, for all t > T ,

ln Z(t) ≥ λt – λ0

∫ t

0
z(s) ds + F(t), a.s.,

then 〈Z〉∗ ≥ λ/λ0, a.s.

Lemma 2.2 System (1.2) has a unique solution P(t) = (N1(t), N2(t), N3(t), y1(t), y2(t),
y3(t))T ∈ C((–∞, 0], R6

+) for any given initial data P(t0) ∈ C((–∞, 0], R6
+), almost surely.
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Proof The proof is standard. For the readers’ convenience, we give the proof in Ap-
pendix A.1.

As to the expectation boundedness and asymptotical properties of the solution of (1.2),
we have the following lemma. The proof is similar to that of references [20, 27, 28] and is
presented in Appendix A.2. �

Lemma 2.3 Let P(t) = (N1(t), N2(t), N3(t), y1(t), y2(t), y3(t))T be the solution of (1.2), then
for any initial data P(t0) ∈ C((–∞, 0], R6

+), there exists a positive constant K(p) such that

lim sup
t→+∞

E
(
Ni(t)p) ≤ K(p), lim sup

t→+∞
E

(
yi(t)p) ≤ K(p),

further,

lim
t→+∞

yi(t)
t

= 0, lim sup
t→+∞

ln Ni(t)
t

≤ 0, a.s., i = 1, 2, 3.

For the following integral equation

x(t) = x(t0) +
∫ t

t0

a
(
s, x(s)

)
ds +

k∑

r=1

∫ t

t0

br
(
s, x(s)

)
dσr(s), (2.1)

there is a result as follows.

Lemma 2.4 ([29]) Suppose that the coefficients of (2.1) are independent of t and satisfy:

∣
∣a(s, x) – a(s, y)

∣
∣ +

k∑

r=1

∣
∣br(s, x) – br(s, y)

∣
∣ ≤ K |x – y|,

∣
∣a(s, x)

∣
∣ +

k∑

r=1

∣
∣br(s, x)

∣
∣ ≤ K

(
1 + |x|),

in UR for any R > 0, and there exists a nonnegative C2 function V (x) in Rl such that

LV (x) ≤ –1 (2.2)

outside some compact set, then system (2.1) has a solution, which is a stationary Markov
process.

Lemma 2.5 ([30]) Let f (t) be a nonnegative function defined on [0, +∞) such that f (t) is
integrable on [0, +∞) and is uniformly continuous on [0, +∞), then limt→∞ f (t) = 0.

Lemma 2.6 Let P(t) = (N1(t), N2(t), N3(t), y1(t), y2(t), y3(t))T be a solution of (1.2) with the
initial value P(0) > 0, then almost every sample path of P(t) is uniformly continuous on
t ≥ 0.

Proof For the first equation of (1.2), it is equivalent to the following stochastic integral
equation:

N1(s) = N1(0) +
∫ t

0
N1(s)

(
r1 – a11N1(s) + a12y2(s) + a13y3(s)

)
ds + ξ1

∫ t

0
N1(s) dω1(s).
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By computation, we have

E
∣
∣N1(s)

(
r1 – a11N1(s) + a12y2(s) + a13y3(s)

)∣
∣p

≤ E|N1|2p/2 + E
∣
∣r1 – a11N1(s) + a12y2(s) + a13y3(s)

∣
∣2p/2

≤ E|N1|2p/2 + 32p–1(r2p
1 + a11EN2p

1 + a12Ey2p
2 + a13Ey2p

3
)
/2

≤ K .

Using the moment inequality for stochastic integrals, for any 0 ≤ t1 ≤ t2, p > 2, we have

E

∣
∣
∣
∣

∫ t2

t1

ξ1N1(s) dω1(s)
∣
∣
∣
∣

p

≤ σ
p
1

(
p(p – 1)

2

) p
2

(t2 – t1)
p–2

2

∫ t2

t1

E
∣
∣N1(s)

∣
∣p ds

≤ σ
p
1

(
p(p – 1)

2

) p
2

(t2 – t1)
p–2

2 K .

In the same manner, we can discuss the following five equations of (1.2) and obtain similar
inequalities as above. Therefore, by Lemma 2.4 of Refs. [31], we conclude that almost every
sample path of P(t) is uniformly continuous. The proof is completed. �

3 Stability in mean and extinction of species
Firstly, we give the following result on stability in mean and extinction of species of model
(1.2).

Theorem 3.1 If Assumptions 2.1 and 2.2 hold, then for system (1.2), we have:
(i) If b1 < 0, b2 < 0, then limt→∞ Ni(t) = 0, i = 1, 2, 3;

(ii) If b1 < 0, b2 > 0, 	1 < 	̃1, then

lim
t→∞ N1(t) = 0, lim

t→∞
〈
N2(t)

〉
=

b2

a22
, lim

t→∞ N3(t) = 0;

If b1 < 0, b2 > 0, 	1 > 	̃1, then

lim
t→∞ N1(t) = 0, lim

t→∞
〈
N2(t)

〉
=

	∗
1 – 	̃∗

1
A11

, lim
t→∞

〈
N3(t)

〉
=

	1 – 	̃1

A11
;

(iii) If b1 > 0, b2 < 0, 	2 < 	̃2, then

lim
t→∞

〈
N1(t)

〉
=

b1

a11
, lim

t→∞ N2(t) = 0, lim
t→∞

〈
N3(t)

〉
= 0;

If b1 > 0, b2 < 0, 	2 > 	̃2, then

lim
t→∞ N2(t) = 0, lim

t→∞
〈
N1(t)

〉
=

	∗
2 – 	̃∗

2
A22

, lim
t→∞

〈
N3(t)

〉
=

	2 – 	̃2

A22
;

(iv) If b1 > 0, b2 > 0, Ai > Ãi (i = 1, 2, 3), then

lim
t→∞

〈
N1(t)

〉
=

A1 – Ã1

A
, lim

t→∞
〈
N2(t)

〉
=

A2 – Ã2

A
, lim

t→∞
〈
N3(t)

〉
=

A3 – Ã3

A
;
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If b1 > 0, b2 > 0, A3 < Ã3, 	3 > 	̃3, then

lim
t→∞

〈
N3(t)

〉
= 0, lim

t→∞
〈
N1(t)

〉
=

	∗
3 – 	̃∗

3
A33

, lim
t→∞

〈
N2(t)

〉
=

	3 – 	̃3

A33
;

Proof For (1.2), integrating the forth to the sixth equations from 0 to t leads to

yi(t) – yi(0)
t

= σi
(〈

Ni(t)
〉
–

〈
yi(t)

〉)
, i = 1, 2, 3.

Taking the limit as t → ∞, combining with Lemma 2.3, we have

lim
t→∞

〈
Ni(t)

〉
= lim

t→∞
〈
yi(t)

〉
.

By utilizing Itô’s formula to ln Ni(t) (i = 1, 2, 3) and integrating both sides of the first three
equations of (1.2) from 0 to t, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln N1(t) – ln N1(0) = b1t – a11
∫ t

0 N1(s) ds – a12
∫ t

0 N2(s) ds

– a13
∫ t

0 N3(s) ds + ξ1ω1(t),

ln N2(t) – ln N2(0) = b2t – a21
∫ t

0 N1(s) ds – a22
∫ t

0 N2(s) ds

– a23
∫ t

0 N3(s) ds + ξ2ω2(t),

ln N3(t) – ln N3(0) = b3t + a31
∫ t

0 N1(s) ds + a32
∫ t

0 N2(s) ds

– a33
∫ t

0 N3(s) ds + ξ3ω3(t).

(3.1)

Denote ξi(t)ωi(t) = ϑi(t), then

ln N1(t) – ln N1(0)
t

= b1 – a11
〈
N1(t)

〉
– a12

〈
N2(t)

〉
– a13

〈
N3(t)

〉
+

ϑ1(t)
t

, (3.2)

ln N2(t) – ln N2(0)
t

= b2 – a21
〈
N1(t)

〉
– a22

〈
N2(t)

〉
– a23

〈
N3(t)

〉
+

ϑ2(t)
t

, (3.3)

and

ln N3(t) – ln N3(0)
t

= b3 + a31
〈
N1(t)

〉
+ a32

〈
N2(t)

〉
– a33

〈
N3(t)

〉ϑ3(t)
t

. (3.4)

We begin with the proof of (i).
It follows from (3.2) and (3.3) that

t–1[ln N1(t) – ln N1(0)
] ≤ b1 – a11

〈
N1(t)

〉
+ t–1ϑ1(t) (3.5)

and

t–1[ln N2(t) – ln N2(0)
] ≤ b2 – a22

〈
N2(t)

〉
+ t–1ϑ2(t). (3.6)

Using Lemma 2.1 to (3.5) and (3.6), then

lim
t→∞ Ni(t) = 0, i = 1, 2.
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Since b3 < 0, (3.4) implies limt→∞ N3(t) = 0, and hence

lim
t→∞ Ni(t) = 0 for i = 1, 2, 3.

Now we prove (ii).
By the proof of (i), if b1 < 0, then limt→∞ N1(t) = 0, and hence (3.3) and (3.4) imply that

t–1[ln N2(t) – ln N2(0)
]

= b2 – a22
〈
N2(t)

〉
– a23

〈
N3(t)

〉
+ t–1ϑ2(t) (3.7)

and

t–1[ln N3(t) – ln N3(0)
]

= b3 + a32
〈
N2(t)

〉
– a33

〈
N3(t)

〉
+ t–1ϑ3(t). (3.8)

By the elimination method, adding (3.7) applied by a33 and (3.8) applied by –a23 gives

t–1(a33
[
ln N2(t) – ln N2(0)

]
– a23

[
ln N3(t) – ln N3(0)

])

= (b2a33 – b3a23) – (a22a33 + a32a23)
〈
N2(t)

〉
+ t–1(a33ϑ2(t) – a23ϑ3(t)

)
.

(3.9)

Applying Lemma 2.1 and Lemma 2.3 to (3.9), we get

〈
N2(t)

〉∗ ≤ b2a33 – b3a23

a22a33 + a32a23
=

	∗
1 – 	̃∗

1
A11

.

Substituting 〈N2(t)〉∗ into (3.8), we obtain

t–1[ln N3(t) – ln N3(0)
] ≤ b3 + a32

b2a33 – b3a23

a22a33 + a32a23
– a33

〈
N3(t)

〉
+ t–1ϑ3(t) (3.10)

and

〈
N3(t)

〉∗ ≤ b2a32 + b3a22

a22a33 + a32a23
=

	1 – 	̃1

A11
.

If b1 < 0, b2 > 0, 	1 < 	̃1, then (3.10) implies limt→∞ N3(t) = 0. By use of (3.7) again, we
have

t–1[ln N2(t) – ln N2(0)
] ≤ b2 + ε – a22

〈
N2(t)

〉
+ t–1ϑ2(t). (3.11)

Applying Lemma 2.1 to (3.11) gives

〈
N2(t)

〉∗ ≤ b2

a22
.

Similarly, we have

t–1[ln N2(t) – ln N2(0)
] ≥ b2 – ε – a22

〈
N2(t)

〉
+ t–1ϑ2(t)
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and 〈N2(t)〉∗ ≥ b2
a22

, and hence

lim
t→∞

〈
N2(t)

〉
=

b2

a22
.

If b1 < 0, b2 > 0, 	1 > 	̃1, then we can derive from (3.7) and (3.8) that

t–1[ln N2(t) – ln N2(0)
] ≥ b2 – a22

〈
N2(t)

〉
– a23

〈
N3(t)

〉∗ + t–1ϑ2(t) (3.12)

and

t–1[ln N3(t) – ln N3(0)
] ≥ b3 + a32

〈
N2(t)

〉
– a33

〈
N3(t)

〉∗ + t–1ϑ3(t). (3.13)

Using Lemma 2.1 to (3.12) yields

〈
N2(t)

〉

∗ ≥ b2 – a23〈N3(t)〉∗
a22

=
b2a33 – b3a23

a22a33 + a32a23
=

	∗
1 – 	̃∗

1
A11

. (3.14)

From (3.13) and (3.14), then

t–1[ln N3(t) – ln N3(0)
] ≥ b3 + a32

〈
N2(t)

〉

∗ – a33
〈
N3(t)

〉
+ t–1ϑ3(t). (3.15)

Applying Lemma 2.1 to (3.15) yields

〈
N2(t)

〉

∗ ≥ b3 + a32〈N2(t)〉∗
a33

=
b2a32 + b3a22

a22a33 + a32a23
=

	1 – 	̃1

A11
.

Then we have

lim
t→∞ N1(t) = 0, lim

t→∞
〈
N2(t)

〉
=

	∗
1 – 	̃∗

1
A11

, lim
t→∞

〈
N3(t)

〉
=

	1 – 	̃1

A11
.

Therefore, case (ii) is proved. The proof of case (iii) is similar to case (ii) and we omit it
here.

Next we enter the proof of case (iv). We begin to eliminate 〈N1(t)〉, 〈N2(t)〉 from (3.2)–
(3.4) by the elimination method. By analysis, there exist positive constants p = A13/A33 > 0,
q = –A23/A33 > 0, multiplying both sides of (3.2)–(3.4) by p, q, and 1, respectively, adding
the three inequalities yields

ln N3(t) – ln N3(0) + p(ln N1(t) – ln N1(0)) + q(ln N2(t) – ln N2(0))
t

= b1p + b2q + b3 – (a13p + a23q – a33)
〈
N3(t)

〉
+ t–1(ϑ1(t)p + ϑ2(t)q + ϑ3(t)

)

=
A3 – Ã3

A33
–

A
A33

〈
N3(t)

〉
+ t–1(ϑ1(t)p + ϑ2(t)q + ϑ3(t)

)
.

(3.16)

Similarly, by the elimination method, there exist constants

p̃ =
–A21

A11
< 0, q̃ =

A31

A11
< 0, p̄ =

–A12

A22
< 0, q̄ =

–A32

A22
< 0
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such that

ln N1(t) – ln N1(0) + p̃(ln N2(t) – ln N2(0)) + q̃(ln N3(t) – ln x3(0))
t

=
A1 – Ã1

A11
–

A
A11

〈
N1(t)

〉
+ t–1(ϑ1(t)p̃ + ϑ2(t)q̃ + ϑ3(t)

)
(3.17)

and

ln N2(t) – ln N2(0) + p̄(ln N1(t) – ln N1(0)) + q̄(ln N3(t) – ln N3(0))
t

=
A2 – Ã2

A22
–

A
A22

〈
N2(t)

〉
+ t–1(ϑ1(t)p̄ + ϑ2(t)q̄ + ϑ3(t)

)
.

(3.18)

Using Lemma 2.3 in equality (3.16), for arbitrarily ε > 0, there exists T > 0, for all t > T , we
have

t–1(p
[
ln N1(t) – ln N1(0)

]
+ q

[
ln N2(t) – ln N2(0)

])

≤ t–1(p ln N1(t) + q ln N2(t)
)

+ ε ≤ ε. (3.19)

Substituting (3.19) into (3.16) leads to

t–1[ln N3(t) – ln N3(0)
]

≥ A3 – Ã3

A33
– ε –

A
A33

〈
N3(t)

〉
+ t–1(ϑ1(t)p + ϑ2(t)q + ϑ3(t)

)
. (3.20)

Since A3 > Ã3, letting ε > 0 be small enough such that A3 – Ã3 – ε > 0, then by Lemma 2.1,
we have

〈
N3(t)

〉

∗ ≥ A3 – Ã3

A
.

Similarly, we derive from (3.2) and (3.3) that

t–1[ln N1(t) – ln N1(0)
]

≤ A1 – Ã1

A11
+ ε –

A
A11

〈
N1(t)

〉
+ t–1(ϑ1(t)p̃ + ϑ2(t)q̃ + ϑ3(t)

)
(3.21)

and

t–1[ln N2(t) – ln N2(0)
]

≤ A2 – Ã2

A22
+ ε –

A
A22

〈
N2(t)

〉
+ t–1(ϑ1(t)p̄ + ϑ2(t)q̄ + ϑ3(t)

)
. (3.22)

Applying Lemma 2.1 to (3.21) and (3.22) again, for sufficiently large t, we obtain

〈
N1(t)

〉∗ ≤ A1 – Ã1

A
,

〈
N2(t)

〉∗ ≤ A2 – Ã2

A
.
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By the definition of sup limit, we deduce from (3.4) that

t–1[ln N3(t) – ln N3(0)
] ≤ b3 + a31

〈
N1(t)

〉∗ + a32
〈
N2(t)

〉∗ – a33
〈
N3(t)

〉
+ t–1ϑ3(t).

Therefore, Lemma 2.1 implies

〈
N3(t)

〉∗ ≤ A3 – Ã3

A
.

By the same way, from (3.2) and (3.3), we obtain

t–1[ln N1(t) – ln N1(0)
]

≥ b1 – a11
〈
N1(t)

〉
– a12

〈
N2(t)

〉∗ – a13
〈
N3(t)

〉∗ + t–1ϑ1(t) (3.23)

and

t–1[ln N2(t) – ln N2(0)
]

≥ b2 – a21
〈
N1(t)

〉∗ – a22
〈
N2(t)

〉
– a23

〈
N3(t)

〉∗ + t–1ϑ2(t). (3.24)

Substituting 〈N1(t)〉∗ ≤ A1–Ã1
A , 〈N2(t)〉∗ ≤ A2–Ã2

A , 〈N3(t)〉∗ ≤ A3–Ã3
A into (3.23) and (3.24) and

using Lemma 2.1, we have

〈
N1(t)

〉

∗ ≥ A1 – Ã1

A
,

〈
N2(t)

〉

∗ ≥ A2 – Ã2

A
.

Therefore,

lim
t→∞

〈
N1(t)

〉
=

A1 – Ã1

A
, lim

t→∞
〈
N2(t)

〉
=

A2 – Ã2

A
, lim

t→∞
〈
N3(t)

〉
=

A3 – Ã3

A
,

which is the required assertion.
If b1 > 0, b2 > 0, A3 < Ã3, then the proof is similar to case (iii), and we omit it here. The

proof is completed. �

Remark 3.1 By the process of our proof, if considering the effect of Lévy jumps, one can
also establish sufficient conditions preserving the stability in mean and extinction of all
species. Here we move some restricting conditions like R > 0 and b1 > b2, which appeared
in [6].

4 Stability in distribution
Theorem 4.1 The solution of model (1.2) is a stationary Markov process, that is, there
exists a stationary distribution for system (1.2) if Assumption 2.2 holds.

Proof Define

V̂ = R1
Np

1
p

+ R2
Np

2
p

+ R3

(
Np

3
p

+
a31yp+1

1
σ1(p + 1)

+
a32yp+1

2
σ2(p + 1)

)

,
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where R1, R2, R3 are positive constants defined later. By Itô’s formula, we have

LV̂ (t) = R1N1(t)p
(

r1 – a11N1(t) – a12y2(t) – a13y3(t) +
p – 1

2
ξ 2

1

)

+ R2N2(t)p
(

r2 – a21y1(t) – a22N2(t) – a23y3(t) +
p – 1

2
ξ 2

2

)

+ R3N3(t)p
(

–r3 + a31y1(t) + a32y2(t) – a33N3(t) +
p – 1

2
ξ 2

1

)

+ R3
a31

p + 1
(
Np+1

1 (t) – yp+1
1 (t)

)
+ R3

a32

p + 1
(
Np+1

2 (t) – yp+1
2 (t)

)

≤ R1N1(t)p
(

r1 +
p – 1

2
ξ 2

1 – a11N1(t)
)

+ R2N2(t)p
(

r2 +
p – 1

2
ξ 2

2 – a22N2(t)
)

+ R3N3(t)p
(

–r3 +
p – 1

2
ξ 2

1 – a33N3(t)
)

+ R3a31
pNp+1

3 (t) + yp+1
1 (t)

p + 1

+ R3a32
pNp+1

3 (t) + yp+1
2 (t)

p + 1
+ R3

a31

p + 1
(
Np+1

1 (t) – yp+1
1 (t)

)

+ R3
a32

p + 1
(
Np+1

2 (t) – yp+1
2 (t)

)

= R1N1(t)p
(

r1 +
p – 1

2
ξ 2

1 – a11N1(t)
)

+ R2N2(t)p
(

r2 +
p – 1

2
ξ 2

2 – a22N2(t)
)

+ R3N3(t)p
(

–r3 +
p – 1

2
ξ 2

1 – a33N3(t)
)

+ R3
pNp+1

3 (t)
p + 1

(a31 + a32)

+ R3
a31

p + 1
Np+1

1 (t) + R3
a32

p + 1
Np+1

2 (t)

= R1N1(t)p
(

r1 +
p – 1

2
ξ 2

1

)

+ R2N2(t)p
(

r2 +
p – 1

2
ξ 2

2

)

+ R3N3(t)p
(

–r3 +
p – 1

2
ξ 2

1

)

+
(

–R1a11 + R3
a31

p + 1

)

Np+1
1 (t)

+
(

–R2a22 + R3
a32

p + 1

)

Np+1
2 (t) +

(

–R3a33 + R3
p(a31 + a32)

p + 1

)

Np+1
3 (t).

By Assumption 2.2, there exist positive constants

R1 =
p + 1 + R3a31

(p + 1)a11
> 0, R2 =

p + 1 + R3a32

(p + 1)a22
> 0,

R3 =
p + 1

(p + 1)a33 – p(a31 + a32)
> 0

such that

LV̂ ≤ –
(
Np+1

1 (t) + Np+1
2 (t) + Np+1

3 (t)
)

+ R1N1(t)p
(

r1 +
p – 1

2
ξ 2

1

)

+ R2N2(t)p
(

r2 +
p – 1

2
ξ 2

2

)

+ R3N3(t)p
(

–r3 +
p – 1

2
ξ 2

1

)

.
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Define V̆ = V̂ +
∑3

i=1
yp+1

i
2σi

, then

LV̆ ≤ –
1
2
(
Np+1

1 (t) + Np+1
2 (t) + Np+1

3 (t) + yp+1
1 (t) + yp+1

2 (t) + yp+1
3 (t)

)

+ R1N1(t)p
(

r1 +
p – 1

2
ξ 2

1

)

+ R2N2(t)p
(

r2 +
p – 1

2
ξ 2

2

)

+ R3N3(t)p
(

–r3 +
p – 1

2
ξ 2

1

)

.

Let

Ṽ (t) =
3∑

i=1

(
1

N ι
i (t)

– ln yi(t)
)

.

Applying Itô’s formula to Ṽ (t) yields

LṼ = –
σ1(N1(t) – y1(t))

y1(t)
–

σ2(N2(t) – y2(t))
y2(t)

–
σ3(N3(t) – y3(t))

y3(t)

– ι
(
N1(t)

)–ι

(

r1 – a11N1(t) – a12y2(t) – a13y3(t) –
ι + 1

2
ξ 2

1

)

– ι
(
N2(t)

)–ι

(

r2 – a21y1(t) – a22N2(t) – a23y3(t) –
ι + 1

2
ξ 2

2

)

– ι
(
N3(t)

)–ι

(

–r3 + a31y1(t) + a32y2(t) – a33N3(t) –
ι + 1

2
ξ 2

3

)

≤ –ι
r1 – ι+1

2 ξ 2
1

N ι
1

+ a11ιN1–ι
1 (t) + a12ι

y2
2 + N–2ι

1
2

+ a13ι
y2

3 + N–2ι
1

2

–
σ1(N1(t) – y1(t))

y1(t)
+ a22ιN1–ι

2 (t) + a21ι
y2

1 + N–2ι
2

2
+ a23ι

y2
3 + N–2ι

2
2

–
σ2(N2(t) – y2(t))

y2(t)
– ι

–r3 – ι+1
2 ξ 2

3

N ι
3

+ a33ιN1–ι
3 (t) –

σ3(N3(t) – y3(t))
y3(t)

= σ1 + σ2 + σ3 – ι
r1 – ι+1

2 ξ 2
1

N ι
1

– ι
r2 – ι+1

2 ξ 2
2

N ι
2

– ι
–r3 – ι+1

2 ξ 2
3

N ι
3

+ a21ιy2
1/2 + a12ιy2

2/2 + (a13 + a23)ιy2
3/2 + (a12 + a13)ιN–2ι

1 /2

+ (a21 + a23)ιN–2ι
2 /2 + a11ιN1–ι

1 (t)

+ a22ιN1–ι
2 (t) + a33ιN1–ι

3 (t) –
σ1N1(t)

y1(t)
–

σ2N2(t)
y2(t)

–
σ3N3(t)

y3(t)
.

Define V (t) = V̆ (t) + Ṽ (t), then

LV = LV̆ + LṼ

≤ σ + M –
1
4
(
Np+1

1 (t) + Np+1
2 (t) + Np+1

3 (t) + yp+1
1 (t) + yp+1

2 (t) + yp+1
3 (t)

)

– ι
r1 – ι+1

2 ξ 2
1

N ι
1

– ι
r2 – ι+1

2 ξ 2
2

N ι
2

– ι
–r3 – ι+1

2 ξ 2
3

N ι
3
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–
σ1N1(t)

y1(t)
–

σ2N2(t)
y2(t)

–
σ3N3(t)

y3(t)
,

where σ = σ1 + σ2 + σ3, and

M = max
Ni ,yi∈R6

+

{

–
1
4

3∑

i=1

(
Np+1

i (t) + yp+1
i (t)

)
+ R1N1(t)p

(

r1 +
p – 1

2
ξ 2

1

)

+ R2N2(t)p
(

r2 +
p – 1

2
ξ 2

2

)

+ R3N3(t)p
(

–r3 +
p – 1

2
ξ 2

1

)

+
a21ιy2

1
2

+
a12ιy2

2
2

+
(a13 + a23)ιy2

3
2

+
(a12 + a13)ιN–2ι

1
2

+
(a21 + a23)ιN–2ι

2
2

+ a11ιN1–ι
1 (t) + a22ιN1–ι

2 (t) + a33ιN1–ι
3 (t)

}

.

Choose ε > 0 small enough such that

0 < ε < min

{(
ι(ri – ξ2

i
2 (ι + 1)

σ + M + 1

) 1
ι

,
(

1
4(σ + M + 1)

) 1
p+1

,
σi

σ + M + 1
, i = 1, 2, 3

}

.

Define the following bounded closed set:

Dε =
{

(N1, N2, N3, y1, y2, y3) ∈ R6
+

∣
∣
∣ε < Ni <

1
ε

, ε2 < yi <
1
ε

, i = 1, 2, 3
}

,

and for i = 1, 2, 3, denote

Di
ε =

{

(N1, N2, N3, y1, y2, y3) ∈ R6
+

∣
∣
∣Ni >

1
ε

}

,

Di+3
ε =

{

(N1, N2, N3, y1, y2, y3) ∈ R6
+

∣
∣
∣yi >

1
ε

}

,

Di+6
ε =

{
(N1, N2, N3, y1, y2, y3) ∈ R6

+

∣
∣
∣0 < Ni < ε

}
,

Di+9
ε =

{

(N1, N2, N3, y1, y2, y3) ∈ R6
+

∣
∣
∣ε < Ni <

1
ε

, 0 < yi < ε2
}

.

Denote the complement of Dε by DC
ε , then it is easy to get DC

ε =
⋃12

j=1 Dj
ε . For all

(N1, N2, N3, y1, y2, y3) ∈ DC
ε , we discuss as follows.

(i) If (N1, N2, N3, y1, y2, y3) ∈ Di
ε , i = 1, 2, 3, then

LV ≤ σ + M –
1
4

Np
i ≤ σ + M –

1
4εp+1 < –1;

(ii) If (N1, N2, N3, y1, y2, y3) ∈ Di+3
ε , i = 1, 2, 3, then

LV ≤ σ + M –
1
4

yp
i ≤ σ + M –

1
4εp+1 < –1;
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(iii) If (N1, N2, N3, y1, y2, y3) ∈ Di+6
ε , i = 1, 2, 3, then

LV ≤ σ + M – ι
ri – ξ2

i
2 (ι + 1)
N ι

i
≤ σ + M – ι

ri – ξ2
i
2 (ι + 1)
ει

< –1;

(iv) If (N1, N2, N3, y1, y2, y3) ∈ Di+9
ε , i = 1, 2, 3, then

LV ≤ σ + M – σiNi/yi ≤ σ + M – σiε/ε2 < –1.

Consequently, for any (N1, N2, N3, y1, y2, y3) ∈ DC
ε , we have

sup
(N1,N2,N3,y1,y2,y3)∈R6

+

LV (N1, N2, N3, y1, y2, y3) ≤ –1.

Therefore, it follows from Lemma 2.4 that there exists a stationary distribution for system
(1.2). The proof is completed. �

Theorem 4.2 Under Assumption 2.2, solutions of model (1.2) are globally attractive.

Proof Firstly, let N(t) = N(t, N(φ)) and N̄(t) = N̄(t, N̄(φ)) be any two solutions of model
(1.1) with the initial data N(φ), N̄(φ) ∈ C([–τ , 0], R3

+). We only need to prove
limt→∞ E|Ni(t) – N̄i(t)| = 0 for i = 1, 2, 3.

Define

V (t) =
3∑

i=1

Di
∣
∣ln Ni(t) – ln N̄i(t)

∣
∣,

where Di (i = 1, 2, 3) is defined later in the proof. By computing the upper right derivative
of V (t), then

D+V (t) ≤ D1sign
(
N1(t) – N̄1(t)

)[
–a11

(
N1(t) – N̄1(t)

)
– a12

(
y2(t) – ȳ2(t)

)

– a13
(
y3(t) – ȳ3(t)

)]
dt + D2sign

(
N2(t) – N̄2(t)

)

× [
–a21

(
y1(t) – ȳ1(t)

)
– a22

(
N2(t) – N̄2(t)

)
– a23

(
y3(t) – ȳ3(t)

)]
dt

+ D3sign
(
N3(t) – N̄3(t)

)[
a31

(
y1(t) – ȳ1(t)

)
+ a32

(
y2(t) – ȳ2(t)

)

– a33
(
Ny3(t) – N̄3(t)

)]
dt.

(4.1)

On the other hand, by (1.2), we have

d(yi – ȳi)
dt

= σi(Ni – N̄i) – σi(yi – ȳi), i = 1, 2, 3,

that is,

yi(t) – ȳi(t) = e–σ1t(yi(0) – ȳi(0)
)

+ σ1e–σ1t
∫ t

0
eσ1s(Ni(s) – N̄i(s)

)
ds, i = 1, 2, 3.

Therefore,

∣
∣yi(t) – ȳi(t)

∣
∣ ≤ e–σ1t∣∣yi(0) – ȳi(0)

∣
∣ + σ1e–σ1t

∫ t

0
eσ1s∣∣Ni(s) – N̄i(s)

∣
∣ds, i = 1, 2, 3.
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Integrating two sides of the above inequality from 0 to t, we have

∫ t

0

∣
∣yi(t) – ȳi(t)

∣
∣ ≤ 1 – e–σ1t

σi

∣
∣yi(0) – ȳi(0)

∣
∣ + σi

∫ t

0
dv

∫ v

0
eσ1(s–v)∣∣Ni(s) – N̄i(s)

∣
∣ds

=
1 – e–σ1t

σi

∣
∣yi(0) – ȳi(0)

∣
∣ +

∫ t

0

(
1 – eσ1(s–t))∣∣Ni(s) – N̄i(s)

∣
∣ds

≤ 1
σi

∣
∣yi(0) – ȳi(0)

∣
∣ +

∫ t

0

∣
∣Ni(s) – N̄i(s)

∣
∣ds, i = 1, 2, 3.

Integrating both sides of (4.1) from 0 to t and taking expectations give

V (t) ≤ V (0) + D1

(

–a11

∫ t

0

∣
∣N1(s) – N̄1(s)

∣
∣ds + a12

∫ t

0

∣
∣y2(s) – ȳ2(s)

∣
∣ds

+ a13

∫ t

0

∣
∣y3(s) – ȳ3(s)

∣
∣ds

)

+ D2

(

–a22

∫ t

0

∣
∣N2(s) – N̄2(s)

∣
∣ds

+ a21

∫ t

0

∣
∣y1(s) – ȳ1(s)

∣
∣ds + a23

∫ t

0

∣
∣y3(s) – ȳ3(s)

∣
∣ds

)

+ D3

(

–a33

∫ t

0

∣
∣N3(s) – N̄3(s)

∣
∣ds + a31

∫ t

0

∣
∣y1(s) – ȳ1(s)

∣
∣ds

+ a32

∫ t

0

∣
∣y2(s) – ȳ2(s)

∣
∣ds

)

≤ V (0) + (D2a31 + D3a21 – D1a11)
∫ t

0

∣
∣N1(s) – N̄1(s)

∣
∣ds

+ (D1a12 + D3a32 – D2a22)
∫ t

0

∣
∣N2(s) – N̄2(s)

∣
∣ds

+ (D1a13 + D2a23 – D3a33)
∫ t

0

∣
∣N3(s) – N̄3(s)

∣
∣ds

+
D2a21 + D3a31

σ1

∣
∣y1(0) – ȳ1(0)

∣
∣ +

D1a12 + D3a32

σ2

∣
∣y2(0) – ȳ2(0)

∣
∣

+
D1a13 + D2a23

σ3

∣
∣y3(0) – ȳ3(0)

∣
∣.

For the following equations,

⎧
⎪⎪⎨

⎪⎪⎩

D1a11 – D2a21 – D3a31 = 1,

–D1a12 + D2a22 – D3a32 = 1,

–D1a13 – D2a23 + D3a33 = 1,

under Assumption 2.2, the coefficient matrix of D1, D2, and D3 is a nonsingular M-matrix,
then by M-matrix theory, there exists Di > 0 (i = 1, 2, 3) satisfying the equation. Therefore,

V (t) +
∫ t

0

∣
∣N1(s) – N̄1(s)

∣
∣ds +

∫ t

0

∣
∣N2(s) – N̄2(s)

∣
∣ds +

∫ t

0

∣
∣N3(s) – N̄3(s)

∣
∣ds

≤ V (0) +
D2a21 + D3a31

σ1

∣
∣y1(0) – ȳ1(0)

∣
∣ +

D1a12 + D3a32

σ2

∣
∣y2(0) – ȳ2(0)

∣
∣
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+
D1a13 + D2a23

σ3

∣
∣y3(0) – ȳ3(0)

∣
∣

< +∞,

which means |Ni(t) – N̄i(t)| ∈ L1[0, +∞). Consequently, we can derive from Lemma 2.5
and Lemma 2.6 that

lim
t→∞

∣
∣Ni(t) – N̄i(t)

∣
∣ = 0, i = 1, 2, 3.

The proof is completed. �

Remark 4.1 Combining the existence of distribution and the global attractivity of solu-
tions of (1.2), we conclude that system (1.2) has a unique distribution, which is stable.

5 Numerical simulations
In this section, we give some numerical simulations to validate our theoretical results.
By the Milstein higher order method proposed by Higham [32], we numerically simulate
the solutions of system (1.2). Using discretization Brownian path over [0, T] and writ-
ing efficient Matlab codes, we can obtain the corresponding simulation figures one by
one.

Let

A =

∣
∣
∣
∣
∣
∣
∣

0.4 0.1 0.15
0.2 0.4 0.1

–0.15 –0.1 0.4

∣
∣
∣
∣
∣
∣
∣

= 0.0645, σ1 = σ2 = σ3 = 1,

r1 = 0.31, r2 = 0.31, r3 = 0.01.

In the following, without special mention, we only change the parameter of white noise
and keep the rest of parameters unchanged so as to clearly see the dynamical effect of
white noise.

Case (i) b1 < 0, b2 < 0.
Let ξ1 = 0.8, ξ2 = 0.8, ξ3 = 0.5292, then an easy computation yields b1 = –0.01, b2 = –0.01,

b3 = –0.15. It follows from Theorem 3.1 that all species are extinct, illustrated in Fig. 1.
Case (ii) b1 < 0, b2 > 0.
Let ξ1 = 0.8, ξ2 = 0.4, ξ3 = 0.01, then b1 = –0.01, b2 = 0.23, b3 = –0.01, and 	∗

1 = 0.019,
	̃∗

1 = 0.093, A11 = 0.17, 	1–	̃1
A11

= 0.019/0.17 = 0.1118, 	∗
1–	̃∗

1
A11

= 0.093/0.17 = 0.5471. By The-
orem 3.1, then

lim
t→∞ N1(t) = 0, lim

t→∞
〈
N2(t)

〉
= 0.5471,

lim
t→∞

〈
N3(t)

〉
= 0.1118,

which is illustrated in Fig. 2(a).
If r3 = 0.1, ξ1 = 0.8, ξ2 = 0.469, ξ3 = 0.01, then b1 = –0.01, b2 = 0.2, b3 = –0.1, b2a32 +

b3a22 = –0.02 < 0. Hence, Theorem 3.1 implies N1(t), N3(t) are both extinct, and species
N2(t) is stable in mean, and limt→∞〈N2(t)〉 = 0.5, see Fig. 2(b).
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Figure 1 Extinction of all species of system (1.2) with ξ1 = 0.8, ξ2 = 0.8, ξ3 = 0.5292. (a) Extinction of N1, N2,
N3. (b) Extinction of y1, y2, y3

Figure 2 Dynamical behavior of (1.2). (a) is for (1.2) with ξ1 = 0.8, ξ2 = 0.4, ξ3 = 0.01, then limt→∞ N1(t) = 0,
limt→∞〈N2(t)〉 = 0.5471, limt→∞〈N3(t)〉 = 0.1118, (b) is for (1.2) with r3 = 0.1, ξ1 = 0.8, ξ2 = 0.469, ξ3 = 0.01,
then N1(t), N3(t) are both extinct, limt→∞〈N2(t)〉 = 0.5

Case (iii) b1 > 0, b2 < 0.
Let ξ1 = 0.4, ξ2 = 0.8, ξ3 = 0.01, then b1 = 0.23, b2 = –0.01, b3 = –0.01. By computation,

	2 – 	̃2 = 0.0305, 	∗
2 – 	̃∗

2 = 0.0935, A22 = 0.1825. Hence, it follows from Theorem 3.1
that N2(t) is extinct, and

lim
t→∞

〈
N1(t)

〉
=

	∗
2 – 	̃∗

2
A22

= 0.1671, lim
t→∞

〈
N3(t)

〉
=

	2 – 	̃2

A22
= 0.5123.

Figure 3(a) verifies it correctly.
If r3 = 0.1, ξ1 = 0.469, ξ2 = 0.8, ξ3 = 0.01, then b1 = 0.2, b2 = –0.01, b3 = –0.1, and b1a31 +

b3a11 – 0.01. Theorem 3.1 indicates that N2(t), N3(t) are both extinct and limt→∞〈N1(t)〉 =
0.2/0.4 = 0.5, see Fig. 3(b).

Case (iv) b1 > 0, b2 > 0.
We choose ξ1 = 0.1414, ξ2 = 0.1414, ξ3 = 0.2 such that b1 = 0.3, b2 = 0.3, b3 = –0.03.

By computation, then A1 – Ã1 = 0.036, A2 – Ã2 = 0.0266, A3 – Ã3 = 0.0153. Therefore, by
Theorem 3.1, we have

lim
t→∞

〈
N1(t)

〉
=

A1 – Ã1

A
= 0.5581, lim

t→∞
〈
N2(t)

〉
=

A2 – Ã2

A
= 0.4124,
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Figure 3 Dynamical behavior of (1.2). (a) is for system (1.2) with ξ1 = 0.4, ξ2 = 0.8, ξ3 = 0.01, then N2(t) is
extinct, and limt→∞〈N1(t)〉 = 0.1671, limt→∞〈N3(t)〉 = 0.5123. (b) is for system (1.2) with r3 = 0.1, ξ1 = 0.469,
ξ2 = 0.8, ξ3 = 0.01, then N2(t), N3(t) are both extinct and limt→∞〈N1(t)〉 = 0.5

Figure 4 Stable case of (1.2) with ξ1 = 0.1414, ξ2 = 0.1414, ξ3 = 0.2. Theorem 3.1 shows that

limt→∞〈N1(t)〉 = A1–Ã1
A = 0.5581, limt→∞〈N2(t)〉 = A2–Ã2

A = 0.4124, limt→∞〈N3(t)〉 = A3–Ã3
A = 0.2372

lim
t→∞

〈
N3(t)

〉
=

A3 – Ã3

A
= 0.2372,

which is illustrated in Fig. 4.
By use of Theorems 4.1 and 4.2, we know that system (1.2) has a unique distribution,

which is revealed in Figs. 5 and 6. Figure 5 is the probability density function of preys N1(t),
N2(t) and predator N3(t), respectively. Figure 6 shows the attractivity of the solutions. They
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Figure 5 Probability density function of preys N1(t),
N2(t) and predator N3(t) of (1.2) with ξ1 = 0.1414,
ξ2 = 0.1414, ξ3 = 0.2

Figure 6 Attractivity of solutions of system (1.2)

both indicate the existence and stability of stationary distribution function. The simulation
results verify that when the condition is satisfied, that is, the white noise is relatively small,
system (1.2) is stable.

If ξ1 = 0.1414, ξ2 = 0.1414, ξ3 = 0.5292, then b1 = 0.3, b2 = 0.3, b3 = –0.15. By computa-
tion, we have A3 – Ã3 = –0.0015 < 0, 	3 – 	̃3 = 0.06, 	∗

3 – 	̃∗
3 = 0.09, A33 = 0.14, which

guarantees that the condition of case (iv) holds, and hence Theorem 3.1 implies the two-
prey are stable in mean and the predator N3 is extinct, further,

lim
t→∞

〈
N1(t)

〉
=

	3 – 	̃3

A33
= 0.4286, lim

t→∞
〈
N2(t)

〉
=

	∗
3 – 	̃∗

3
A33

= 0.6429
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Figure 7 Dynamical behavior of (1.2) with ξ1 = 0.1414, ξ2 = 0.1414, ξ3 = 0.5292. Theorem 3.1 implies the two

prey are stable in mean and the predator N3 is extinct, and limt→∞〈N1(t)〉 = 	3–	̃3
A33

= 0.4286,

limt→∞〈N2(t)〉 = 	∗
3–	̃

∗
3

A33
= 0.6429, limt→∞〈N3(t)〉 = 0

and

lim
t→∞

〈
N3(t)

〉
= 0.

Figure 7 indicates the result is true.

6 Conclusion and discussion
In this paper, we consider a three-species stochastic predator–prey system with dis-
tributed delays. Theorem 3.1 gives sufficient conditions of the stability in mean and ex-
tinction of each species. Theorems 4.1 and 4.2 give the existence and uniqueness of distri-
bution of each species. Finally, by numerical simulations, we illustrate the validity of our
theoretical results.

Theorem 3.1 implies that stochastic parameter ξi (i = 1, 2, 3) has some important influ-
ences to the extinction, stability in mean of all species of (1.2), which is illustrated by our
simulations clearly. Simulations reveal that small intensity of white noise strengthens the
stability of (1.2), while large intensity of white noise will bring serious influence to the
dynamical behavior.

Recently, regime switching appears in a biological system frequently, and many nice re-
sults have been obtained by many researchers. How about the white noise affecting the



Zhao and Shao Advances in Difference Equations        (2021) 2021:344 Page 22 of 27

dynamical behavior of a predator–prey system with regime switching? We believe it is
very interesting and leave it for our future work.

Appendix
A.1 Proof of Lemma 2.2
Let Ni(t) = exi(t), yi(t) = eMi(t), then (1.2) is transformed to the following equivalent system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = (r1 – a11ex1(t) – a12eM2(t) – a13eM3(t)) dt + ξ1 dω1(t),

dx2(t) = (r2 – a21eM1(t) – a22ex2(t) – a23eM3(t)) dt + ξ2 dω2(t),

dx3(t) = (–r3 + a31eM1(t) + a32eM2(t) – a33ex3(t)) dt + ξ3 dω3(t),

dM1(t) = σ1(ex1(t)–M1(t) – 1) dt,

dM2(t) = σ2(ex2(t)–M2(t) – 1) dt,

dM3(t) = σ3(ex3(t)–M3(t) – 1) dt.

(A.1)

Clearly the coefficients of (A.1) obey the local Lipschitz condition, then it has a unique
local solution on [0, τe), where τe is the explosion time. According to Itô’s formula, we can
see that Ni(t) = exi(t), yi(t) = eMi(t) (i = 1, 2, 3) is the unique positive local solution of (1.2).
So we only need to prove τe = ∞. To this end, we employ the method of Theorem 3.1
Mao et al. [33] and Zuo et al. [20]. The key step is to construct a nonnegative C2-function
V : R6

+ → R+ such that

lim inf
(N1,N2,N3,y1,y2,y3)∈R6

+\Uk ,k→∞
V (N1, N2, N3, y1, y2, y3) = ∞

and

LV (N1, N2, N3, y1, y2, y3) ≤ M,

where Uk = ( 1
k , k) × ( 1

k , k) × ( 1
k , k) × ( 1

k , k) × ( 1
k , k) × ( 1

k , k) and M is a positive constant.
Define

V = R1
Np

1
p

+ R2
Np

2
p

+ R3

(
Np

3
p

+
a31yp+1

1
σ1(p + 1)

+
a32yp+1

2
σ2(p + 1)

)

+
3∑

i=1

yp+1
i

2σi

–
3∑

i=1

ln Ni –
3∑

i=1

ln yi

= V̆ –
3∑

i=1

ln Ni –
3∑

i=1

ln yi,

where p > 1, R1, R2, R3 are positive constants defined in Theorem 4.1.
Obviously,

lim inf
(N1,N2,N3,y1,y2,y3)∈R6

+\Uk ,k→∞
V (N1, N2, N3, y1, y2, y3) → ∞ as k → ∞
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since

– ln N → ∞ as N → 0+ and kNp – ln N → ∞ as N → ∞, wherek > 0, p > 1.

On the other hand, by the proof of Theorem 4.1, we have

LV̆ (t) ≤ –
1
2
(
Np+1

1 (t) + Np+1
2 (t) + Np+1

3 (t) + yp+1
1 (t) + yp+1

2 (t) + yp+1
3 (t)

)

+ R1N1(t)p
(

r1 +
p – 1

2
ξ 2

1

)

+ R2N2(t)p
(

r2 +
p – 1

2
ξ 2

2

)

+ R3N3(t)p
(

–r3 +
p – 1

2
ξ 2

1

)

.

By Itô’s formula, we have

L

(

–
3∑

i=1

ln Ni –
3∑

i=1

ln yi

)

= –
2∑

i=1

ri + r3 +
3∑

i=1

σi +
3∑

i=1

ξ 2
i
2

+
3∑

i=1

aiiNi + a12y2 + a13y3

+ a21y1 + a23y3 – a31y1 – a32y2 –
3∑

i=1

Ni

yi

≤ r3 +
3∑

i=1

σi +
3∑

i=1

ξ 2
i
2

+
3∑

i=1

aiiNi + a12y2 + a13y3 + a21y1 + a23y3.

Therefore,

LV ≤ r3 +
3∑

i=1

σi +
3∑

i=1

ξ 2
i
2

+ M̃,

where M̃ = maxNi ,yi∈(0,∞){– 1
2 (Np+1

1 (t) + Np+1
2 (t) + Np+1

3 (t) + yp+1
1 (t) + yp+1

2 (t) + yp+1
3 (t)) +

R1N1(t)p(r1 + p–1
2 ξ 2

1 ) + R2N2(t)p(r2 + p–1
2 ξ 2

2 ) + R3N3(t)p(–r3 + p–1
2 ξ 2

1 ) +
∑3

i=1 aiiNi + a12y2 +

a13y3 +a21y1 +a23y3}. Let M = r3 +
∑3

i=1 σi +
∑3

i=1
ξ2

i
2 +M̃, then LV (N1, N2, N3, y1, y2, y3) ≤ M.

The proof is completed.

A.2 Proof of Lemma 2.3
The methods applied here are motivated by [20]. Let

V̆ (t) = R1
Np

1
p

+ R2
Np

2
p

+ R3

(
Np

3
p

+
a31yp+1

1
σ1(p + 1)

+
a32yp+1

2
σ2(p + 1)

)

+
3∑

i=1

yp+1
i

2σi
,

as defined in Theorem 4.1, where

R1 =
p + 1 + R3a31

(p + 1)a11
> 0, R2 =

p + 1 + R3a32

(p + 1)a22
> 0,

R3 =
p + 1

(p + 1)a33 – p(a31 + a32)
> 0.
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Then, by the proof of Theorem 4.1, we have

LV̆ (t) ≤ –
1
2
(
Np+1

1 (t) + Np+1
2 (t) + Np+1

3 (t) + yp+1
1 (t) + yp+1

2 (t) + yp+1
3 (t)

)

+ R1N1(t)p
(

r1 +
p – 1

2
ξ 2

1

)

+ R2N2(t)p
(

r2 +
p – 1

2
ξ 2

2

)

+ R3N3(t)p
(

–r3 +
p – 1

2
ξ 2

1

)

.

For any k > 0, we compute

L
(
ektV̆ (t)

)
= kektV̆ (t) + ektLV̆ (t)

≤ ekt
(

–
1
2
(
Np+1

1 (t) + Np+1
2 (t) + Np+1

3 (t)
)

+
(

–
1
2

+ k
(

R3a31

σ1(p + 1)
+

1
2σ1

))

yp+1
1

+
(

–
1
2

+ k
(

R3a32

σ1(p + 1)
+

1
2σ2

))

yp+1
2 +

(

–
1
2

+
k

2σ3

)

yp+1
3 (t)

+ R1N1(t)p
(

r1 +
p – 1

2
ξ 2

1 +
k
p

)

+ R2N2(t)p
(

r2 +
p – 1

2
ξ 2

2 +
k
p

)

+ R3N3(t)p
(

–r3 +
p – 1

2
ξ 2

1 +
k
p

))

.

Choosing k sufficiently small such that

1
2

– k
(

R3a31

σ1(p + 1)
–

1
2σ1

)

> 0,
1
2

– k
(

R3a32

σ1(p + 1)
–

1
2σ2

)

,
1
2

–
k

2σ3
> 0,

we have

L
(
ektV̆ (t)

) ≤ Mekt ,

where

M = max
Ni(t)>0,i=1,2,3

{

–
1
2

Np+1
1 (t) + R1

(

r1 +
p – 1

2
ξ 2

1 +
k
p

)

N1(t)p –
1
2

Np+1
2 (t)

+ R2

(

r2 +
p – 1

2
ξ 2

2 +
k
p

)

N2(t)p –
1
2

Np+1
3 (t) + R3

(

–r3 +
p – 1

2
ξ 2

1 +
k
p

)

N3(t)p
}

.

Applying the same method of Lemma 5.1 in [17] and integrating both sides of L(ektV̆ (t))
and taking expectation lead to

E
(
V̆ (t)

) ≤ H , t ≥ 0, a.s.,

where H is a constant. By the monotonicity of the expectation, we can derive that

E
(
Np

i
) ≤ pH

Ri
and E

(
yp+1

i
) ≤ 2σiH , i = 1, 2, 3.
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By the Cauchy–Schwarz inequality, there exists �(p) such that

E
(
yp

i
) ≤ �(p)

[
E(yp+1

i
] p

p+1 ≤ �(p)(2σiH)
p

p+1 .

Denote K(p) = max{ pH
Ri

,�(p)(2σiH)
p

p+1 , i = 1, 2, 3}, then

E
(
Np

i
) ≤ K(p) and E

(
yp

i
) ≤ K(p).

Next computing the derivative of V̆ (t) reads

dV̆ (t) = LV̆ (t) dt +
3∑

i=1

RiξiN
p
i (t) dwi(t), i = 1, 2, 3.

For small τ > 0 enough and n = 1, 2, . . . , we integrate both sides of dV̆ (t) from nτ to t and
take expectation, then

E
(

sup
nτ≤t≤(n+1)τ

V̆ (t)
)

≤ E
(
V̆ (nτ )

)
+ E

(

sup
nτ≤t≤(n+1)τ

∣
∣
∣
∣

∫ t

nτ

LV̆ (s) ds
∣
∣
∣
∣

)

+
3∑

i=1

RiξiE( sup
nτ≤t≤(n+1)τ

∫ t

nτ

Np
i dwi(s)|.

Again using a similar proof of Lemma 5.1 in [17], for any positive constant ε and any
finitely many n, one can derive that

sup
nτ≤t≤(n+1)τ

V̆ (t)) ≤ (nτ )1+ε , a.s.

Letting ε → 0 leads to

lim sup
t→∞

ln V̆ (t)
ln t

≤ 1, a.s.,

which implies

lim sup
t→∞

ln yi(t)
ln t

≤ 1
p + 1

, i = 1, 2, 3, a.s.

Fixing ε0 = p
2(p+1) , then there exists T > 0 such that ln yi(t) ≤ ( 1

p+1 + ε0) ln t for all t > T .
Therefore,

lim sup
t→∞

yi(t)
t

≤ lim sup
t→∞

tε0– p
p+1 = 0, a.s.

Together with the positivity of yi(t), we have

lim
t→∞

yi(t)
t

= 0.
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Similarly, we can derive that

lim sup
t→∞

ln Ri
p Np

i (t)
ln t

≤ 1, a.s.,

that is, lim supt→∞
ln Ni(t)

ln t ≤ 1
p , a.s. By the same deduction, we have

lim sup
t→∞

ln Ni(t)
t

≤
(

1
p

+ ε0

)

lim sup
t→∞

ln t
t

= 0, i = 1, 2, 3, a.s.

The proof is confirmed.
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