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Abstract
Fractional calculus as was predicted by Leibniz to be a paradox, has nowadays
evolved to become a centre of interest for many researchers from various
backgrounds. As a result, multiple innovative ideas had emerged, which caused
significant divisions regarding fractional calculus in the past three years. Therefore,
this work is aimed at developing a mathematical model that could be used to depict
the survival of fractional calculus. Six classes are herein considered to construct a
mathematical model with six ordinary differential equations. All elementary analysis
have been performed. Additionally, a new analysis including strength number that
accounts for the accelerative information of nonlinear and linear parts of a given
epidemiological model is introduced. An analysis of the second derivative of the
Lyapunov function as well as an analysis of the second derivative of each class is
applied to assess how a wave could be detected. It is strongly believed that this new
analysis will particularly open new doors within the field of epidemiological
modelling, which will aid researchers to better understand the spread of infectious
diseases. The stochastic version of the suggested model was also investigated, and
numerical simulations were performed. The obtained reproductive number, strength
number, extinction of criticism together with numerical simulation, revealed that the
field of fractional calculus will be stable will therefore have no significant effect soon.

Keywords: Model of survival of fractional calculus; Strength number; Second
derivative; Nonsingular kernel; Stochastic model

1 Introduction
Fractional differentiation and integration are fast spreading topics that have become a
center of interest in multiple research works due to their wider application. Researchers
from all fields have since been attracted by this topic [1–10]. The topic was derived from
a question raised by L’Hopital to Leibniz, which initially brought up the differentiation
of exponential functions [4]. Later onwards Liouville suggested a name of the derivative
with a fractional index and simultaneously warned that the properties of this new oper-
ator should not be associated with those of the classical derivative [1–10]. Thereafter, a
connection of independent works of Liouville and Riemann gave birth to the well-known
fractional integral, and then later to a fractional derivative. Their differential operator is
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a derivative of a continuous function and the power-law function t–α

�(1–α) . An application
of the Laplace transform of this derivative leads to unusual initial conditions that would
be impossible to compute [1–10]. However, these initial conditions were praised by some
respected authors, simply because they can account for anomalous processes. Contrary
to this, using experimental data, Caputo was able to suggest an alternative differential op-
erator which is the convolution of the derivative of a function with power law [3]. An
application of the Laplace transform to this version leads to the normal initial condition.
In addition, the function was expected to be differentiable, of which some authors theo-
retically believed it was a restriction, even though in practice it was found to be a good
differentiation, essential to evaluating changes [3]. These differential operators have been
intensively studied in the last decades, causing them therefore to be both wrongly and
successfully applied in so many fields. As a result, the main properties of these operators
were then established. The most important property is perhaps the fact that this function
exhibits a power-law process. A clear indication that such a mathematical formula can-
not account for processes following fading memory crossover and many other processes
like random walk and others [1, 2, 11–13]. And a clear indication that such an operator
cannot be used to model all real-world problems. Therefore, a new class of differential op-
erators was needed, and a few variants were suggested, among which we can mention the
Caputo–Fabrizio derivative and the Atangana–Baleanu derivatives with exponential and
Mittag-Leffler kernels. One of the particularities of these operators is that their kernels
are nonsingular [1, 2, 11–18], and they do not obey some properties of classical derivative
such as the index law. Thus, due to their continuous kernels, these fractional derivatives
do not have similar properties like classical or fractional derivatives with the power-law
kernel. This is evidence that indeed power-law, exponential, and the Mittag-Leffler func-
tions do not play the same role in nature [10, 11, 19, 20]. In nature, there exist problems
that follow power-law processes, some that follow a decay process, and others that follow
decay and then power law. In a normal and constructive field both concepts could be stud-
ied independently, because both fractional derivatives with singular kernels and fractional
derivatives with nonsingular kernels are two separate subsets of fractional calculus. They
should therefore be treated independently. However, instead of investigating the prop-
erties of nonsingular kernels and fractional derivatives independently, some researchers
have opted to write some destructive papers mixing up these two subsets, whereby some
of these papers are based on wrong analyses, birthed from the lack of understanding of the
whole concept. Hence, this paper will review all issues raised against nonsingular kernels
differential and integral operators. A mathematical model depicting a survival of fractional
calculus based on nonsingular kernels will herein be proposed and analyzed.

2 Review of some anti-nonsingular kernel
2.1 Index law
One of the criticisms of differential operators is the index law, i.e., these differential op-
erators do not satisfy the index law. Some researchers suggested that a differential opera-
tor cannot be called derivative or fractional derivative if it does not satisfy the index law.
However, Atangana and Gomez argued that the index law is just a mathematical prop-
erty which has many limitations to depict real-world problems with crossover behaviors
[21]. Nieto and co-authors proved that there is no fractional derivative that verifies the
index law [22]. Nevertheless, some researchers insisted that this law is fundamental even
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to replicate some real-world problems in signal analysis. Very recently, a mathematical
operator was suggested in [23], and an artificial parameter was added to help satisfy the
so-called index law. Nevertheless, in the paper written by Jacek and co-author, they argued
that: Naturally it is not wise to conclude fractional ordinary Dα

t and Dβ
t commute in their

entire domain, another clear indication that fractional order derivatives will not hold even
if the kernel is that of power law [23]. With the Machado–Orteguira type, we have the fol-
lowing parameters to be considered: the fractional order α and an asymmetry parameter
θ which of course has no physical meaning. Their formula defined a derivative Dα

θ of the
function f : R→ R as

F
(
Dα

θ f
)
(s) = |s|αej π

2 θ sgn(s)F(f )(s). (1)

Indeed the semi-group principle is naturally satisfied, namely

Dα
θ Dβ

θ1
f (t) = Dα+β

θ+θ1
f (t). (2)

In an attempt to apply this operator in modeling a real-world problem for which the opera-
tor was conceived, Jacek and co-authors concluded that “The generalization by Machado–
Orteguira satisfied the index law principle but its phasor representation is artificial or is
less natural.” [23] Here again nature has proven the limitation of some mathematical prop-
erties. The satisfaction of index law by a given operator does not always lead to good re-
sults [23]. Therefore, the argument around the index law is pointless more precisely if an
artificial parameter is added as in the case of Machado–Orteguira type.

2.2 Initial conditions and zero-zero criticism
One of the arguments used was that a general Cauchy problem

⎧
⎨

⎩

ABC
0 Dα

t y(t) = f (t, y(t)), t > 0,

y(0) = y0, t = 0,
(3)

does not satisfy the initial condition if the solution exists. Indeed

∫ t

a
f (τ ) dτ = u(t). (4)

The geometric interpretation of the above in classical calculus is the surface under the
curve of the function f (t) in [a, t] if the function f positive. The solution is of course the
variation of the surface. Such an equation will have meaning only if one goes beyond the
initial state which is the point t = a. At this point, the solution is the initial state or just a
point nothing to do with a surface. So in general the equation

ABC
0 Dα

t y(t) = f
(
t, y(t)

)
, y(0) = y0 (5)

can be viewed in the same way

∫ t

0
f (τ ) dτ = u(t), (6)
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where

f (τ ) =
AB(α)
1 – α

d
dτ

y(τ )Eα

[
–

α

1 – α
(t – τ )α

]
. (7)

The above function is continuous. Some researchers failed to understand the basic prin-
ciple of nonlocality and even the concept of memory. For example, the equation

⎧
⎨

⎩

∫ t
0 f (τ ) dτ = u(t), t > 0,

f (0) = f0, t = 0.
(8)

The solution of the above equation is f (t) = u′(t), the initial condition f (0) = u′(0). Why
is the initial condition not verified? The answer relies on the physical interpretation of
the equation. The right-hand side f (t, y(t)) = u(t) can be viewed as a surface. Thus, the
equation is the collection of information or accumulation of memory from the origin to
the point t. Of course it is an accumulation that covers the area defined by u(t) = f (t, y(t)).

Now, the zero-zero criticism does not hold because

ABC
0 Dα

t y(t) =
AB(α)
1 – α

∫ t

0
y′(τ )Eα

[
–

α

1 – α
(t – τ )α

]
dτ = f

(
t, y(t)

)
. (9)

At t = 0, indeed we will need f (0, y(0)) = 0, but what is the physical meaning of the equation
ABC
0 Dα

t y(t) = f (t, y(t))? Can this equation be evaluated in t = 0 at the origin? Can we really
evaluate a fractional derivative at the origin if the kernel is continuous? If yes, where is
nonlocality? Of course, some authors will argue that the solution of the following equation
exists at t = 0

RL
0 Dα

t y(t) = f
(
t, y(t)

)
. (10)

The fact is simple at t = 0, we have f (0, y(0)) =RL
0 Dα

t y(t)t→0. Within this section, we con-
sider that the function f (t, y(t)) is defined in a negative line

f
(
0, y(0)

)
= lim

t→0
C
0 Dα

t y(t), 0 < α ≤ 1, y(t) ∈ C2[0, b]. (11)

Let us assume that f (t, y(t)) is continuous at t = 0, then limt→0+ f (t, y(t)) =
limt→0– f (t, y(t)) = f (0, y(0)).

The right-hand sides of the equation, by replacing t with c then c → 0+, we have

lim
R→0+

1
�(1 – α)

∫ R

0

dy(τ )
dτ

(R – τ )–α dτ (12)

= lim
R→0+

1
�(2 – α)

∫ R

0

dy2

dτ 2 (R – τ )1–α dτ –
(R – τ )1–α

�(2 – α)
dy
dτ

∣∣
∣∣

R

0
= 0 + 0 = 0.

Thus, if f (t, y(t)) is continuous at t = 0, the equation

C
0 Dα

t y(t) = f
(
t, y(t)

)
(13)
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will also be valid at zero if f (0, y(0)) = 0, if y(t) is continuous at t = 0, if f (t, y(t)) is not
continuous at t = 0. Then, indeed we have

lim
t→0+

f
(
t, y(t)

) �= lim
t→0–

f
(
t, y(t)

)
(14)

but

lim
R→0+

C
0 Dα

Ry(t) = lim
R→0–

C
0 Dα

Ry(t) = 0, (15)

which is contradiction. This simply means at t = 0 that the equation C
0 Dα

t y(t) = f (t, y(t)) un-
der the above has no solution at t = 0. There is a discontinuity at t = 0. If y(t) is not contin-
uous at t = 0, then limt→0+ y(t) �= limt→0– y(t). Let us assume that f (t, y(t)) is continuous at
t = 0, then limt→0+ f (t, y(t)) = limt→0– f (t, y(t)) = f (0, y(0)). Again here, the equation at t = 0
will be problematic. So why is it misleading to evaluate a fractional differential equation
at the origin? The answer is simple: it is a nonlocal equation that should describe mem-
ory, accumulation of past information, by evaluating it within an interval [a, a], where a is
the lower boundary, the process becomes local, therefore the equation is no longer a frac-
tional as the memory part is lost. Additionally, the equation does not have any differential
part, thus cannot even be considered as a differential equation. But this can be done in the
case of classical differential equations: since they are local equations, they should be eval-
uated at a point. Jacob and co-authors wrote a piece of paper in which they showed that
equations with nonsingular kernel derivatives have a discontinuous solution at the ori-
gin. While their mathematical seems to be correct [24], the authors failed to understand a
simple mathematical principle, i.e., the nonlocality. For example, they suggested that their
approach [24] leads to a solution of this equation ABC

0 Dα
t y(t) = a, where a is constant and

ABC
0 Dα

t is the Atangana–Baleanu derivative. Already in high school, we were taught that if
a �= 0, the equation

∫ t

0
f (τ ) dτ = a (16)

may not have a solution. For example, taking a �= 0, then
∫ t

0
f (τ ) dτ = a. (17)

If t = 0, then with f continuous

lim
R→0

∫ R

0
f (τ ) dτ = 0, (18)

then a = 0, which is contradicting. But if t �= 0, then
∫ t

0
f (τ ) dτ = a (19)

with t being a variable, we cannot find a solution. For example, if f (t) is a constant different
from zero, then

∫ t

0
cdτ = cτ |t0= ct �= a (20)
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since a is a constant. It is therefore very surprising to see that a mathematician expects to
find a solution for such an equation.

Here, we consider the Cauchy problem where the differential operator is the Riemann–
Liouville derivative:

⎧
⎨

⎩

RL
0 Dα

t y(t) = f (t, y(t)), 0 < α ≤ 1,

y(0) = y0 = constant.
(21)

We assume that f (t, y(t)) is continuous at t = 0. Then

lim
t→0+

f
(
t, y(t)

)
= lim

t→0–
f
(
t, y(t)

)
= f
(
0, y(0)

)
. (22)

On the other hand, we have

lim
t→0+

1
�(1 – α)

d
dt

∫ t

0
y(τ )(t – τ )–α dτ . (23)

Integrating by parts yields

lim
t→0+

1
�(1 – α)

{
t–αy(0)
�(1 – α)

+
∫ t

0
y′(τ )(t – τ )–α dτ

}
. (24)

Assuming that y(0) = y0 �= 0

lim
t→0+

RL
0 Dα

t y(t) = +∞. (25)

Since f (t, y(t)) is continuous at t = 0, we have

f
(
0, y(0)

)
= c = +∞, (26)

which is a contradiction. Also it is possible that

lim
t→0+

RL
0 Dα

t y(t) = –∞ ⇒ f
(
0, y(0)

)
= c = –∞. (27)

Indeed there is no contradiction here because if such an equation exists then there is no
solution at the origin due to the singularity. So here also the equation will not satisfy the
initial condition. Whereas, if we consider the following equation:

⎧
⎨

⎩

dy(t)
dt = f (t, y(t)),

y(0) = y0,
(28)

we assume that f (t, y(t)) is continuous at t = 0, then indeed

y′(0) = f
(
0, y(0)

)
. (29)

The above equation shows a solution that verifies the initial condition. This is due to the
fact that the above equation is a local equation thus can be evaluated at the origin.
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3 Fundamental theorem of fractional calculus
Another point was raised against nonsingular kernel based differential operators, the fun-
damental theorem between the Caputo-type and the Riemann–Liouville derivative type of
Atangana–Baleanu and Caputo–Fabrizio derivatives. It was reported that the nonsingu-
lar differential operators should not be used because they do not satisfy the fundamental
theorem of fractional calculus. Whereas the Atangana–Baleanu in the Riemann–Liouville
sense indeed is invertible with the Atangana–Baleanu integral, a clear satisfaction of the
theorem. But indeed the Atangana–Baleanu derivative in the Caputo sense is not at all
invertible with the Atangana–Baleanu integral as these operators are not invertible. In-
deed the authors of this particular paper should not be blamed as the Caputo calculus
has not been developed independently. Always, there is a great expectation that all the
properties of classical differential and integration should be verified by these operators
whereas both concepts are far different. However, very recently Atangana asked the ques-
tion to know why there are two fractional derivatives but only one integral, whereas the
two fractional derivatives were conceived differently. As an attempt to solve this problem,
Atangana suggested an integral associated with Caputo type of derivatives including the
Caputo integral for power-law kernel derivatives, exponential decay law, and the general-
ized Mittag-Leffler kernel. Indeed they all verified the fundamental theorem of fractional
calculus with their respective derivatives. In general, the Caputo integral of a continuous
function is given by

C
0 Jα

t f (t) = γ (t) +RL
0 Jα

t f (t), (30)

where RL
0 Jα

t is the Riemann–Liouville integral.
The author of [12] suggested two types of fractional calculus including Caputo calculus

and the Riemann–Liouville calculus. Indeed, criticisms are good when they aim at devel-
oping or enhancing science; however, when they are not based on truth or have different
aims, they can be classified as virus as they can cause harm within a given field. There-
fore, in the following section, we will introduce a mathematical model about the spread of
harmful criticism within the field of fractional calculus.

4 Mathematical model of anti-nonsingular kernel
In this section, we construct a mathematical model that could depict the effect and im-
pact of harmful criticism within the field of fractional calculus. Let 	 be the in-flow, the
number of individuals that are recruited in the field of fractional calculus. Fc(t) is the class
of researchers using fractional differential operators with nonsingular kernels susceptible
to be mislead by the harmful criticisms. I(t) is the class of researchers that have been af-
fected by the harmful papers. IP(t) is the class of researchers that have been affected but
still have positive opinions about nonsingular kernel derivatives. IN (t) is the class of re-
searchers that have been affected and have negative opinions about nonsingular kernel
derivatives. R(t) is the class of researchers that overcome divisions criticism. D(t) is the
class of researchers that die or retire or leave fractional calculus due to division. The field
is very attractive as the concept is widely applicable, therefore, we will assume that a new
researcher will join the field, thus in this model, we consider 	 as the recruitment rate.
Naturally, some researchers working within this field may die, thus they will not be work-
ing within the field, we will then consider d as the removal rate. Indeed d can also account
for the retirement. β will be considered as a coefficient of contact, a proportion that a re-
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Figure 1 Diagram summarizing the survival of fractional calculus

searcher reads a paper with a negative content about nonsingular kernel derivatives. φ2 is
the rate at which a researcher working in fractional calculus joins class D due to division.
τ is the rate at which who are affected by criticism, but still have positive opinions about
nonsingular kernel derivatives. δ is the recovery rate. ψ is the rate with which a researcher
joins IN class, γ1 is the rate at which individuals with positive opinion join class D due to
division. φ1 is the recovery rate of IP class. σ is the rate at which class IN joins class D due
to division. γ3 is the recovery rate of class I . γ2 is the recovery rate of class D. In the Fig. 1,
we present a mathematical diagram depicting the dynamic described.

In this model, we have assumed that no recovered person joins the class Fc just to see
if the class Fc will survive even without researchers that were impacted by criticisms.
A mathematical model associated with the above is given as follows:

dFc(t)
dt

= 	 – dFc – φ2Fc –
βFcI

N
, (31)

dI(t)
dt

=
βFcI

N
– dI – τ I – δI – ψI,

dIP(t)
dt

= τ I – dIP – γ1IP – φ1IP,

dIN (t)
dt

= ψI – dIN – σ IN – γ3IN ,

dR(t)
dt

= φ1IP – dR + δI + γ3IN – γ2R,

dD(t)
dt

= γ2R + γ1IP + φ2Fc + σ IN – dD,

with the initial conditions

Fc(0) = F0
c , I(0) = I0, IP(0) = I0

P ,

IN (0) = I0
N , R(0) = R0, D(0) = D0.

(32)
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4.1 Positiveness and boundedness of solutions
In this subsection, we present a detailed analysis underpinning the conditions under which
positiveness the solutions of the suggested model for different types of differential opera-
tors including integer and non-integer orders holds. To achieve this, we write

·
I(t) =

βFcI
N

– (d + τ + δ + ψ)I, ∀t ≥ 0,

≥ –(d + τ + δ + ψ)I, ∀t ≥ 0, (33)

I(t) ≥ I0e–(d+τ+δ+ψ)t , ∀t ≥ 0.

For the function IP(t), one can write

·
IP(t) = τ I – dIP – γ1IP – φ1IP, ∀t ≥ 0, (34)

≥ –(d + γ1 + φ1)IP, ∀t ≥ 0,

since I(t) ≥ 0,∀t ≥ 0. From above, we get

IP(t) ≥ I0
Pe–(d+γ1+φ1)t , ∀t ≥ 0. (35)

Doing the same routine for other classes, the following inequalities are obtained:

IN (t) ≥ I0
N e–(d+σ+γ3)t , ∀t ≥ 0,

R(t) ≥ R0e–(d+γ2)t , ∀t ≥ 0, (36)

D(t) ≥ D0e–dt , ∀t ≥ 0.

We shall define the norm

‖g‖∞ = sup
t∈Dg

∣
∣g(t)

∣
∣, (37)

where Dg is the domain of g . Using the above definition, the following inequality can be
achieved for the function Fc(t):

·
Fc(t) = 	 – dFc – φ2Fc –

βFcI
N

, ∀t ≥ 0,

≥ –(d + φ2 + βI)Fc, ∀t ≥ 0,

≥ –
(

d + φ2 +
β|I|
|N |

)
Fc, ∀t ≥ 0, (38)

≥ –
(

d + φ2 +
β supt∈DI |I|
supx∈DN |N |

)
Fc, ∀t ≥ 0,

≥ –
(

d + φ2 +
β‖I‖∞
‖N‖∞

)
Fc, ∀t ≥ 0.

This yields

Fc(t) ≥ F0
c e–(d+φ2+ β‖I‖∞‖N‖∞ )t , ∀t ≥ 0. (39)
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4.2 Positive solutions with nonlocal operators
In this section, we prove the positiveness of solutions for a fractional calculus model with
nonlocal operators. If all the initial conditions are positive with nonlocal operators, all
solutions are positive. To do this, we start with the Caputo–Fabrizio case

Fc(t) ≥ Fc(0) exp

[
–

α(d + φ2 + β‖I‖∞
‖N‖∞ )t

M(α) – (1 – α)(d + φ2 + β‖I‖∞
‖N‖∞ )

]
, ∀t ≥ 0,

I(t) ≥ I(0) exp

[
–

α(d + τ + δ + ψ)t
M(α) – (1 – α)(d + τ + δ + ψ)

]
, ∀t ≥ 0, (40)

IP(t) ≥ IP(0) exp

[
–

α(d + γ1 + φ1)t
M(α) – (1 – α)(d + γ1 + φ1)

]
, ∀t ≥ 0,

IN (t) ≥ IN (0) exp

[
–

α(d + σ + γ3)t
M(α) – (1 – α)(d + σ + γ3)

]
, ∀t ≥ 0,

R(t) ≥ R(0) exp

[
–

α(d + γ2)t
M(α) – (1 – α)(d + γ2)

]
, ∀t ≥ 0,

D(t) ≥ D(0) exp

[
–

α dt
M(α) – (1 – α) d

]
, ∀t ≥ 0.

With the Caputo derivative, we obtain

Fc(t) ≥ Fc(0)Eα

[
–
(

d + φ2 +
β‖I‖∞
‖N‖∞

)
tα

]
, ∀t ≥ 0,

I(t) ≥ I(0)Eα

[
–(d + τ + δ + ψ)tα

]
, ∀t ≥ 0, (41)

IP(t) ≥ IP(0)Eα

[
–(d + γ1 + φ1)tα

]
, ∀t ≥ 0,

IN (t) ≥ IN (0)Eα

[
–(d + σ + γ3)tα

]
, ∀t ≥ 0,

R(t) ≥ R(0)Eα

[
–(d + γ2)tα

]
, ∀t ≥ 0,

D(t) ≥ D(0)Eα

[
–dtα

]
, ∀t ≥ 0.

With the Atangana–Baleanu derivative, we get

Fc(t) ≥ Fc(0)Eα

[
–

α(d + φ2 + β‖I‖∞
‖N‖∞ )tα

AB(α) – (1 – α)(d + φ2 + β‖I‖∞
‖N‖∞ )

]
, ∀t ≥ 0, (42)

I(t) ≥ I(0)Eα

[
–

α(d + τ + δ + ψ)tα

AB(α) – (1 – α)(d + τ + δ + ψ)

]
, ∀t ≥ 0,

IP(t) ≥ IP(0)Eα

[
–

α(d + γ1 + φ1)tα

AB(α) – (1 – α)(d + γ1 + φ1)

]
, ∀t ≥ 0,

IN (t) ≥ IN (0)Eα

[
–

α(d + σ + γ3)tα

AB(α) – (1 – α)(d + σ + γ3)

]
, ∀t ≥ 0,

R(t) ≥ R(0)Eα

[
–

α(d + γ2)tα

AB(α) – (1 – α)(d + γ2)

]
, ∀t ≥ 0,

D(t) ≥ D(0)Eα

[
–

α dtα

AB(α) – (1 – α)d

]
, ∀t ≥ 0.
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If we do the same routine for fractal-fractional operators [17], for a power-law kernel we
can have the following:

Fc(t) ≥ Fc(0)Eα

[
–c1–β

(
d + φ2 +

β‖I‖∞
‖N‖∞

)
tα

]
, ∀t ≥ 0, (43)

I(t) ≥ I(0)Eα

[
–c1–β (d + τ + δ + ψ)tα

]
, ∀t ≥ 0,

IP(t) ≥ IP(0)Eα

[
–c1–β (d + γ1 + φ1)tα

]
, ∀t ≥ 0,

IN (t) ≥ IN (0)Eα

[
–c1–β (d + σ + γ3)tα

]
, ∀t ≥ 0,

R(t) ≥ R(0)Eα

[
–c1–β (d + γ2)tα

]
, ∀t ≥ 0,

D(t) ≥ D(0)Eα

[
–c1–β dtα

]
, ∀t ≥ 0,

here c is a time component. With an exponential kernel, we can write

Fc(t) ≥ Fc(0) exp

[
–

c1–βα(d + φ2 + β‖I‖∞
‖N‖∞ )t

M(α) – (1 – α)(d + φ2 + β‖I‖∞
‖N‖∞ )

]
, ∀t ≥ 0, (44)

I(t) ≥ I(0) exp

[
–

c1–βα(d + τ + δ + ψ)t
M(α) – (1 – α)(d + τ + δ + ψ)

]
, ∀t ≥ 0,

IP(t) ≥ IP(0) exp

[
–

c1–βα(d + γ1 + φ1)t
M(α) – (1 – α)(d + γ1 + φ1)

]
, ∀t ≥ 0,

IN (t) ≥ IN (0) exp

[
–

c1–βα(d + σ + γ3)t
M(α) – (1 – α)(d + σ + γ3)

]
, ∀t ≥ 0,

R(t) ≥ R(0) exp

[
–

c1–βα(d + γ2)t
M(α) – (1 – α)(d + γ2)

]
, ∀t ≥ 0,

D(t) ≥ D(0) exp

[
–

c1–βα dt
M(α) – (1 – α)d

]
, ∀t ≥ 0.

With a Mittag-Leffler kernel, the following can be done:

Fc(t) ≥ Fc(0)Eα

[
–

c1–βα(d + φ2 + β‖I‖∞
‖N‖∞ )tα

AB(α) – (1 – α)(d + φ2 + β‖I‖∞
‖N‖∞ )

]
, ∀t ≥ 0, (45)

I(t) ≥ I(0)Eα

[
–

c1–βα(d + τ + δ + ψ)tα

AB(α) – (1 – α)(d + τ + δ + ψ)

]
, ∀t ≥ 0,

IP(t) ≥ IP(0)Eα

[
–

c1–βα(d + γ1 + φ1)tα

AB(α) – (1 – α)(d + γ1 + φ1)

]
, ∀t ≥ 0,

IN (t) ≥ IN (0)Eα

[
–

c1–βα(d + σ + γ3)tα

AB(α) – (1 – α)(d + σ + γ3)

]
, ∀t ≥ 0,

R(t) ≥ R(0)Eα

[
–

c1–βα(d + γ2)tα

AB(α) – (1 – α)(d + γ2)

]
, ∀t ≥ 0,

D(t) ≥ D(0)Eα

[
–

c1–βα dtα

AB(α) – (1 – α)d

]
, ∀t ≥ 0.



Atangana Advances in Difference Equations        (2021) 2021:403 Page 12 of 59

4.3 Analysis of equilibrium points
In this subsection, a detailed analysis of equilibrium points is presented. We start with the
disease-free equilibrium

E0
(

	

d + φ2
, 0, 0, 0, 0,

φ2	

d(d + φ2)

)
. (46)

To obtain the equilibrium points, we solve the following system:

	 – dF∗
c – φ2F∗

c –
βI∗F∗

c
N

= 0, (47)
(

βF∗
c

N
– (d + τ + δ + ψ)

)
I∗ = 0,

τ I∗ – (d + γ1 + φ1)I∗
P = 0,

ψI∗ – (d + σ + γ3)I∗
N = 0,

φ1I∗
P – dR∗ + δI∗ + γ3I∗

N – γ2R∗ = 0,

γ2R∗ + γ1I∗
P + φ2F∗

c + dI∗
N – dD∗ = 0.

Thus, if I∗ = 0, we have F∗
c = 	

d+φ2
, I∗

P = 0, I∗
N = 0, R = 0, D = φ2	

d(d+φ2) , which are disease-free
equilibrium points. We should not consider that case, we therefore assume I∗ �= 0 such
that

F∗
c =

(d + τ + δ + ψ)
β

, (48)

I∗ =
(

β	

d + τ + δ + ψ
– d – φ2

)
1
β

,

I∗
P = τ

(
β	

d + τ + δ + ψ
– d – φ2

)
1

β(d + γ1 + φ1)
,

I∗
N = ψ

(
β	

d + τ + δ + ψ
– d – φ2

)
1

β(d + σ + γ3)
,

R∗ =
1

γ2 + d
(
φ1I∗

P + δI∗ + γ3I∗
N
)

=
β

γ2 + d

(
β	

d + τ + δ + ψ
– d – φ2

){
τφ1

(d + γ1 + φ1)
+

ψγ3

(d + σ + γ3)
+ δ

}
,

D∗ =
γ2β

d(γ2 + d)

(
β	

d + τ + δ + ψ
– d – φ2

){
τφ1

(d + γ1 + φ1)
+

ψγ3

(d + σ + γ3)
+ δ

}

+
τγ1

d

(
β	

d + τ + δ + ψ
– d – φ2

)
1

β(d + γ1 + φ1)
+

φ2

dβ
(d + τ + δ + ψ)

+
dψ

β(d + σ + γ3)

(
β	

d + τ + δ + ψ
– d – φ2

)
.

4.4 Reproduction number
To obtain the reproduction number, we consider the following equations:

dI(t)
dt

= βFcI – dI – τ I – δI – ψI, (49)
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dIP(t)
dt

= τ I – dIP – γ1IP – φ1IP,

dIN (t)
dt

= ψI – dIN – σ IN – γ3IN .

Now, we have to calculate the matrices F and V by employing the next generation matrix
approach as follows:

F =

⎡

⎢
⎣

βFcI
N
0
0

⎤

⎥
⎦ , V –1 =

⎡

⎢
⎣

1
l1

0 0
τ

l1l2
1
l2

0
ψ

l1l3
0 1

l3

⎤

⎥
⎦ . (50)

Here, l1 = d + τ + δ + ψ , l2 = d + γ1 + φ1, l3 = d + σ + γ3. Also, we have N(t) = Fc(t) + I(t) +
IP(t) + IN (t) + R(t) + D(t), thus

∂

∂I

(
βFcI

N

)
=

βFc[N – I]
N2 . (51)

Indeed, we evaluate at disease-free equilibrium to have

∂

∂I

(
βFcI

N

)
=
(

βF◦
c (F◦

c + D◦)
(F◦

c + D◦)2

)
=

βF◦
c

(F◦
c + D◦)

=
βd

d + φ2
. (52)

In this case, we can have the following:

F =

⎡

⎢
⎣

βFcI
N
0
0

⎤

⎥
⎦ , V –1 =

⎡

⎢
⎣

1
l1

0 0
τ

l1l2
1
l2

0
ψ

l1l3
0 1

l3

⎤

⎥
⎦ . (53)

Then, the reproductive number can be

R0 =
βd

(d + φ2)l1
. (54)

By evaluating F at E∗, we have

F =

⎡

⎢
⎢
⎣

βF◦
c

(F◦
c +D◦)

β

( l1
β

+D◦)

0
0

⎤

⎥
⎥
⎦ . (55)

Then, we can evaluate the following parameter:

R∗ =
1

( l1
β

+ D◦)
=

β

(l1 + βD◦)
. (56)

Before we present a detailed derivation on stability analysis of the suggested model, we
need first to evaluate the Jacobian matrix of the system at the equilibrium points. We first
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Figure 2 Numerical simulation of the reproductive number as functions of β and δ

study free criticism equilibrium point and its stability

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

–d – βd
(d+φ2) 0 0 0 0

0 βd
(d+φ2) – l1 0 0 0 0

0 τ –l2 0 0 0
0 ψ 0 –l3 0 0
0 δ φ1 γ3 –l4 0
φ2 γ2 0 d + γ 0 –d

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, (57)

where l4 = d+γ2. The associated eigenvalues to J are –d, –d, –l1, –l2, –l3, –l4 and βd–dl1–l1φ2
d+φ2

.
We can see that all eigenvalues have a negative real part except βd–dl1–l1φ2

d+φ2
. Nevertheless,

rearranging this last one, we get

l1

(
βd

l1(d + φ2)
– 1
)

. (58)

The above expression can be negative if βd
l1(d+φ2) < 1. This leads to

R0 =
βd

(d + φ2)l1
. (59)

In the following figures, we present numerical simulations of the reproductive num-
ber for different values of theoretical parameters including beta and delta. The numerical
simulations are depicted in Figs. 2, 3, 4, 5, 6, and 7. The numerical results confirm that
the reproductive number of such a model is always less than 1, which is a clear indication
of less impact, perhaps due to the fact that published papers against nonsingular kernels
are not well-grounded either theoretically or in practice. This can be also justified with
the fact that thousands of papers using derivatives with nonsingular kernels have been
published with outstanding results in both theory and applications.
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Figure 3 Contour plot of the reproductive number as functions of β and δ

Figure 4 Numerical simulation of the reproductive number as functions of β and ψ

4.5 Strength number
In the last decades, the concept of reproduction has been employed intensively in epidemi-
ological modeling as it has been recognized as a useful mathematical formula to evaluate
reproduction in some given infections disease. As the theory suggested, one will find two
component F and V , then

(
FV –1 – λI

)
= 0 (60)

will be used to reproduce the reproductive number [25]. The component F is very inter-
esting as it is obtained by deriving the nonlinear part of the infected classes.

∂

∂I

(
I
N

)
=

[N – I]
N2
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Figure 5 Contour plot of the reproductive number as functions of β and ψ .

Figure 6 Numerical simulation of the reproductive number as functions of β and τ

∂2

∂I2

(
(N – I)

N2

)
=

–2[N – I]
N3 (61)

=
–2(Fc + IP + IN + R + D)

(Fc + I + IP + IN + R + D)3 .

At the disease-free equilibrium point, we have

–2(F◦
c + D◦)

(F◦
c + D◦)3 = –

2
(F◦

c + D◦)2 . (62)
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Figure 7 Contour plot of the reproductive number as functions of β and τ

In this case, we can have the following:

FA =

⎡

⎢
⎣

–2βF◦
c

(F◦
c +D◦)2

0
0

⎤

⎥
⎦ =

⎡

⎢
⎢
⎣

–2β 	
d

( 	
d+φ2

+ φ2	

d(d+φ2) )2

0
0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

–2β(d+φ2)
	(1+ φ2

d )

0
0

⎤

⎥
⎥
⎦ . (63)

Then

det
(
FAV –1 – λI

)
= 0 (64)

leads to

A0 =
–2β(d + φ2)
	(1 + φ2

d )l1
< 0. (65)

A0 = 0 means the spread will not have a renewal process, therefore will have a single mag-
nitude and die out. A0 > 0 means there is as strength that will lead to renewal process,
therefore the spread will have more than one wave. However, a clear interpretation of the
above number will be provided by biologists.

5 Stability analysis
To discuss the stability of the model, we need first to evaluate the Jacobian matrix of the
system at the equilibrium points of the model. First, we study the researcher free criticism
equilibrium point and its stability

J =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

–d – φ2 – dβ

d+φ2
0 0 0 0

0 dβ

d+φ2
– Q1 0 0 0 0

0 τ –Q2 0 0 0
0 ψ 0 –Q3 0 0
0 δ φ1 γ3 –Q4 0
φ2 0 γ1 σ γ2 –d

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

. (66)
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The eigenvalues associated with J are –d,-Q2,-Q3,-Q4,-d – φ2, and βd–dQ1–Q1φ2
d+φ2

. We can
see that all the eigenvalues have negative real parts except βd–dQ1–Q1φ2

d+φ2
. If we rearrange the

last eigenvalue as λ6 = Q1( βd
Q1(d+φ2) – 1), it can be negative if βd

Q1(d+φ2) < 1 (i.e., R0 = βd
Q1(d+φ2) ,

where Q3 = γ3 + d + σ , Q4 = γ2 + d, Q1 = d + δ + τ + ψ , Q2 = γ1 + d + φ1).

5.1 Lyapunov for endemic case
For the endemic Lyapunov function, we set all independent variables in the model, in our
case, {Fc, I, IP, IN , R, D}, ·

L < 0 is the harmful equilibrium E∗.

Theorem 1 If the reproductive number R0 > 1, the endemic equilibrium points of harm-
ful impact equilibrium points E∗ of the survival of fractional calculus model are globally
asymptotically stable.

Proof To prove theorem, we consider the Lyapunov function as follows:

L
(
F∗

c , I∗, I∗
P , I∗

N , R∗, D∗) =
(

Fc – F∗
c – F∗

c log
F∗

c
Fc

)
+
(

I – I∗ – I∗ log
I∗

I

)
(67)

+
(

IP – I∗
P – I∗

P log
I∗

P
IP

)
+
(

IN – I∗
N – I∗

N log
I∗

N
IN

)

+
(

R – R∗ – R∗ log
R∗

R

)
+
(

D – D∗ – D∗ log
D∗

D

)
.

Therefore, applying the derivative with respect to t on both sides, we get the following:

dL
dt

=
·
L =
(

Fc – F∗
c – F∗

c log
F∗

c
Fc

)
+
(

I – I∗ – I∗ log
I∗

I

)
(68)

+
(

IP – I∗
P – I∗

P log
I∗

P
IP

)
+
(

IN – I∗
N – I∗

N log
I∗

N
IN

)

+
(

R – R∗ – R∗ log
R∗

R

)
+
(

D – D∗ – D∗ log
D∗

D

)

and

dL
dt

=
·
L =
(

Fc – F∗
c

Fc

) ·
Fc +

(
I – I∗

I

) ·
I +
(

IP – I∗
P

IP

) ·
IP

+
(

IN – I∗
N

IN

) ·
IN +

(
R – R∗

R

) ·
R +
(

D – D∗

D

) ·
D. (69)

Now, we put values in the above equation for derivatives

dL
dt

=
(

Fc – F∗
c

Fc

)(
	 – (d + φ2)Fc –

βIFc

N

)

+
(

I – I∗

I

)(
βFc

N
I – (d + τ + δ + ψ)I

)
(70)

+
(

IP – I∗
P

IP

)
(
τ I – (d + γ1 + φ1)IP

)

+
(

IN – I∗
N

IN

)(
ψI – (d + σ + γ3)IN

)
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+
(

R – R∗

R

)
(φ1IP – dR + δI + γ3IN – γ2R)

+
(

D – D∗

D

)
(γ2R + γ1IP + φ2Fc + dIN – dD).

Replacing Fc = Fc – F∗
c , I = I – I∗, IP = IP – I∗

P , IN = IN – I∗
N , R = R – R∗, D = D – D∗, we can

have the following:

dL
dt

=
(

Fc – F∗
c

Fc

)(
	 – (d + φ2)

(
Fc – F∗

c
)

–
β(I – I∗)(Fc – F∗

c )
N

)

+
(

I – I∗

I

)(
β(Fc – F∗

c )
N

(
I – I∗) – (d + τ + δ + ψ)

(
I – I∗)

)
(71)

+
(

IP – I∗
P

IP

)
(
τ
(
I – I∗) – (d + γ1 + φ1)

(
IP – I∗

P
))

+
(

IN – I∗
N

IN

)(
ψ
(
I – I∗) – (d + σ + γ3)

(
IN – I∗

N
))

+
(

R – R∗

R

)(
φ1
(
IP – I∗

P
)

+ δ
(
I – I∗) + γ3

(
IN – I∗

N
)

– (d + γ2)
(
R – R∗))

+
(

D – D∗

D

)(
γ2
(
R – R∗) + γ1

(
IP – I∗

P
)

+ φ2
(
Fc – F∗

c
)

+ d
(
IN – I∗

N
)

– d
(
D – D∗)).

The above equality can be rearranged as

dL
dt

= 	 – 	
F∗

c
Fc

(
–

β(I – I∗)(Fc – F∗
c )

N

)
–

(Fc – F∗
c )2

Fc
(d + φ2)

–
(Fc – F∗

c )2

Fc

βI
N

+
(Fc – F∗

c )2

Fc

βI∗

N
–

(I – I∗)2

I
(d + τ + δ + ψ) (72)

–
(I – I∗)2

I
βF∗

c
N

+
(I – I∗)2

I
βFc

N
–

(IP – I∗
P)2

IP
(d + γ1 + φ1)

+ τ I – τ I∗ –
I∗

P
IP

τ I +
I∗

P
IP

τ I∗ + ψI – ψI∗ –
I∗

N
IN

ψI +
I∗

N
IN

ψI∗ + φ1I∗
P

R∗

R

–
(IN – I∗

N )2

IN
(d + σ + γ3) –

(R – R∗)2

R
(d + γ2) + φ1IP – φ1I∗

P – φ1IP
R∗

R
–

+ δI – δI∗ – δI
R∗

R
+ δI∗ R∗

R
+ γ3IN – γ3I∗

N – γ3IN
R∗

R
+ γ3I∗

N
R∗

R
–

(D – D∗)2

D
d

+ γ2R – γ2R∗ – γ2R
D∗

D
+ γ2R∗ D∗

D
+ γ1IP – γ1I∗

P – γ1IP
D∗

D
+ γ1I∗

P
D∗

D

+ φ2Fc – φ2F∗
c – φ2Fc

D∗

D
+ φ2F∗

c
D∗

D
+ dIN – dI∗

N – dIN
D∗

D
+ dI∗

N
D∗

D
.

For simplicity, we can rewrite the above equality as follows:

dL
dt

= � – �, (73)

where

� = 	 +
(Fc – F∗

c )2

Fc

βI∗

N
+

(I – I∗)2

I
βFc

N
+ τ I +

I∗
P

IP
τ I∗ + ψI +

I∗
N

IN
ψI∗ + φ1I∗

P
R∗

R
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+ φ1IP + δI + δI∗ R∗

R
+ γ3IN + γ3I∗

N
R∗

R
+ γ2R + γ2R∗ D∗

D
(74)

+ γ1IP + γ1I∗
P

D∗

D
+ φ2Fc + φ2F∗

c
D∗

D
+ dIN + dI∗

N
D∗

D

and

� = 	
F∗

c
Fc

+
(Fc – F∗

c )2

Fc
(d + φ2) +

(Fc – F∗
c )2

Fc

βI
N

+
(I – I∗)2

I
(d + τ + δ + ψ)

+
(I – I∗)2

I
βF∗

c
N

+
(IP – I∗

P)2

IP
(d + γ1 + φ1) + τ I∗ +

I∗
P

IP
τ I + γ2R∗ (75)

+ ψI∗ +
I∗

N
IN

ψI +
(IN – I∗

N )2

IN
(d + σ + γ3) +

(R – R∗)2

R
(d + γ2)

+ φ1I∗
P + φ1IP

R∗

R
+ δI∗ + δI

R∗

R
+ γ3I∗

N + γ3IN
R∗

R
+

(D – D∗)2

D
d

+ γ2R
D∗

D
+ γ1I∗

P + γ1IP
D∗

D
+ φ2F∗

c + φ2Fc
D∗

D
+ dI∗

N + dIN
D∗

D
.

It can be easily seen that if � < �, this yields dL
dt < 0, however

0 = � – � ⇒ dL
dt

= 0 (76)

if

Fc = F∗
c , I = I∗, IP = I∗

P , IN = I∗
N , IP = I∗

P ,

R = R∗ and D = D∗.
(77)

We follow that the largest compact invariant set for the suggested model model in

{
(
F∗

c , I∗, I∗
P , I∗

N , R∗, D∗) ∈ � :
dL
dt

= 0
}

(78)

is the point {E∗}, the endemic equilibrium of the considered model. From Lasalle’s invari-
ance concept, we can conclude that E∗ is globally asymptotically stable in � if � < �.

The above derivation does not sometimes provide a clear condition on the sign of the
first derivative of the Lyapunov function despite being used in many different papers.
While the derivation is very useful, more efforts are required to indeed access the sign
of the first derivative of the Lyapunov function. However, there is an alternative way to
obtain a clear condition using the equilibrium points, and it will be presented below to
show readers the difference between the two approaches. The following are the results for
the model at steady state:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

	 = dF∗
c + βF∗

c I∗
N∗ , Q1I∗,

Q1I∗ = βF∗
c I∗

N∗ , Q2I∗
p ,

Q2I∗
p = τ I∗, Q3I∗

N ,

Q3I∗
N = ψI∗.

(79)

�
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Theorem 2 If R0 > 1 and

(
4 –

F∗
c

Fc
–

IN

I∗
N

–
Ip

I∗
p

–
FcN∗

F∗
c N

–
I∗

p I
IpI∗ –

I∗
N I

IN I∗ +
I
I∗ +

IN∗

NI∗

)
≤ 0, (80)

then endemic equilibrium is globally asymptotically stable.

Proof Consider the following nonlinear Lyapunov function for the suggested model, so
that the corresponding unique endemic equilibrium point E∗

1 exists by letting R0 > 1:

L(t) =
∫ Fc

F∗
c

(
1 –

F∗
c

x

)
dx +

∫ I

I∗

(
1 –

I∗

x

)
dx (81)

+
Q1

τ

∫ Ip

I∗p

(
1 –

I∗
p

x

)
dx +

Q1

ψ

∫ IN

I∗N

(
1 –

I∗
N
x

)
dx.

The time derivative of above is

L′(t) =
(

1 –
F∗

c
Fc

)
F ′

c(t) +
(

1 –
I∗

I

)
I ′(t) +

Q1

τ

(
1 –

I∗
p

Ip

)
I ′

p(t) (82)

+
Q1

ψ

(
1 –

I∗
N

IN

)
I ′

N (t)

=
(

1 –
F∗

c
Fc

)(
	 – dFc –

βFcI
N

)
+
(

1 –
I∗

I

)(
βFcI

N
– Q1I

)

+
Q1

τ

(
1 –

I∗
p

Ip

)
(τ I – Q2Ip) +

Q1

ψ

(
1 –

I∗
N

IN

)
(ψI – Q3IN ).

Using the solution of the system gives

(
1 –

F∗
c

Fc

)
F ′

c(t) =
(

1 –
F∗

c
Fc

)(
dF∗

c +
βF∗

c I∗

N∗ – dFc –
βFcI

N

)
(83)

=
βF∗

c I∗

N∗

(
1 –

F∗
c

Fc
–

FcIN∗

F∗
c I∗N

+
IN∗

NI∗

)

+ dF∗
c

(
2 –

F∗
c

Fc
–

Fc

F∗
c

)
,

(
1 –

I∗

I

)
I ′(t) =

(
1 –

I∗

I

)(
βFcI

N
–

βF∗
c I∗

N∗I∗ I
)

(84)

=
βF∗

c I∗

N∗

(
1 –

FcN∗

F∗
c N

–
I
I∗ +

FcIN∗

I∗F∗
c N

)
,

(
Q1

τ

)(
1 –

I∗
p

Ip

)
I ′

p(t) =
(

Q1

τ

)(
1 –

I∗
p

Ip

)(
τ I – τ I∗ Ip

I∗
p

)
(85)

= Q1I∗
(

1 –
Ip

I∗
p

–
I∗

p I
IpI∗ +

I
I∗

)

=
βF∗

c I∗

N∗

(
1 –

Ip

I∗
p

–
I∗

p I
IpI∗ +

I
I∗

)
,

(
Q1

ψ

)(
1 –

I∗
N

IN

)
I ′

N (t) =
(

Q1

ψ

)(
1 –

I∗
N

IN

)(
ψI – ψI∗ IN

I∗
N

)
(86)
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= Q1I∗
(

1 –
IN

I∗
N

–
I∗

N I
IN I∗ +

I
I∗

)

=
βF∗

c I∗

N∗

(
1 –

IN

I∗
N

–
I∗

N I
IN I∗ +

I
I∗

)
.

Putting all in the above after simplification gives

L′(t) =
βF∗

c I∗

N∗

(
4 –

F∗
c

Fc
–

IN

I∗
N

–
Ip

I∗
p

–
FcN∗

F∗
c N

–
I∗

p I
IpI∗ –

I∗
N I

IN I∗ +
I
I∗ +

IN∗

NI∗

)
(87)

+ dF∗
c

(
2 –

F∗
c

Fc
–

Fc

F∗
c

)
.

Since the arithmetic mean exceeds the geometric mean, we have the following interpre-
tation:

(
2 –

F∗
c

Fc
–

Fc

F∗
c

)
= –

(Fc – F∗
c )2

FcF∗
c

≤ 0. (88)

Further, if the following inequality holds

(
4 –

F∗
c

Fc
–

IN

I∗
N

–
Ip

I∗
p

–
FcN∗

F∗
c N

–
I∗

p I
IpI∗ –

I∗
N I

IN I∗ +
I
I∗ +

IN∗

NI∗

)
≤ 0, (89)

then L′(t) ≤ 0 for R0. Thus, L(t) is a Lyapunov function in �. Therefore, by Lasalle’s in-
variance principle, we have

lim
t→∞ Fc(t) = F∗

c , lim
t→∞ I(t) = I∗, lim

t→∞ Ip(t) = I∗
p , (90)

lim
t→∞ IN (t) = I∗

N , lim
t→∞ R(t) = R∗, lim

t→∞ D(t) = D∗.

Thus, every solution of the model tends to its unique endemic equilibrium for the as-
sociated reproduction number as t → ∞. The endemic equilibrium point E∗

1 is global
asymptotically stable whenever R0 > 1. �

5.2 Lyapunov function for the disease-free case
Theorem 3 For the survival of fractional calculus model, the harmless equilibrium or the
critical equilibrium is globally asymptotically stable within the stable feasible if R0 < 1 and
unstable if R0 > 1.

Proof We use the following:

L =
I
l1

+
IP

l2
+

IN

l3
. (91)

Taking its derivative with respect to t, we have

·
L =

·
I
l1

+
·

IP

l2
+

·
IN

l3
. (92)
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Putting all from the system, we get

·
L =

βFcI
Nl1

–
l1I
l1

+
τ I – l2IP

l2
+

ψI – l3IN

l3
(93)

=
[

βd
(d + τ + δ + ψ)(d + φ2)

– (I + IP + IN )
]

≤
(

βd
(d + τ + δ + ψ)(d + φ2)

1
(I + IP + IN )

– 1
)

(I + IP + IN )

≤ (R0 – 1)(I + IP + IN ).

Therefore if R0 – 1 < 0, then Lyapunov decreases
·
L(t) < 0 since we have shown that I + IP +

IN is positive. Therefore L is a Lyapunov function within the feasible biological interval,
and the bigger compact invariant set in {I, IP, IN ∈ � : dL

dt ≤ 0} is the point E0. According
to Lasalle’s invariance concept [26], each solution with initial condition in � leads to E0

when t → ∞ only if R0 ≤ 1. Thus, one can conclude that the disease-free equilibrium E0

of the fractional calculus model is globally asymptotically stable. �

5.3 Second derivative of Lyapunov
The global stability of endemic equilibrium points is evaluated by means of the first deriva-
tive of the Lyapunov function. Without loss of generality, the analysis of the first derivative
provides us with useful information that can be completed by the analysis of the second
derivative. For example, the second derivative provides us with the curvature accordingly
to its sign, while the first derivative of these Lyapunov functions gives us some useful in-
formation about the spread of the disease. We strongly believe that its second derivative
could possibly add more information.

d
·
L

dt
=

d
dt

⎧
⎨

⎩
(1 – F∗

c
Fc

)
·

Fc + (1 – I∗
I )

·
I + (1 – I∗P

IP
)

·
IP

+(1 – I∗N
IN

)
·

IN + (1 – R∗
R )

·
R + (1 – D∗

D )
·

D

⎫
⎬

⎭
(94)

=
( ·

Fc

Fc

)2

F∗
c +
( ·

I
I

)2

I∗ +
( ·

IP

IP

)2

I∗
P +
( ·

IN

IN

)2

I∗
N

+
( ·

R
R

)2

R∗ +
( ·

D
D

)2

D∗ +
(

1 –
F∗

c
Fc

) ··
Fc

+
(

1 –
I∗

I

)··
I +
(

1 –
I∗

P
IP

) ··
IP +

(
1 –

I∗
N

IN

) ··
IN

+
(

1 –
R∗

R

) ··
R +
(

1 –
D∗

D

) ··
D.

Here,

··
Fc = –

·
Fc – β

(
(

·
FcI +

·
IFc)N –

·
NFcI

N2

)
, (95)

··
I = β

(
(

·
FcI +

·
IFc)N –

·
NFcI

N2

)
– l1

·
I,
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··
IP = τ

·
I – l2

·
IP,

··
IN = ψ

·
I – l3

·
IN ,

··
R = δ

·
I + γ3

·
IN + φ1

·
IP – (d + γ2)

·
R,

··
D = φ2

·
Fc + γ1

·
IP + γ2

·
R + d

·
IN – d

·
D.

Then we have

d
·
L

dt
=
( ·

Fc

Fc

)2

F∗
c +
( ·

I
I

)2

I∗ +
( ·

IP

IP

)2

I∗
P +
( ·

IN

IN

)2

I∗
N

+
( ·

R
R

)2

R∗ +
( ·

D
D

)2

D∗

+
(

1 –
F∗

c
Fc

)(
–

·
Fc – β

(
(

·
FcI +

·
IFc)N –

·
NFcI

N2

))
(96)

+
(

1 –
I∗

I

)(
β

(
(

·
FcI +

·
IFc)N –

·
NFcI

N2

)
– l1

·
I
)

+
(

1 –
I∗

P
IP

)
(τ

·
I – l2

·
IP) +

(
1 –

I∗
N

IN

)
(ψ

·
I – l3

·
IN )

+
(

1 –
R∗

R

)
(
δ

·
I + γ3

·
IN + φ1

·
IP – (d + γ2)

·
R
)

+
(

1 –
D∗

D

)
(φ2

·
Fc + γ1

·
IP + γ2

·
R + d

·
IN – d

·
D)

and

d2L
dt2 =

·
�(Fc, I, IP, IN , R, D) –

·
Fc

(
1 –

F∗
c

Fc

)

–
(

1 –
F∗

c
Fc

)(
β

(
(

·
FcI +

·
IFc)N –

·
NFcI

N2

))
(97)

+
(

1 –
I∗

I

)(
β

(
(

·
FcI +

·
IFc)N –

·
NFcI

N2

)
– l1

·
I
)

+
(

1 –
I∗

P
IP

)
τ

·
I –
(

1 –
I∗

P
IP

)
l2

·
IP +

(
1 –

I∗
N

IN

)
ψ

·
I

–
(

1 –
I∗

N
IN

)
l3

·
IN + δ

·
I
(

1 –
R∗

R

)
+ γ3

·
IN

(
1 –

R∗

R

)

+
(

1 –
R∗

R

)
φ1

·
IP –

(
1 –

R∗

R

)
(d + γ2)

·
R

+
(

1 –
D∗

D

)
φ2

·
Fc +

(
1 –

D∗

D

)
γ1

·
IP +

(
1 –

D∗

D

)
γ2

·
R

+
(

1 –
D∗

D

)
d

·
IN –

(
1 –

D∗

D

)
d

·
D.
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Now replacing
·

Fc(t),
·
I(t),

·
IP(t),

·
IN (t),

·
R(t), and

·
D(t) with their respective formula and then

putting together positive and negative factors, we have

d2L
dt2 = �1 – �2. (98)

Then

If �1 > �2 then
d2L
dt2 > 0,

If �1 < �2 then
d2L
dt2 < 0, (99)

If �1 = �2 then
d2L
dt2 = 0.

Then the interpretation associated with the sign of second order follows.

5.4 Equilibrium points for second order
As discussed before, the second derivative provides very useful information on curvatures.
Also the equilibrium points of such can also provide very useful information. We shall now
present the equilibrium points of the second order derivative of our solutions.

··
Fc = –d

·
Fc – φ2

·
Fc – β

(
(

·
FcI +

·
IFc)N –

·
NFcI

N2

)
, (100)

··
I = β

(
(

·
FcI +

·
IFc)N –

·
NFcI

N2

)
– l1

·
I,

··
IP = τ

·
I – l2

·
IP,

··
IN = ψ

·
I – l3

·
IN ,

··
R = δ

·
I + γ3

·
IN + φ1

·
IP – (d + γ2)

·
R,

··
D = φ2

·
Fc + γ1

·
IP + γ2

·
R + d

·
IN – d

·
D.

At the disease-free equilibrium, we have the following solution

E∗◦ =
(

	

d + φ2
, 0, 0, 0,

φ2	

d(d + φ2)

)
. (101)

For endemic equilibrium, we obtain

·
Fc = –

d + φ2

l1
, (102)

·
IP =

τ

l2

·
I,

·
IN =

ψ

l3

·
I,

·
I = –

(d + φ2)
l1

	 +
(d + φ2)2

l1
F∗∗

c + β
F∗∗

c I∗

N∗∗
(d + φ2)

l1
,
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·
R =

1
(d + γ2)

(
δ + γ3

ψ

l3
+ φ1

τ

l2

) ·
I,

·
D =

1
d

⎛

⎝ φ2
·

Fc + γ1
τ
l2

·
I

+ γ2
(d+γ2) (δ + γ3

ψ

l3
+ φ1

τ
l2

)
·
I + ψ

l3

·
I

⎞

⎠ ,

τ I∗∗ – l2I∗∗
P =

τ

l2

(
β

F∗∗
c I∗∗

N∗∗ – l1I∗∗
)

,

ψI∗∗ – l3I∗∗
N =

ψ

l3

(
β

F∗∗
c I∗∗

N∗∗ – l1I∗∗
)

,

φ2F∗∗
c + γ1I∗∗

P + γ2R∗∗ + dI∗∗
N – dD∗∗ =

	

d

(
(β F∗∗

c I∗∗
N∗∗ – l1I∗∗)

+ φ2
d (	 – (d + φ2)F∗∗

c – β
F∗∗

c I∗∗
N∗∗ )

)

,

δI∗∗ + γ3I∗∗
N + φ1I∗∗

P – (d + γ2)R∗∗ =
1

(d + γ2)

(
δ + γ3

ψ

l3
+ φ1

τ

l2

)

×
(

β
F∗∗

c I∗∗

N∗∗ – l1I∗∗
)

.

Although equilibrium points have been used successfully to give some information
about the spread of any disease, it is worth noting that these points are obtained using
only the first derivative, which of course just gives an indication about the rate of change.
Whereas F∗∗

c , I∗∗, I∗∗
P , I∗∗

N , R∗∗, and D∗∗ are able to give some information about infection
points, which can be used to detect wave. Therefore, if indeed we have two equilibrium
points, then one could think about two waves. Indeed, on any graph, the second derivative
will correspond to the curvature, or in other words concavity, of the graph.

We now evaluate the sign of I∗∗, I∗∗
P , and I∗∗

N . As prescribed before, we will check the
conditions under which we can have I∗∗ > 0, I∗∗ = 0, and I∗∗ < 0. However,

I∗∗ < 0 �⇒
(

β
·

FcI
N

+
β

·
IFc

N
–

β
·

NFcI
N2

)
– l1

·
I < 0, (103)

where by definition

·
Fc = 	 – (d + φ2)Fc –

βIFc

N
,

·
I =

βIFc

N
– l1I, (104)

·
N = 	 – dN .

Therefore,
(

β

(
	 – (d + φ2)Fc –

βIFc

N

)
I
N

+ β
Fc

N

(
βIFc

N
– l1I

)
–

βFcI
N2 (	 – dN)

)

– l1

(
βIFc

N
– l1I

)
< 0.

(105)

Dividing by I
N , owing to the fact that the class I(t) is not zero everywhere, yields

β	 – β(d + φ2)Fc –
β2FcI

N
+

β2F2
c

N
– βl1Fc –

βFc

N
	 + dβFc – l1βFc + l2

1N < 0, (106)
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β	 + l2
1N +

β2F2
c

N
+ dβFc < β(d + φ2)Fc +

β2FcI
N

+ βl1Fc +
βFc

N
	 + l1βFc +

β2F2
c

N
.

By definition Fc
N < 1 also I

N < 1, we have

l2
1N <

{
βφ2 + β2 + 2βl1

}
Fc, (107)

and we find

Fc >
l2
1N

βφ2 + β2 + 2βl1
. (108)

Therefore, if the above criteria are satisfied,
··
I < 0 the function has a local maximum oth-

erwise then
··
I > 0, the function has a local minimum or

··
I = 0, there is an infection point

that can be found. On the other hand, we write

··
IP < 0 �⇒ τ

·
I – l2

·
IP < 0, (109)

τ

(
βIFc

N
– l1I

)
– l2(τ I – l2IP) < 0,

τβIFc

N
– τ I(l1 + l2) + l2

2IP < 0.

Since by definition I > IP , then

τβIFc

N
– τ I(l1 + l2) + l2

2IP < 0, (110)

τβIFc

N
+ l2

2IP < τ I(l1 + l2),

τβIFc

N
+ l2

2I < τ I(l1 + l2) + l2
2I,

then

Fc <
N
τβ

{
τ (l1 + l2)

}
=

N
β

(l1 + l2). (111)

Also, we write

··
IN < 0 �⇒ ψ

·
I – l3

·
IN < 0, (112)

ψ

(
βIFc

N
– l1I

)
– l3(ψI – l3IN ) < 0,

ψβIFc

N
– ψI(l1 + l3) + l2

3IN < 0,

ψβIFc

N
+ l2

3IN < ψI(l1 + l3),

ψβIFc

N
+ l2

3I < ψI(l1 + l3)l2
3I

and

Fc <
N
β

(l1 + l3). (113)
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Therefore, to have a maximum value on time for the three classes, we need

l2
1N

β(d + φ2) + 2β2 < Fc < min

{
N
β

(l1 + l2),
N
β

(l1 + l3)
}

. (114)

6 Existence and uniqueness
In this section, we present a detailed analysis about the existence and uniqueness of the
system of equations describing the survival of fractional calculus. To achieve this, the fol-
lowing theorem is to be verified.

Theorem 4 Assume that there exist positive constants κi,κ i such that
(i) ∀i ∈ {1, . . . , 6}

∣∣Fi(xi, t) – Fi
(
x′

i, t
)∣∣2 ≤ κi

∣∣xi – x′
i
∣∣2. (115)

(ii) ∀(x, t) ∈ R6 × [0, T]

∣∣Fi(xi, t)
∣∣2 ≤ κ i

(
1 + |xi|2

)
. (116)

We now recall our model

dFc(t)
dt

= 	 – dFc – βFcI = F1(t, Fc, I, IP, IN , R, D), (117)

dI(t)
dt

= βFcI – dI – τ I – δI – ψI = F2(t, Fc, I, IP, IN , R, D),

dIP(t)
dt

= τ I – dIP – γ1IP – φ1IP = F3(t, Fc, I, IP, IN , R, D),

dIN (t)
dt

= ψI – dIN – σ IN – γ3IN = F4(t, Fc, I, IP, IN , R, D),

dR(t)
dt

= φ1IP – dR + δI + γ3IN – γ2R = F5(t, Fc, I, IP, IN , R, D),

dD(t)
dt

= γ2R + γ1IP + φ2Fc + dIN – dD = F6(t, Fc, I, IP, IN , R, D).

We start with the function F1(t, Fc, I, IP, IN , R, D). Then, we will show that

∣∣F1
(
F1

c , t
)

– F1
(
F2

c , t
)∣∣2 ≤ κ1

∣∣F1
c – F2

c
∣∣2. (118)

Then, we write

∣
∣F1
(
F1

c , t
)

– F1
(
F2

c , t
)∣∣2 =

∣
∣d
(
F1

c – F2
c
)

+ βI
(
F1

c – F2
c
)∣∣2 (119)

=
∣
∣(d + βI)

(
F1

c – F2
c
)∣∣2

≤ {2d2 + 2β2|I|2}∣∣F1
c – F2

c
∣
∣2

≤
{

2d2 + 2β2 sup
0≤t≤T

∣
∣I(t)

∣
∣2
}∣
∣F1

c – F2
c
∣
∣2

≤ {2d2 + 2β2‖I‖2
∞
}∣∣F1

c – F2
c
∣∣2
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≤ κ1
∣∣F1

c – F2
c
∣∣2,

where κ1 = {2d2 + 2β2‖I‖2∞}.

∣
∣F2
(
I1, t
)

– F2
(
I2, t
)∣∣2 =

∣
∣βFc

(
I1 – I2) – l1

(
I1 – I2)∣∣2 (120)

=
∣
∣(βFc – l1)

(
I1 – I2)∣∣2

≤
∣
∣∣
(

2β2 sup
0≤t≤T

∣∣Fc(t)
∣∣2 + 2l2

1

)∣∣∣
2∣∣I1 – I2∣∣2

≤ {2l2
1 + 2β2‖Fc‖2

∞
}∣∣I1 – I2∣∣2

≤ κ2
∣∣I1 – I2∣∣2,

∣
∣F3
(
I1

P , t
)

– F3
(
I2

P , t
)∣∣2 =

∣
∣–l2

(
I1

P – I2
P
)∣∣2 (121)

=
∣
∣–l2

(
I1

P – I2
P
)∣∣2

= l2
2
∣
∣I1

P – I2
P
∣
∣2

≤ (l2
2 + ε1

)∣∣I1
P – I2

P
∣
∣2

≤ κ3
∣
∣I1

P – I2
P
∣
∣2,

∣∣F4
(
I1

N , t
)

– F4
(
I2

N , t
)∣∣2 =

∣∣–l3
(
I1

N – I2
N
)∣∣2 (122)

=
∣∣l3
(
I1

N – I2
N
)∣∣2

≤ (l2
3 + ε2

)∣∣I1
N – I2

N
∣∣2

≤ κ4
∣∣I1

N – I2
N
∣∣2,

∣∣F5
(
R1, t

)
– F5

(
R2, t

)∣∣2 =
∣∣–(d + γ2)

(
R1 – R2)∣∣2 (123)

≤ {2d2 + 2γ 2
2
}∣∣R1 – R2∣∣2

≤ κ5
∣
∣R1 – R2∣∣2,

∣
∣F6
(
D1, t

)
– F6

(
D2, t

)∣∣2 =
∣
∣–d
(
D1 – D2)∣∣2 (124)

≤ (d2 + ε3
)∣∣D1 – D2∣∣2

≤ κ6
∣
∣D1 – D2∣∣2.

We verified the first condition for all function. We now verify the second condition for our
model.

∣
∣F1(Fc, t)

∣
∣2 = |	 – dFc + βIFc|2 (125)

≤ 2|	|2 + (2d + βI)2|Fc|2

≤ 2|	|2
(

1 +
2(d2 + β2 sup0≤t≤T |I|2)|Fc|2

2|	|2
)

≤ 2|	|2
(

1 +
(

d2

|	|2 +
β2‖I‖2∞

|	|2
)

|Fc|2
)

≤ κ1
(
1 + |Fc|2

)



Atangana Advances in Difference Equations        (2021) 2021:403 Page 30 of 59

under the condition ( 2d2

|	|2 + 2β2‖I‖2∞
|	|2 ) < 1.

∣∣F2(I, t)
∣∣2 = |βFcI – l1I|2 (126)

≤ (2β2|Fc|2 + 2l2
1
)|I|2

≤ 2
(

l2
1 + β2 sup

0≤t≤T
|Fc|2

)(
1 + |I|2)

≤ 2
(
l2
1 + β2‖Fc‖2

∞
)(

1 + |I|2)

≤ κ2
(
1 + |I|2),

∣
∣F3(IP, t)

∣
∣2 = |τ I – l2IP|2 (127)

≤ (2τ 2|I|2 + 2l2
2|IP|2)

≤
(

2τ 2 sup
0≤t≤T

|I|2 + 2l2
2|IP|2

)

≤ (2τ 2‖I‖2
∞ + 2l2

2|IP|2)

≤ 2τ 2‖I‖2
∞

(
1 +

l2
2

τ 2‖I‖2∞
|IP|2

)

≤ κ3
(
1 + |IP|2)

such that l22
τ2‖I‖2∞

< 1.

∣∣F4(IN , t)
∣∣2 = |ψI – l3IN |2 (128)

≤ (2ψ2|I|2 + 2l2
3|IN |2)

≤
(

2ψ2 sup
0≤t≤T

|I|2 + 2l2
3|IN |2

)

≤ (2ψ2‖I‖2
∞ + 2l2

3|IN |2)

≤ 2ψ2‖I‖2
∞

(
1 +

l2
3

ψ2‖I‖2∞
|IN |2

)

≤ κ4
(
1 + |IN |2)

such that l23
ψ2‖I‖2∞

< 1.

∣
∣F5(R, t)

∣
∣2 =

∣
∣φ1IP + δI + γ3IN – (d + γ2)R

∣
∣2 (129)

≤ 4
(
φ2

1 |IP|2 + δ2|I|2 + γ 2
3 |IN |2 + (d + γ2)2|R|2)

≤ 4
(
φ2

1 sup
0≤t≤T

|IP|2 + δ2 sup
0≤t≤T

|I|2 + γ 2
3 sup

0≤t≤T
|IN |2 +

(
2d2 + 2γ 2

2
)|R|2

)

≤ 4
(
φ2

1‖IP‖2
∞ + δ2‖I‖2

∞ + γ 2
3 ‖IN‖2

∞ + (2d + γ2)2|R|2)

≤ 4
(
φ2

1‖IP‖2
∞ + δ2‖I‖2

∞ + γ 2
3 ‖IN‖2

∞
)

×
(

1 +
(2d2 + 2γ 2

2 )
4(φ2

1‖IP‖2∞ + δ2‖I‖2∞ + γ 2
3 ‖IN‖2∞)

|R|2
)
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≤ κ5
(
1 + |R|2)

under the condition (2d2+2γ 2
2 )

4(φ2
1‖IP‖2∞+δ2‖I‖2∞+γ 2

3 ‖IN ‖2∞) < 1.

∣∣F6(D, t)
∣∣2 = |γ2R + γ1IP + φ2Fc + dIN – dD|2 (130)

≤ 5
(
γ 2

2 |R|2 + γ 2
1 |IP|2 + φ2

2 |Fc|2 + d2|IN |2 + d2|D|2)

≤ 5
(
γ 2

2 sup
0≤t≤T

|R|2 + γ 2
1 sup

0≤t≤T
|IP|2 + φ2

2 sup
0≤t≤T

|Fc|2 + d2 sup
0≤t≤T

|IN |2 + d2|D|2
)

≤ 5
(
γ 2

2 ‖R‖2
∞ + γ 2

1 ‖IP‖2
∞ + φ2

2‖Fc‖2
∞ + d2‖IN‖2

∞ + d2|D|2)

≤ 5L
(

1 +
d2

L
|D|2

)

≤ κ6
(
1 + |D|2),

where L = γ 2
2 ‖R‖2∞ +γ 2

1 ‖IP‖2∞ +φ2
2‖Fc‖2∞ + d2‖IN‖2∞ under the condition d2

L < 1. Then, the
solution of our system exists and is unique under the condition

max

⎧
⎨

⎩

( 2d2

|	|2 + 2β2‖I‖2∞
|	|2 ), l22

τ2‖I‖2∞
, l23

ψ2‖I‖2∞
,

(2d2+2γ 2
2 )

4(φ2
1‖IP‖2∞+δ2‖I‖2∞+γ 2

3 ‖IN ‖2∞) , d2

L

⎫
⎬

⎭
< 1. (131)

7 Stochastic model of survival of fractional calculus
Since there is no clear reason as why the division was initiated within the field of fractional
calculus, we assume some environment noises that could be characterized by envy, lack
of understanding of the concept of fractional derivatives with nonsingular kernels, and
different human behaviors that could lead to divisions. The suggested mathematical model
will be converted to a stochastic model as follows:

dFc(t) =
(

	 – dFc – φ2Fc –
βFcI

N

)
dt + σ1Fc(t) dB1(t), (132)

dI(t) =
(

βFcI
N

– dI – τ I – δI – ψI
)

dt + σ2I(t) dB2(t),

dIP(t) = (τ I – dIP – γ1IP – φ1IP) dt + σ3IP(t) dB3(t),

dIN (t) = (ψI – dIN – σ IN – γ3IN ) dt + σ4IN (t) dB4(t),

dR(t) = (φ1IP – dR + δI + γ3IN – γ2R) dt + σ5R(t) dB5(t),

dD(t) = (γ2R + γ1IP + φ2Fc + dIN – dD) dt + σ6D(t) dB6(t).

7.1 Existence of unique global positive solution
In this subsection, we present the existence of a unique positive solution of the suggested
model.

Theorem 5 For the set of initial conditions S(0) = (Fc(0), I(0), IP(0), IN (0), R(0), D(0)) ∈R
6
+,

there exists a nonnegative solution S(t) = (Fc(t), I(t), IP(t), IN (t), R(t), D(t)) of the stochastic
model on t ≥ 0, and the problem solution will maintain in R

6
+ with unit probability.
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Proof As the coefficient of the equation is locally continuous in the Lipschitz sense for the
given initial size of population (Fc(0), I(0), IP(0), IN (0), R(0), D(0)) ∈ R

6
+, there must exist a

unique solution (i.e., local solution) (Fc(t), I(t), IP(t), IN (t), R(t), D(t)) on t ∈ [0, τe), where
τe denotes the explosion time. In order to show that actually the solution is global, one
has to prove that in fact a.s. τe = ∞. Let us consider a positive real number k0 and large
enough so that all of the initial values of the states lie within { 1

k0
, k0}. Further, let us define

the stopping time

τk =

{
t ∈ [0, τe) : 1

k ≥ min{(Fc(t), I(t), IP(t), IN (t), R(t), D(t))}
or max{(Fc(t), I(t), IP(t), IN (t), R(t), D(t))} ≥ k

}

(133)

for each nonnegative integer k greater than or equal to k0.
We assumed here that infφ = ∞ whenever φ denotes the empty set. By looking into the

definition of stopping time, one can say that τk is monotonically increasing k → ∞. Set
limk→∞ τk = τ∞ with τe ≥ τ∞ a.s.

If, for all nonnegative values of t, we show that τ∞ = ∞ a.s., then we can say that τe = ∞
and a.s. (Fc(t), I(t), IP(t), IN (t), R(t), D(t)) ∈R

6
+. Thus, we have to prove that τe = ∞ a.s. If the

conclusion is assumed to be false, then there must exist two constants 0 < T and ε ∈ (0, 1)
such that

P{T ≥ τ∞} > ε. (134)

Next, we will define a function H : R6
+ →R+ from the C2 space such that

H(Fc, I, IP, IN , R, D) = Fc + I + IP + IN + R + D – 6 (135)

– (log Fc + log I + log IP + log IN + log R + log D).

By using the fact that ∀y > 0, y – 1 – log y ≥ 0, one can notice that H ≥ 0. Further assume
that k0 < k and 0 < T , and by applying Ito’s formula on above, we obtain

dH(Fc, I, IP, IN , R, D) (136)

=
(

1 –
1
Fc

)
dFc + σ1(Fc – 1) dB1(t)

+
(

1 –
1
I

)
dI + σ2(I – 1) dB2(t)

+
(

1 –
1
IP

)
dIP + σ3(IP – 1) dB3(t)

+
(

1 –
1
IN

)
dIN + σ4(IN – 1) dB4(t)

+
(

1 –
1
R

)
dR + σ5(R – 1) dB5(t)

+
(

1 –
1
D

)
dD + σ6(D – 1) dB6(t)

= LH(Fc, I, IP, IN , R, D) dt + σ1(Fc – 1) dB1(t)
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+ σ2(I – 1) dB2(t) + σ3(IP – 1) dB3(t)

+ σ4(IN – 1) dB4(t) + σ5(R – 1) dB5(t)

+ σ6(D – 1) dB6(t).

In above, H : R6
+ →R+ may be defined through the following relation:

LH(Fc, I, IP, IN , R, D) =
(

1 –
1
Fc

)(
	 – dFc – φ2Fc –

βFcI
N

)
(137)

+
(

1 –
1
I

)(
βFcI

N
– dI – τ I – δI – ψI

)

+
(

1 –
1
IP

)
(τ I – dIP – γ1IP – φ1IP)

+
(

1 –
1
IN

)
(ψI – dIN – σ IN – γ3IN )

+
(

1 –
1
R

)
(φ1IP – dR + δI + γ3IN – γ2R)

+
(

1 –
1
D

)
(γ2R + γ1IP + φ2Fc + dIN – dD)

+
σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4 + σ 2

5 + σ 2
6

2
(138)

and

LH(Fc, I, IP, IN , R, D) (139)

= 	 – dFc – φ2Fc –
βFcI

N
–

	

Fc
+ d + φ2

+
βI
N

+
βFcI

N
– dI – τ I – δI – ψI –

βFc

N

+ d + τ + δ + ψ + τ I – dIP – γ1IP – φ1IP

–
τ I
IP

+ d + γ1 + φ1 + ψI – dIN – σ IN – γ3IN

–
ψI
IN

+ d + σ + γ3 + φ1IP – dR + δI + γ3IN – γ2R

– φ1
IP

R
+ d – δ

I
R

– γ3
IN

R
+ γ2 + γ2R + γ1IP + φ2Fc

+ γ2
R
D

+ γ1
IP

D
+ φ2

Fc

D
– d

IN

D
+ d

+
σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4 + σ 2

5 + σ 2
6

2

≤ 	 + d + φ2 + d + τ + δ + ψ + γ2 + d + d + γ1 + φ1 + β

+ d + σ + γ3 +
σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4 + σ 2

5 + σ 2
6

2

≤ 	 + 6d + φ2 + τ + δ + ψ + γ2 + γ1 + φ1 + σ + γ3 + β
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+
σ 2

1 + σ 2
2 + σ 2

3 + σ 2
4 + σ 2

5 + σ 2
6

2
= K . (140)

Here, the formulation of K shows that it is positive and independent state variable as well
as independent variable. Therefore

dH(Fc, I, IP, IN , R, D) ≤ K dt + σ1(Fc – 1) dB1(t) (141)

+ σ2(I – 1) dB2(t) + σ3(IP – 1) dB3(t)

+ σ4(IN – 1) dB4(t) + σ5(R – 1) dB5(t)

+ σ6(D – 1) dB6(t).

Integrating both sides of the above equation from 0 to τk ∧ T , we have

E
[
H
(
Fc(τk ∧ T), I(τk ∧ T), IP(τk ∧ T), IN (τk ∧ T), R(τk ∧ T), D(τk ∧ T)

)]

≤ H
((

Fc(0), I(0), IP(0), IN (0), R(0), D(0)
))

+ E
[∫ τk∧T

0
K
]

(142)

≤ H
((

Fc(0), I(0), IP(0), IN (0), R(0), D(0)
))

+ TK .

Setting �k = {T ≥ τk} for k1 ≤ k and thus P(�k) ≥ ε. Note that, for each w in �k , there must
exist at least one Fc(τk , w), I(τk , w), IP(τk , w), IN (τk , w), R(τk , w), D(τk , w), which equals 1

k or
k. Hence (Fc(τk), I(τk), IP(τk), IN (τk), R(τk), D(τk)) is not less than k – log k – 1 or log k – 1 + 1

k .
As a result,

(
log k – 1 +

1
k

)
∧ E(k – log k – 1) ≤ H

(
Fc(τk), I(τk), IP(τk), IN (τk), R(τk), D(τk)

)
. (143)

From above, we can write

H
(
Fc(0), I(0), IP(0), IN (0), R(0), D(0)

)
+ TK (144)

≥ E
[
1�w H

(
Fc(τk), I(τk), IP(τk), IN (τk), R(τk), D(τk)

)]

≥ ε

[
(k – log k – 1) ∧

(
log k – 1 +

1
k

)]
.

Here, the notation 1�w represents the indicator function of �. Letting k → ∞ will lead to
the contradiction ∞ > H(Fc(0), I(0), IP(0), IN (0), R(0), D(0)) + TK = ∞, which implies that
τ∞ = ∞ a.s. and completes the proof. �

7.2 Extinction for criticism
In this subsection, we aim at deriving the conditions for which criticism could be extinct.
In order to avoid incomprehension by some readers, we define some well-known notations
[27]. Let us consider

〈
x(t)
〉
=

1
t

∫ t

0
x(τ ) dτ . (145)
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We also define the relation depending on the threshold R0 for the proposed model of sur-
vival of calculus

R0 =
β

(d + δ + ψ + τ + σ 2
2
2 )

. (146)

Lemma 1 We assume that the classes (Fc, I, IP, IN , R, D) represent a system of the solution
of our model with initial data (F◦

c , I◦, I◦
P, I◦

N , R◦, D◦) ∈R
6
+. Then

lim
t→∞

Fc(t) + I(t) + IP(t) + IN (t) + R(t) + D(t)
t

= 0. (147)

Additionally, if R0 > σ1σ2σ3σ4σ5σ6
2 , then

lim
t→∞

1
t

∫ t

0
Fc(τ ) dτ = 0, (148)

lim
t→∞

1
t

∫ t

0
I(τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
IP(τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
IN (τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
R(τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
D(τ ) dτ = 0.

The methodology used to establish the above lemma can be found in Zhao and Jiang’s
work, readers are welcome to check references [27]. To avoid repetition, we will omit the
proof here as it is similar to what has been done in [27–32].

Theorem 6 Under the condition that d > σ 2
1 σ 2

2 σ 2
3 σ 2

4 σ 2
5 σ 2

6
2 and (Fc, I, IP, IN , R, D) represent a

system of the solution of our model, with subsidiary conditions (F◦
c , I◦, I◦

P , I◦
N , R◦, D◦) ∈ R

6
+.

If R0 < 1, then

lim
t→∞

〈log I(t)〉
t

< 0, lim
t→∞

〈log IP(t)〉
t

< 0 and lim
t→∞

〈log IN (t)〉
t

< 0. (149)

That is, I(t) → 0 exponentially, which implies that the process will die out and the concept
of nonsingular derivative will survive as well as fractional calculus with unit probability.
Additionally,

lim
t→∞

1
t

∫ t

0
Fc(τ ) dτ =

	

d + φ2
, (150)

lim
t→∞

1
t

∫ t

0
I(τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
IP(τ ) dτ = 0,
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lim
t→∞

1
t

∫ t

0
IN (τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
R(τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
D(τ ) dτ =

φ2	

d(d + φ2)
.

Proof Applying integral on both sides and dividing by t, we obtain

Fc(t) – Fc(0)
t

=
(

	 – (d + φ2)〈Fc〉 –
〈βFcI〉
〈N〉

)
+

σ1

t

∫ t

0
Fc(τ ) dB1(τ ), (151)

I(t) – I(0)
t

=
( 〈βFcI〉

〈N〉 – (d + τ + δ + ψ)〈I〉
)

+
σ2

t

∫ t

0
I(τ ) dB2(τ ),

IP(t) – IP(0)
t

=
(
τ 〈I〉 – (d + γ1 + φ1)〈IP〉) +

σ3

t

∫ t

0
IP(τ ) dB3(τ ),

IN (t) – IN (0)
t

=
(
ψ〈I〉 – (d + σ + γ3)〈IN 〉) +

σ4

t

∫ t

0
IN (τ ) dB4(τ ),

R(t) – R(0)
t

=
(
φ1〈IP〉 + δ〈I〉 + γ3〈IN 〉 – (d + γ2)〈R〉) +

σ5

t

∫ t

0
R(τ ) dB5(τ ),

D(t) – D(0)
t

=
(
γ2〈R〉 + γ1〈IP〉 + φ2〈Fc〉 + d〈IN 〉 – d〈D〉) +

σ6

t

∫ t

0
D(τ ) dB6(τ ).

Now, applying Ito’s formula to the above system, we obtain

d log I(t) =
(

βFc

N
–
(

l1 +
σ 2

2
2

))
+ σ2 dB2(t). (152)

Integrating the above within the interval [0, t] and dividing the same by t yields

log I(t) – log I(0)
t

=
(

β

〈
Fc

N

〉
–
(

l1 +
σ 2

2
2

))
+

σ2

t

∫ t

0
dB2(τ ) (153)

≤
(

β –
(

l1 +
σ 2

2
2

))
+

σ2

t

∫ t

0
dB2(τ )

≤
(

l1 +
σ 2

2
2

)(
β

l1 + σ 2
2
2

– 1
)

+
σ2

t

∫ t

0
dB2(τ )

≤
(

l1 +
σ 2

2
2

)
(R0 – 1) +

σ2

t

∫ t

0
dB2(τ ).

Additionally,

M(t) = σ2

∫ t

0
dB2(τ ), (154)

which is local continuous martingale and M(0) = 0. By the first lemma and t → ∞, we
obtain

lim
t→∞ sup

M(t)
t

= 0. (155)
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If R0 < 1 is satisfied, then

lim
t→0

sup
log I(t)

t
≤
(

l1 +
σ 2

2
2

)
(R0 – 1) < 0. (156)

The above inequality implies that limt→∞〈I(t)〉 = 0. Also, by applying the same principle
on IP(t), we have

IP(t) – IP(0)
t

=
(
τ 〈I〉 – l2〈IP〉) +

σ3

t

∫ t

0
IP(τ ) dB3(τ ), (157)

〈IP〉 =
1
l2

(
τ 〈I〉 +

IP(0) – IP(t)
t

+
σ3

t

∫ t

0
IP(τ ) dB3(τ )

)
,

which implies

lim
t→∞

〈
IP(t)

〉
= 0. (158)

Similarly,

IN (t) – IN (0)
t

=
(
ψ〈I〉 – l3〈IP〉) +

σ4

t

∫ t

0
IN (τ ) dB4(τ ), (159)

〈IN 〉 =
1
l3

(
τ 〈I〉 +

IN (0) – IN (t)
t

+
σ4

t

∫ t

0
IN (τ ) dB4(τ )

)
.

Also the above yields

lim
t→∞

〈
IN (t)

〉
= 0. (160)

In a similar way, we can show that

lim
t→∞

〈
R(t)

〉
= 0. (161)

However, to achieve the value of limt→∞〈Fc(t)〉, we apply integral on both sides and divide
by t to obtain

Fc(t) – Fc(0)
t

=
(

	 – (d + φ2)〈Fc〉 –
〈βFcI〉
〈N〉

)
+

σ1

t

∫ t

0
Fc(τ ) dB1(τ ), (162)

〈
Fc(t)

〉
=

1
(d + φ2)

(
	 +

〈βFcI〉
〈N〉 +

Fc(0) – Fc(t)
t

+
σ1

t

∫ t

0
Fc(τ ) dB1(τ )

)
.

Thus, taking the limits when t → ∞, we get

lim
t→∞

〈
Fc(t)

〉
=

	

(d + φ2)
. (163)

Similarly, we have

D(t) – D(0)
t

=
(
γ2〈R〉 + γ1〈IP〉 + φ2〈Fc〉 + d〈IN 〉 – d〈D〉) +

σ6

t

∫ t

0
D(τ ) dB6(τ ), (164)
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〈D〉 =
1
d

(
γ2〈R〉 + γ1〈IP〉 + φ2〈Fc〉 + d〈IN 〉 +

D(0) – D(t)
t

+
σ6

t

∫ t

0
D(τ ) dB6(τ )

)
.

Thus, applying the limit as t → ∞,

lim
t→∞

〈
D(t)

〉
=

	φ2

d(d + φ2)
, (165)

which completes the proof.
We now present the extinction of the classes I(t), IP(t), and IN (t) when the fractional

derivative is the Caputo–Fabrizio version

Fc(t) – Fc(0) =
1 – α

M(α)

(
	 – (d + φ2)Fc –

βFcI
N

)
(166)

+
α

M(α)

∫ t

0

(
	 – (d + φ2)Fc –

βFcI
N

)
dτ ,

+ σ1
α

M(α)

∫ t

0
Fc(τ ) dB1(τ ) + σ1

1 – α

M(α)
Fc(t)B1′(t).

By dividing with t, the above produces

Fc(t) – Fc(0)
t

(167)

=
1 – α

M(α)

(
	 – (d + φ2)Fc –

βFcI
N

)
1
t

+ σ1
1 – α

M(α)
Fc(t)B1′(t)

1
t

+
α

M(α)

∫ t

0

(
	 – (d + φ2)〈Fc〉 –

〈βFcI〉
〈N〉

)
dτ +

σ1

t
α

M(α)

∫ t

0
Fc(τ ) dB1(τ ).

Since Fc(t) represents the class of researchers working in fractional calculus, clearly, for
t → ∞, Fc(t) is bounded

lim
t→∞

Fc(t) – Fc(0)
t

=
1 – α

M(α)
lim

t→∞

{
(	 – (d + φ2)Fc – βFcI

N ) 1
t

+σ1
1–α

M(α) Fc(t)B1(t) 1
t

}

(168)

+
α

M(α)
lim

t→∞

{∫ t
0 (	 – (d + φ2)〈Fc〉 – 〈βFcI〉

〈N〉 ) dτ

+ σ1
t
∫ t

0 Fc(τ ) dB1(τ )

}

.

Considering the fact that Fc
N ≤ 1 and that Fc is bounded, we get

lim
t→∞

〈
Fc(t)

〉
=

	

(d + φ2)
. (169)

For the I(t) class, we have the following:

I(t) – I(0) =
1 – α

M(α)

(
βFcI

N
– (d + τ + δ + ψ)I

)
+ σ2

1 – α

M(α)
I(t)B2′(t) (170)

+
α

M(α)

∫ t

0

(
βFcI

N
– (d + τ + δ + ψ)I

)
dτ + σ2

α

M(α)

∫ t

0
I(τ ) dB2(τ ),
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and dividing by t yields

I(t) – I(0)
t

=
1 – α

M(α)

(
βFcI

N
– (d + τ + δ + ψ)I

)
1
t

+ σ2
1 – α

M(α)
I(t)B2′(t)

1
t

(171)

+
α

M(α)

∫ t

0

(
βFcI

N
– (d + τ + δ + ψ)I

)
dτ +

σ2

t
α

M(α)

∫ t

0
I(τ ) dB2(τ ).

We write

lim
t→∞

I(t) – I(0)
t

(172)

=
1 – α

M(α)
lim

t→∞

{(
βFcI

N
– (d + τ + δ + ψ)I

)
1
t

+ σ2I(t)B2′(t)
1
t

}

+
α

M(α)
lim

t→∞

{∫ t

0

( 〈βFcI〉
〈N〉 – (d + τ + δ + ψ)〈I〉

)
dτ +

σ2

t

∫ t

0
I(τ ) dB2(τ )

}
.

Thus, we have

lim
t→∞

〈
I(t)
〉

= 0. (173)

Similarly, we write

IP(t) – IP(0) =
1 – α

M(α)
(τ I – l2IP) + σ3

1 – α

M(α)
IP(t)B3′(t) (174)

+
α

M(α)

∫ t

0
(τ I – l2IP) dτ + σ3

α

M(α)

∫ t

0
IP(τ ) dB3(τ ),

and dividing by t yields

IP(t) – IP(0)
t

=
1 – α

M(α)
(τ I – l2IP)

1
t

+ σ3
1 – α

M(α)
IP(t)B3′(t)

1
t

(175)

+
α

M(α)

∫ t

0

(
τ 〈I〉 – l2〈IP〉)dτ +

σ3

t
α

M(α)

∫ t

0
IP(τ ) dB3(τ ).

We write

lim
t→∞

IP(t) – IP(0)
t

=
1 – α

M(α)
lim

t→∞

{
(τ I – l2IP)

1
t

+ σ3IP(t)B3′(t)
1
t

}
(176)

+
α

M(α)
lim

t→∞

{∫ t

0

(
τ 〈I〉 – l2〈IP〉)dτ +

σ3

t

∫ t

0
IP(τ ) dB3(τ )

}
,

0 = lim
t→∞

α

M(α)
τ 〈I〉 + lim

t→∞
α

M(α)
l2〈IP〉. (177)

However, limt→∞〈I(t)〉 = 0, thus

lim
t→∞

〈
IP(t)

〉
= 0. (178)

Applying a similar procedure on IN and R also, we obtain

lim
t→∞

〈
IN (t)

〉
= 0,
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lim
t→∞

〈
R(t)

〉
= 0. (179)

However, for D class, we have

D(t) – D(0)
t

=
1 – α

M(α)
(γ2R + γ1IP + φ2Fc + dIN – dD)

1
t

+ σ6
1 – α

M(α)
D(t)B6′(t)

1
t

(180)

+
α

M(α)

∫ t

0

(
γ2〈R〉 + γ1〈IP〉 + φ2〈Fc〉 + d〈IN 〉 – d〈D〉)dτ

+
σ6

t
α

M(α)

∫ t

0
D(τ ) dB6(τ )

lim
t→∞〈D〉 =

M(α)
α

α

M(α)
	φ2

d(d + φ2)
=

	φ2

d(d + φ2)
.

Therefore, we write

lim
t→∞

1
t

∫ t

0
Fc(τ ) dτ =

	

d + φ2
, (181)

lim
t→∞

1
t

∫ t

0
I(τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
IP(τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
IN (τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
R(τ ) dτ = 0,

lim
t→∞

1
t

∫ t

0
D(τ ) dτ =

φ2	

d(d + φ2)
.

We now present a discussion underpinning the extinction of species where the model is
with fractional derivative in the Caputo sense. �

Lemma 2 Assuming that a function x(t) is continuous and bounded for t ∈ [0,∞), then for
0 < α ≤ 1,

lim
t→∞

1
tα+1�(α)

∫ t

0
x(τ )(t – τ )α–1 dτ = 0. (182)

For proof, since x(t) is continuous and bounded, then ∀t ∈ [0,∞) there exists M < ∞ such
that ‖x‖∞ = supt∈Dt |x(t)| < M

lim
t→∞

1
tα+1�(α)

∫ t

0
x(τ )(t – τ )α–1 dτ ≤ lim

t→∞
1

tα+1�(α)

∫ t

0

∣∣x(τ )
∣∣(t – τ )α–1 dτ (183)

≤ lim
t→∞

1
tα+1�(α)

∫ t

0
sup

ξ∈(0,τ )

∣
∣x(ξ )

∣
∣(t – τ )α–1 dτ (184)

≤ lim
t→∞

‖x‖∞
tα+1�(α)

∫ t

0
(t – τ )α–1 dτ (185)
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≤ lim
t→∞

M
t�(α + 1)

= 0. (186)

We now assume that x(t) is bounded, then

‖x‖∞ = sup
t∈Dx

∣∣x(t)
∣∣ < M < ∞. (187)

We now discuss the condition of existence of the following operator for any 0 < α ≤ 1. To
do this, we shall present the following definition:

C 〈x(t)
〉α =

1
tα�(α)

∫ t

0
x(τ )(t – τ )α–1 dτ . (188)

Then

C 〈x(t)
〉α ≤ |C 〈x(t)

〉α| ≤ 1
tα�(α)

∫ t

0

∣
∣x(τ )

∣
∣(t – τ )α–1 dτ (189)

≤ M
tα�(α + 1)

tα =
M

�(α + 1)
.

Now, we consider the class Fc

Fc(t) – Fc(0) =
1

�(α)

∫ t

0

(
	 – (d + φ2)Fc –

βFcI
N

)
(t – τ )α–1 dτ (190)

+
σ1

�(α)

∫ t

0
Fc(τ )(t – τ )α–1 dB1(τ ).

Dividing by tα , we get

Fc(t) – Fc(0)
tα

=
1

tα�(α)

∫ t

0

(
	 – (d + φ2)Fc –

βFcI
N

)
(t – τ )α–1 dτ (191)

+
σ1

tα�(α)

∫ t

0
Fc(τ )(t – τ )α–1 dB1(τ )

=
	

�(α + 1)
– (d + φ2)C〈Fc〉α – βC

〈
FcI
N

〉α

+
σ1

tα�(α)

∫ t

0
Fc(τ )(t – τ )α–1 dB1(τ )

and

C〈Fc〉α =
	

�(α + 1)(d + φ2)
+

1
(d + φ2)

{
Fc(t)–Fc(0)

tα – βC〈 FcI
N 〉α

+ σ1
tα�(α)

∫ t
0 Fc(τ )(t – τ )α–1 dB1(τ )

}

. (192)

Then, we have

lim
t→∞

C〈Fc〉α =
	

�(α + 1)(d + φ2)
. (193)
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We consider the class I , we have the following:

I(t) – I(0) =
1

�(α)

∫ t

0

(
βFcI

N
– (d + τ + δ + ψ)I

)
(t – τ )α–1 dτ

+
σ2

�(α)

∫ t

0
I(τ )(t – τ )α–1 dB2(τ ), (194)

and dividing by tα yields

I(t) – I(0)
tα

= βC
〈

FcI
N

〉α
– l1

C〈I〉α +
σ2

tα�(α)

∫ t

0
I(τ )(t – τ )α–1 dB2(τ ). (195)

Since ∀t ∈ [0, T] Fc < N , then

I(t) – I(0)
tα

= βC〈I〉α –
(

l1 +
σ 2

2
2

)
C〈I〉α +

σ2

tα�(α)

∫ t

0
I(τ )(t – τ )α–1 dB2(τ ) (196)

and

(
l1 +

σ 2
2

2

){
–

β

l1 + σ 2
2
2

+ 1
}

C〈I〉α (197)

≤ I(t) – I(0)
tα

+
σ2

tα�(α)

∫ t

0
I(τ )(t – τ )α–1 dB2(τ ).

Thus we write

(
l1 +

σ 2
2

2

)
{1 – R0} C〈I〉α ≤ I(t) – I(0)

tα
+

σ2

tα�(α)

∫ t

0
I(τ )(t – τ )α–1 dB2(τ ). (198)

Then, we get

lim
t→∞

(
l1 +

σ 2
2

2

)
{1 – R0} C〈I〉α ≤ 0. (199)

Indeed l1 + σ 2
2
2 > 0, also 1 – R0 > 0 since it was assumed that R0 – 1 < 0, then

lim
t→∞

C〈I〉α = 0. (200)

Using the same routine, we have

IP(t) – IP(0)
tα

= τC〈I〉α – l2
C〈IP〉α (201)

+
σ3

tα�(α)

∫ t

0
IP(τ )(t – τ )α–1 dB3(τ ).

We write

lim
t→∞

IP(t) – IP(0)
tα
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= lim
t→∞ τC〈I〉α – lim

t→∞ l2
C〈IP〉α + lim

t→∞
σ3

tα�(α)

∫ t

0
IP(τ )(t – τ )α–1 dB3(τ ),

0 = τ lim
t→∞

C〈I〉α – +l2 lim
t→∞

C〈I〉α + 0. (202)

However, limt→∞ C〈I〉α = 0, therefore

lim
t→∞

C〈IP〉α = 0. (203)

In the same way,

lim
t→∞

C〈IN 〉α = 0,

lim
t→∞

C〈R〉α = 0. (204)

Finally, we evaluate the class D

D(t) – D(0)
tα

= γ2
C〈R〉α + γ1

C〈IP〉α + φ2
C〈Fc〉α + dC〈IN 〉α – dC〈D〉α

+
σ6

tα�(α)

∫ t

0
D(τ )(t – τ )α–1 dB6(τ ), (205)

0 = τ lim
t→∞

C〈I〉α – +l2 lim
t→∞

C〈I〉α + 0.

Thus we write

lim
t→∞

D(t) – D(0)
tα

= γ2
C

lim
t→∞〈R〉α + γ1 lim

t→∞
C〈IP〉α + φ2 lim

t→∞
C〈Fc〉α (206)

+ d lim
t→∞

C〈IN 〉α – d lim
t→∞

C〈D〉α

+ lim
t→∞

σ6

tα�(α)

∫ t

0
D(τ )(t – τ )α–1 dB6(τ )

0 = d lim
t→∞

C〈D〉α –
	φ2

�(α + 1) d(d + φ2)
,

which yields

lim
t→∞

C〈D〉αP =
	φ2

�(α + 1) d(d + φ2)
. (207)

Therefore, we write

lim
t→∞

1
tα�(α)

∫ t

0
Fc(τ )(t – τ )α–1 dτ =

	

�(α + 1)(d + φ2)
, (208)

lim
t→∞

1
tα�(α)

∫ t

0
I(τ )(t – τ )α–1 dτ = 0,

lim
t→∞

1
tα�(α)

∫ t

0
IP(τ )(t – τ )α–1 dτ = 0,

lim
t→∞

1
tα�(α)

∫ t

0
IN (τ )(t – τ )α–1 dτ = 0,
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lim
t→∞

1
tα�(α)

∫ t

0
R(τ )(t – τ )α–1 dτ = 0,

lim
t→∞

1
tα�(α)

∫ t

0
D(τ )(t – τ )α–1 dτ =

φ2	

�(α + 1) d(d + φ2)
.

We now investigate the extinction with ABC derivative. To achieve this, we define

ABC 〈x(t)
〉α =

1 – α

AB(α)
x(t)
tα

+
α

tα�(α)AB(α)

∫ t

0
x(τ )(t – τ )α–1 dτ . (209)

Of course 0 < α ≤ 1, also when α = 1, we have

〈
x(t)
〉
=

1
t

∫ t

0
x(τ ) dτ . (210)

We now show the condition of existence of the above operator. We assume that x(t) is
continuous and bounded, then ‖x‖∞ < M < ∞

ABC 〈x(t)
〉α ≤ |ABC 〈x(t)

〉α| ≤ 1 – α

AB(α)
|x(t)|

tα
+

α

tα�(α)AB(α)

∫ t

0

∣
∣x(τ )

∣
∣(t – τ )α–1 dτ (211)

≤ 1 – α

AB(α)
supt∈Dx |x(t)|

tα
+

α

tα�(α)AB(α)

∫ t

0
sup

ξ∈[0,τ ]

∣∣x(ξ )
∣∣(t – τ )α–1 dτ

≤ 1 – α

AB(α)
M
tα

+
α

�(α)
M

tαAB(α)

≤ M
tα

{
1 – α

AB(α)
+

α

AB(α)�(α)

}
.

Therefore, we have

ABC 〈x(t)
〉α ≤ M

tα

{
1 – α

AB(α)
+

α

AB(α)�(α)

}
. (212)

With the above, we can now show the extinction with ABC derivative

Fc(t) – Fc(0) =
1 – α

AB(α)

(
	 – (d + φ2)Fc –

βFcI
N

)
+ σ1

1 – α

AB(α)
Fc(t)B1′(t) (213)

+
α

AB(α)�(α)

∫ t

0

(
	 – (d + φ2)Fc –

βFcI
N

)
(t – τ )α–1 dτ

+
σ1α

AB(α)�(α)

∫ t

0
Fc(τ )(t – τ )α–1 dB1(τ ).

Dividing by tα yields

Fc(t) – Fc(0)
tα

=
1 – α

AB(α)
	

tα
– (d + φ2)ABC〈Fc〉α – βABC

〈
FcI
N

〉α

+
	α

AB(α)�(α)
+

1 – α

AB(α)
Fc(t)B1′(t)σ1

tα

+
ασ1

tαAB(α)�(α)

∫ t

0
Fc(τ )(t – τ )α–1 dB1(τ ) (214)
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and

lim
t→∞

Fc(t) – Fc(0)
tα

= –(d + φ2) lim
t→∞

ABC〈Fc〉α +
	α

AB(α)�(α)
. (215)

The left-hand side gives zero, then

lim
t→∞

ABC〈Fc〉α =
α

AB(α)�(α)
	

(d + φ2)
. (216)

For the class I(t), we have

I(t) – I(0) =
1 – α

AB(α)

{(
βFcI

N
– l1I

)
+ σ2I(t)B2′(t)

}

+
α

AB(α)�(α)

∫ t

0

(
βFcI

N
– l1I

)
(t – τ )α–1 dτ (217)

+
ασ2

AB(α)�(α)

∫ t

0
I(τ )(t – τ )α–1 dB2(τ ).

Dividing by tα yields

I(t) – I(0)
tα

= βABC
〈

FcI
N

〉α
– l1

ABC〈I〉α +
1 – α

AB(α)
σ2

I(t)
tα

B2′(t) (218)

+
ασ2

tαAB(α)�(α)

∫ t

0
I(τ )(t – τ )α–1 dB2(τ ).

Then

lim
t→∞

I(t) – I(0)
tα

= lim
t→∞βABC

〈
FcI
N

〉α
– lim

t→∞ l1
ABC〈I〉α + 0 + 0. (219)

Thus, we write

0 ≤ βABC〈I〉α –
(

l1 +
σ 2

2
2

)
ABC〈I〉α (220)

≤
(

l1 +
σ 2

2
2

){
β

l1 + σ 2
2
2

– 1
}

ABC〈I〉α ,

and we obtain

lim
t→∞

ABC〈I〉α = 0 (221)

since R0 – 1 < 0. Using the same routine, we get

lim
t→∞

ABC〈IP〉α = 0,

lim
t→∞

ABC〈IN 〉α = 0, (222)

lim
t→∞

ABC〈R〉α = 0,

lim
t→∞

ABC〈D〉α =
α

AB(α)�(α)
	φ2

d(d + φ2)
.
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8 Optimal control for the model of survival of fractional calculus
In this section, we present optimality conditions for the model of survival of fractional cal-
culus by using Pontryagin’s maximum principle [33]. To achieve this, we will rearrange the
considered model by using four control variables as four possible control strategies. The
control variable u1 is the discussion about singular and nonsingular kernels in social me-
dia such as Researchgate, Facebook. The control u2 describes the number of books, papers
accepted about singular and nonsingular kernels. The control u3 describes the fairness of
editorial and publishers. The control u4 is a conference with good talk where fractional
calculus is discussed.

By addition of the control functions mentioned above, we modify our model as follows:

dFc(t)
dt

= 	 – dFc – φ2Fc –
βFcI

N
– u1Fc – u3Fc, (223)

dI(t)
dt

=
βFcI

N
– dI – τ I – δI – ψI – u4I,

dIP(t)
dt

= τ I – dIP – γ1IP – φ1IP – u3IP,

dIN (t)
dt

= ψI – dIN – σ IN – γ3IN – u2IN ,

dR(t)
dt

= φ1IP – dR + δI + γ3IN – γ2R + u2IN + u4I + u1Fc + u3IP,

dD(t)
dt

= γ2R + γ1IP + φ2Fc + σ IN – dD.

The objective functional can be represented by

min
(u1,u2,u3,u4)∈U

J(u1, u2, u3, u4) =
∫ T

0

⎛

⎜
⎝

q1Fc + q2I + q3IN + q4IP

–q5R + a1u2
1 + a2u2

2

+a3u2
3 + a4u2

4

⎞

⎟
⎠ dt (224)

on the set

U =

{
(u1, u2, u3, u4) ∈ L∞(0, T) × L∞(0, T) × L∞(0, T) × L∞(0, T) :
0 ≤ u1(t) ≤ ũ1, 0 ≤ u2(t) ≤ ũ2, 0 ≤ u3(t) ≤ ũ3, 0 ≤ u4(t) ≤ ũ4,

}

. (225)

The parameters q1, q2, q3, q4, a1, a2, a3, a4 are the weighted parameters. The existence of
the control functions [15] can be ensured by the assumptions the set of U is nonempty,
convex, bounded, and closed, the Lipschitz property of the state system, and the convexity
of the integrand of the objective functional with respect to the controls on the set U .

Based on Pontryagin’s maximum principle, we establish the Hamiltonian H given by

H = a1u2
1 + a2u2

2 + a3u2
3 + a4u2

4 + q1Fc + q2I + q3IN + q4IP – q5R

+ λ1

(
	 – dFc – φ2Fc –

βFcI
N

– u1Fc

)

+ λ2

(
βFcI

N
– dI – τ I – δI – ψI – u4I

)

+ λ3(τ I – dIP – γ1IP – φ1IP – u3IP)
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+ λ4(ψI – dIN – σ IN – γ3IN – u2IN )

+ λ5

(
φ1IP – dR + δI + γ3IN – γ2R
+u2IN + u4I + u1Fc + u3IP

)

+ λ6(γ2R + γ1IP + φ2Fc + σ IN – dD).

Then, we obtain the following necessary conditions:

dλ1

dt
= –

∂H
∂Fc

= –

{
q1 – λ1((d + φ2 + u1) + βI

N ) + λ2
βI
N

+λ5u1 + λ6φ2

}

,

dλ2

dt
= –

∂H
∂I

= –

{
q2 + (λ2 – λ1) βFc

N – λ2(d + τ + δ + ψ + u4)
+λ3τ + λ4ψ + λ5(δ + u4)

}

,

dλ3

dt
= –

∂H
∂IP

= –
{

q4 – λ3(d + γ1 + φ1 + u3) + λ5φ1 + λ6γ1
}

,

dλ4

dt
= –

∂H
∂IN

= –
{

q3 + λ4(d + σ + γ3 + u2) + λ5(γ3 + u2)
}

, (226)

dλ5

dt
= –

∂H
∂R

= –
{

–q5 – λ5(d + γ2) + λ6γ2
}

,

dλ6

dt
= –

∂H
∂D

= –{–dλ6},

with the transversality conditions λk(tf ) = 0 for k = 1, 2, 3, 4, 5, 6, and control variables are
given by

u1 =
Fc(t)(λ1 – λ5)

2a1
,

u2 =
IN (t)(λ4 – λ5)

2a2
,

u3 =
IP(t)(λ3 – λ5)

2a3
,

u4 =
I(t)(λ2 – λ5)

2a4
. (227)

Thus, the optimality conditions can be achieved as

u∗
1 = min

{
ũ1, max

{
0,

Fc(t)(λ1 – λ5)
2a1

}}
,

u∗
2 = min

{
ũ2, max

{
0,

IN (t)(λ4 – λ5)
2a2

}}
,

u∗
3 = min

{
ũ3, max

{
0,

IP(t)(λ3 – λ5)
2a3

}}
,

u∗
4 = min

{
ũ4, max

{
0,

I(t)(λ2 – λ5)
2a4

}}
. (228)

9 Numerical solution of the model with exponential decay process
In this section, we present a numerical scheme based on Newton polynomial to solve the
suggested mathematical model for different differential operators [16]. We start with the
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Caputo–Fabrizio case for a numerical solution of the mathematical model of survival of
fractional calculus with nonsingular kernel

CF
0 Dα

t Xi(t) = F(t, X) + σiGi(t, Xi)Wi′(t), (229)

where

X = (Fc, I, IP, IN , R, D), F(t, X) =
(
fi(t, Xi)

)
i=1,...,6. (230)

Applying the associated integral, interpolating fi(t, Xi) using the Newton polynomial
within [tn, tn+1] yields

Xn+1 = Xn +
1 – α

M(α)
[
F
(
tn, Xn) – F

(
tn–1, Xn–1)] (231)

+
α

M(α)

{
23
12 F(tn, Xn)�t – 4

3 F(tn–1, Xn––1)�t
+ 5

12 F(tn–2, Xn–2)�t

}

+
1 – α

M(α)
σi

[
(Wi(tn+1) – Wi(tn))Gi(tn+1, Xn+1

i )
–(Wi(tn) – Wi(tn–1))Gi(tn, Xn

i )

]

+
α

M(α)
σi

⎧
⎪⎨

⎪⎩

5
12 Gi(tn–2, Xn–2

i )(Wi(tn–1) – Wi(tn–2))
– 4

3 Gi(tn–1, Xn–1
i )(Wi(tn) – Wi(tn–1))

+ 23
12 Gi(tn, Xn

i )(Wi(tn+1) – Wi(tn))

⎫
⎪⎬

⎪⎭

10 Numerical solution of the model with Mittag-Leffler process
In this section, we present a numerical solution for the model where the time derivative is
the fractional derivative with the generalized Mittag-Leffler kernel. Here again, we adopt
the numerical scheme based on the Newton polynomial interpolation [16]. Therefore, ap-
plying the scheme on the model, we obtain the following algorithm. It is important to note
that a model with the generalized Mittag-Leffler helps capture processes with a passage
from stretched exponential to power law with no steady state:

ABC
0 Dα

t X(t) = F(t, X) + σiGi(t, Xi)Wi′(t), (232)

where

X = (Fc, I, IP, IN , R, D), F(t, X) =
(
fi(t, Xi)

)
i=1,...,6. (233)

Applying the associated integral, interpolating fi(t, Xi) using the Newton polynomial
within [tn, tn+1] yields

Xn+1 =
1 – α

AB(α)
F
(
tn, Xn) (234)

+
α(�t)α

AB(α)�(α + 1)

n∑

j=2

F
(
tj–2, Xj–2)�

+
α(�t)α

AB(α)�(α + 1)

n∑

j=2

σiGi
(
tj–2, Xj–2

i
)(

Wi(tj–1) – Wi(tj–2)
)
�
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+
α(�t)α

AB(α)�(α + 2)

n∑

j=2

[
σiGi(tj–1, Xj–1

i )(Wi(tj) – Wi(tj–1))
–σiGi(tj–2, Xj–2

i )(Wi(tj–1) – Wi(tj–2))

]

�

+
α(�t)α

2AB(α)�(α + 3)

n∑

j=2

⎡

⎢
⎣

σiGi(tj, Xj
i)(Wi(tj–1) – Wi(tj))

–2σiGi(tj–1, Xj–1
i )(Wi(tj) – Wi(tj–1))

+σiGi(tj–2, Xj–2
i )(Wi(tj–1) – Wi(tj–2))

⎤

⎥
⎦�

+
α(�t)α

AB(α)�(α + 2)

n∑

j=2

[
F
(
tj–1, Xj–1) – F

(
tj–2, Xj–2)]�

+
α(�t)α

2AB(α)�(α + 3)

n∑

j=2

[
F
(
tj, Xj) – 2F

(
tj–1, Xj–1) + F

(
tj–2, Xj–2)]�,

where

� =
[
(n – j + 1)α – (n – j)α

]
,

� =

[
(n – j + 1)α(n – j + 3 + 2α)
–(n – j)α(n – j + 3 + 3α)

]

,

� =

⎡

⎢
⎢⎢⎢
⎣

(n – j + 1)α
[

2(n – j)2 + (3α + 10)(n – j)
+2α2 + 9α + 12

]

–(n – j)α
[

2(n – j)2 + (5α + 10)(n – j)
+6α2 + 18α + 12

]

⎤

⎥
⎥⎥⎥
⎦

.

11 Numerical solution of the model with power-law process
It has been presented in the literature that Caputo derivative, which is based on the power-
law kernel, is suitable for modeling real world problems exhibiting power-law processes.
Therefore in order to include in our model the effect of power law that could be followed
by the dynamic observed in the community of fractional calculus, we replace the time
derivative with the Caputo derivative. Again here, we adopt a numerical scheme based on
the Newton polynomial interpolation [16]:

C
0 Dα

t X(t) = F(t, X) + σiGi(t, Xi)Wi′(t), (235)

where

X = (Fc, I, IP, IN , R, D), F(t, X) =
(
fi(t, Xi)

)
i=1,...,6. (236)

Applying the associated integral, interpolating fi(t, Xi) using the Newton polynomial
within [tn, tn+1] yields

Xn+1 =
(�t)α

�(α + 1)

n∑

j=2

F
(
tj–2, Xj–2)�

+
(�t)α

�(α + 1)

n∑

j=2

σiGi
(
tj–2, Xj–2

i
)(

Wi(tj–1) – Wi(tj–2)
)
�

+
(�t)α

�(α + 2)

n∑

j=2

[
σiGi(tj–1, Xj–1

i )(Wi(tj) – Wi(tj–1))
–σiGi(tj–2, Xj–2

i )(Wi(tj–1) – Wi(tj–2))

]

� (237)
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+
(�t)α

2�(α + 3)

n∑

j=2

⎡

⎢
⎣

σiGi(tj, Xj
i)(Wi(tj–1) – Wi(tj))

–2σiGi(tj–1, Xj–1
i )(Wi(tj) – Wi(tj–1))

+σiGi(tj–2, Xj–2
i )(Wi(tj–1) – Wi(tj–2))

⎤

⎥
⎦�

+
(�t)α

�(α + 2)

n∑

j=2

[
F
(
tj–1, Xj–1) – F

(
tj–2, Xj–2)]�

+
α(�t)α

2�(α + 3)

n∑

j=2

[
F
(
tj, Xj) – 2F

(
tj–1, Xj–1) + F

(
tj–2, Xj–2)]�.

12 Numerical solution of the model with fractal-fractional exponential kernel
Fractal-fractional differential operators have been suggested to depict processes following
fading memory with some self-similar patterns. In this section, in order to include into the
mathematical model the effect of fading memory with self-similar patterns, we replace the
time fractal-fractional derivative with the exponential-decay kernel. We adopt a numerical
scheme based on the Newton polynomial interpolation [16]:

FFE
0 Dα,β

t X(t) = F(t, X) + σiGi(t, Xi)Wi′(t), (238)

where

X = (Fc, I, IP, IN , R, D), F(t, X) =
(
fi(t, Xi)

)
i=1,...,6. (239)

Applying the associated integral, interpolating fi(t, Xi) using the Newton polynomial
within [tn, tn+1] yields

Xn+1 = Xn +
1 – α

M(α)
[
t1–β
n F

(
tn, Xn) – t1–β

n–1 F
(
tn–1, Xn–1)] (240)

+
α

M(α)

{
23
12 t1–β

n F(tn, Xn)�t – 4
3 t1–β

n–1 F(tn–1, Xn––1)�t
+ 5

12 t1–β
n–2 F(tn–2, Xn–2)�t

}

+
1 – α

M(α)
σi

[
t1–β
n (Wi(tn+1) – Wi(tn))Gi(tn, Xn

i )
–t1–β

n–1 (Wi(tn) – Wi(tn–1))Gi(tn–1, Xn–1
i )

]

+
α

M(α)
σi

⎧
⎪⎨

⎪⎩

5
12 t1–β

n–2 Gi(tn–2, Xn–2
i )(Wi(tn–1) – Wi(tn–2))

– 4
3 t1–β

n–1 Gi(tn–1, Xn–1
i )(Wi(tn) – Wi(tn–1))

+ 23
12 t1–β

n Gi(tn, Xn
i )(Wi(tn+1) – Wi(tn))

⎫
⎪⎬

⎪⎭
.

13 Numerical solution of the model with fractal-fractional Mittag-Leffler
kernel

Processes exhibiting a passage from stretched exponential to power law with no steady
state and self-similarities could be modeled using a fractal-fractional derivative with
the generalized Mittag-Leffler kernel. In this section, in order to make our model more
complex, we present the numerical solution when the time derivative is replaced with
the fractal-fractional derivative with the generalized Mittag-Leffler kernel. A numerical
scheme based on the Newton polynomial interpolation [16] is used:

FFM
0 Dα,β

t X(t) = F(t, X) + σiGi(t, Xi)Wi′(t),
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where

X = (Fc, I, IP, IN , R, D), F(t, X) =
(
fi(t, Xi)

)
i=1,...,6. (241)

Applying the associated integral, interpolating fi(t, Xi) using the Newton polynomial
within [tn, tn+1] yields

Xn+1 =
1 – α

AB(α)
t1–β
n F

(
tn, Xn) +

1 – α

AB(α)
t1–β
n σiGi

(
tn, Xn

i
)(

Wi(tn+1) – Wi(tn)
)

(242)

+
α(�t)α

AB(α)�(α + 1)

n∑

j=2

t1–β

j–2 F
(
tj–2, Xj–2)�

+
α(�t)α

AB(α)�(α + 1)

n∑

j=2

σit1–β

j–2 Gi
(
tj–2, Xj–2

i
)(

Wi(tj–1) – Wi(tj–2)
)
�

+
α(�t)α

AB(α)�(α + 2)

n∑

j=2

[
σit1–β

j–1 Gi(tj–1, Xj–1
i )(Wi(tj) – Wi(tj–1))

–σit1–β

j–2 Gi(tj–2, Xj–2
i )(Wi(tj–1) – Wi(tj–2))

]

�

+
α(�t)α

2AB(α)�(α + 3)

n∑

j=2

⎡

⎢
⎣

σit1–β

j Gi(tj, Xj
i)(Wi(tj–1) – Wi(tj))

–2σit1–β

j–1 Gi(tj–1, Xj–1
i )(Wi(tj) – Wi(tj–1))

+σit1–β

j–2 Gi(tj–2, Xj–2
i )(Wi(tj–1) – Wi(tj–2))

⎤

⎥
⎦�

+
α(�t)α

AB(α)�(α + 2)

n∑

j=2

[
t1–β

j–1 F
(
tj–1, Xj–1) – t1–β

j–2 F
(
tj–2, Xj–2)]�

+
α(�t)α

2AB(α)�(α + 3)

n∑

j=2

[
t1–β

j F(tj, Xj) – 2t1–β

j–1 F(tj–1, Xj–1)
+t1–β

j–2 F(tj–2, Xj–2)

]

�.

14 Numerical solution of the model with fractal-fractional power-law kernel
Real world problems exhibiting power-law processes with self-similar patterns could be
modeled using a differential operator based on the fractal-fractional with power-law ker-
nel. In this section, we replace the time derivative with the power-law fractal-fractional
derivative. The numerical solutions are obtained using a numerical scheme based on the
Newton polynomial interpolation [16]:

FFP
0 Dα,β

t X(t) = F(t, X) + σiGi(t, Xi)Wi′(t),

where

X = (Fc, I, IP, IN , R, D), F(t, X) =
(
fi(t, Xi)

)
i=1,...,6. (243)

Applying the associated integral, interpolating fi(t, Xi) using the Newton polynomial
within [tn, tn+1] yields

Xn+1 =
(�t)α

�(α + 1)

n∑

j=2

t1–β

j–2 F
(
tj–2, Xj–2)�

+
(�t)α

�(α + 1)

n∑

j=2

σit1–β

j–2 Gi
(
tj–2, Xj–2

i
)(

Wi(tj–1) – Wi(tj–2)
)
�
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Figure 8 The class of susceptible researchers

+
(�t)α

�(α + 2)

n∑

j=2

[
t1–β

j–1 σiGi(tj–1, Xj–1
i , )(Wi(tj) – Wi(tj–1))

–σit1–β

j–2 Gi(tj–2, Xj–2
i )(Wi(tj–1) – Wi(tj–2))

]

� (244)

+
(�t)α

2�(α + 3)

n∑

j=2

⎡

⎢
⎣

t1–β

j σiGi(tj, Xj
i)(Wi(tj–1) – Wi(tj))

–2t1–β

j–1 σiGi(tj–1, Xj–1
i )(Wi(tj) – Wi(tj–1))

+σit1–β

j–2 Gi(tj–2, Xj–2
i )(Wi(tj–1) – Wi(tj–2))

⎤

⎥
⎦�

+
(�t)α

�(α + 2)

n∑

j=2

[
t1–β

j–1 F
(
tj–1, Xj–1) – t1–β

j–2 F
(
tj–2, Xj–2)]�

+
α(�t)α

2�(α + 3)

n∑

j=2

[
t1–β

j F(tj, Xj) – 2t1–β

j–1 F(tj–1, Xj–1)
+t1–β

j–2 F(tj–2, Xj–2)

]

�.

15 Numerical simulation
In this section, we present the numerical simulations using the numerical schemes ob-
tained for the model with the Atangana–Baleanu fractional derivative. The first set of nu-
merical simulations is performed for different values of fractional orders, and they are
depicted in Figs. 8, 9, 10, 11, 12, and 13. We also present the results obtained from the
fractional stochastic model, the numerical simulations are depicted in 14, 15, 16, 17, 18,
and 19 for different fractional orders and density of randomness. The theoretical param-
eters used are presented here, including the initial condition and model parameters.

AB
0 Dα

t Fc(t) =
(

	 – dFc –
βFcI

N

)
+ σ1G1(t, Fc)W1′(t), (245)

AB
0 Dα

t I(t) =
(

βFcI
N

– dI – τ I – δI – ψI
)

+ σ2G2(t, I)W2′(t),

AB
0 Dα

t IP(t) = (τ I – dIP – γ1IP – φ1IP) + σ3G3(t, IP)W3′(t),
AB
0 Dα

t IN (t) = (ψI – dIN – σ IN – γ3IN ) + σ4G4(t, IN )W4′(t),



Atangana Advances in Difference Equations        (2021) 2021:403 Page 53 of 59

Figure 9 The class of researchers affected by criticisms

Figure 10 The class of researchers affected but still with positive opinion

AB
0 Dα

t R(t) = (φ1IP – dR + δI + γ3IN – γ2R) + σ5G5(t, R)W5′(t),

AB
0 Dα

t D(t) = (γ2R + γ1IP + φ2Fc + dIN – dD) + σ6G6(t, D)W6′(t)

with the initial conditions

Fc(0) = 100, I(0) = 10, IP(0) = 6,

IN (0) = 3, R(0) = 0, D(0) = 2.
(246)
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Figure 11 The class of researchers affected but with negative opinion

Figure 12 The class of researchers that overcome criticisms

In Figs. 8–19, the numerical simulations are performed with the parameters

	 = 0.08, d = 1/(70.365), β = 0.01, τ = 0.004, δ = 0.01,

ψ = 0.01, γi = 0.01, φi = 0.003, σ = 0.03, γ3 = 0.004,

φ2 = 0.00003, γ2 = 0.04, σ1 = 0.000011, σ2 = 0.00075,

σ3 = 0.00074, σ4 = 0.00076, σ5 = 0.000017, σ6 = 0.000012.

(247)



Atangana Advances in Difference Equations        (2021) 2021:403 Page 55 of 59

Figure 13 The class of researchers that die, retire, or leave fractional calculus

Figure 14 The class of researchers susceptible for σ1 = 0.000011

The obtained results from deterministic and stochastic models are in perfect agreement
with the obtained reproductive and strength numbers.

16 Conclusion and prediction
In the last two years, concerns have been raised by publishers, editors in chiefs, and
younger researchers regarding the division created within the field of fractional calculus.
The division occurred due to the introduction of fractional differential operators with non-
singular kernels, which indeed brought a revolution within this field, since these new dif-
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Figure 15 The class of researchers affected by criticisms for σ2 = 0.00031

Figure 16 The class of researchers affected but still with positive opinion for σ3 = 0.00032

ferential and integral operators opened new doors both in theory and application of frac-
tional calculus to solve real life problems. However, for some reasons, some researchers
expected differential operators with nonsingular kernels to satisfy the properties of clas-
sical derivative just as fractional derivative with singular kernel, which is absolutely im-
possible because these operators are not used for the same purposes. For this reason, a
new mathematical model depicting the survival of fractional calculus field was developed.
New analysis that could be more informative, for example, toward the spread of any in-
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Figure 17 The class of researchers affected but with negative opinion for σ4 = 0.00033

Figure 18 The class of researchers that overcome criticisms for σ5 = 0.00067

fectious disease, was herein introduced. This analysis included the strength number that
is obtained by taking the second derivative of a nonlinear part of infectious classes and
then applying similar routine to obtain the reproductive number. The utilization of sec-
ond derivative of the Lyapunov function was introduced to find the sign of the second
derivative of each class, with the aim to detect waves. The mathematical model was fur-
ther converted to a stochastic one and solved numerically using the numerical scheme
based on the Newton polynomial interpolation. The results obtained from determinis-
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Figure 19 The class of researchers that die, retire, or leave fractional calculus for σ6 = 0.00062

tic and stochastic models, in conjunction with the reproductive and strength numbers,
showed that the field of fractional derivative will survive the test of time. This is irrespec-
tive of the small fractions of its present applications but mostly because many newcomers
will continuously be joining this field. Hence, the use of fractional differential and integral
operators with nonsingular kernels will survive the test of time and would be massively
utilized in all fields of science, technology, and engineering to find real-life solutions in
spite of those very few papers being published against them.

Funding
Not applicable.

Availability of data and materials
Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.

Ethics approval and consent to participate
Not applicable.

Competing interests
The author declares that he has no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
The author is the sole contributor of this work. Author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 April 2021 Accepted: 24 June 2021

References
1. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel, theory and application

to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)
2. Caputo, M., Fabrizio, M.: On the notion of fractional derivative and applications to the hysteresis phenomena.

Meccanica 52(13), 3043–3052 (2017)



Atangana Advances in Difference Equations        (2021) 2021:403 Page 59 of 59

3. Caputo, M.: Linear model of dissipation whoseQ is almost frequency independent. II. Geophys. J. Int. 13(5), 529–539
(1967)

4. Leibniz, G.W.: Letter from Hanover, Germany to G.F.A. L’Hospital, September 30, 1695, in Mathematische Schriften
1849, 1962, Hildesheim, Germany (Olns Verlag) 2, 301–302

5. Abel, N.H.: Oplösning af et par opgaver ved hjelp af bestemte integraler (Solution de quelques problèmes à l’aide
d’intégrales définies, Solution of a couple of problems by means of definite integrals). (PDF). Magazin for
Naturvidenskaberne. Kristiania (Oslo), 55–68 (1823)

6. Depnath, L.: A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 35(4), 487–501 (2004)
7. Hermann, K.: On fractional integrals and derivatives. Q. J. Math. 11(1), 193–211 (1940)
8. Chen, W., Sun, H.G., Zhang, X., Korosak, D.: Anomalous diffusion modeling by fractal and fractional derivatives.

Comput. Math. Appl. 59(5), 1754–1758 (2010)
9. Goufo, E.F.D.: Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg–de

Vries–Burgers equation. Math. Model. Anal. 21(2), 188–198 (2016)
10. Mathale, D., Goufo, E.F.D., Khumalo, M.: Coexistence of multi-scroll chaotic attractors for a three-dimensional

quadratic autonomous fractional system with non-local and non-singular kernel. Alex. Eng. J. 60(4), 3521–3538 (2021)
11. Tateishi, A.A., Ribeiro, H.V., Lenzi, E.K.: The role of fractional time-derivative operators on anomalous diffusion. Front.

Phys. 5, 52 (2017)
12. Atangana, A.: Extension of rate of change concept: from local to nonlocal operators with applications. Results Phys.

19, 1035154 (2021)
13. Atangana, A., Igret Araz, S.: Nonlinear equations with global differential and integral operators: existence, uniqueness

with application to epidemiology. Results Phys. 2020, 103593 (2020)
14. Igret Araz, S.: Numerical analysis of a new Volterra integro-differential equation involving fractal-fractional operators.

Chaos Solitons Fractals 130, 109396 (2020)
15. Igret Araz, S.: Analysis of a Covid-19 model: optimal control, stability and simulations. Alex. Eng. J. 60(1), 647–658

(2020)
16. Atangana, A., Igret Araz, S.: New Numerical Scheme with Newton Polynomial: Theory, Methods and Applications.

Academic Press„ Elsevier (2021). ISBN 978-0323854481
17. Atangana, A., Igret Araz, S.: Mathematical model of Covid-19 spread in Turkey and South Africa: theory, methods and

applications. Adv. Differ. Equ. 2020, 659 (2020)
18. Khan, M.A., Atangana, A.: Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex.

Eng. J. 59(4), 2379–2389 (2020)
19. Mathale, D., Goufo, E.F.D., Khumalo, M.: Coexistence of multi-scroll chaotic attractors for fractional systems with

exponential law and non-singular kernel. Chaos Solitons Fractals 139, 110021 (2020)
20. Hristov, J.: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of

Caputo–Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci. 21, 827–839
(2017)

21. Atangana, A., Gómez-Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and
associativity to capture more natural phenomena. Eur. Phys. J. Plus 133(4), 166 (2017)

22. Labora, D.C., Nieto, J.J., Rodríguez-López, R.: Is it possible to construct a fractional derivative such that the index law
holds? Prog. Fract. Differ. Appl. 4(1), 1–3 (2018)

23. Gulgowski, J., Stefanski, T.P., Trofimowicz, D.: On applications of elements modelled by fractional derivatives in circuit
theory. Energies 13(21), 5768 (2020)

24. Angstmann, C.N., Jacobs, B.A., Henry, B.I., Xu, Z.: Intrinsic discontinuities in solutions of evolution equations involving
fractional Caputo–Fabrizio and Atangana–Baleanu operators. Mathematics 8(11), 2023 (2020)

25. Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental
models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

26. LaSalle, J.P.: The Stability of Dynamical Systems. SIAM, Philadelphia (1976)
27. Zhao, Y., Jiang, D.: The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl. Math. Lett. 34,

90–93 (2014)
28. Din, A., et al.: Stochastic dynamics of hepatitis B epidemics. Results Phys. 20, 103730 (2021)
29. Zhao, Y., Jiang, D.: The threshold of a stochastic SIS epidemic model with vaccination. Appl. Math. Comput. 243,

718–727 (2014)
30. Din, A., et al.: Mathematical analysis of Dengue stochastic epidemic model. Results Phys. 20, 103719 (2021)
31. Khan, T., Khan, A., Zaman, G.: The extinction and persistence of the stochastic hepatitis B epidemic model. Chaos

Solitons Fractals 108, 123–128 (2018)
32. Khan, A., Hussain, G., Zahri, M., Zaman, G., Humphries, U.W.: A stochastic SACR epidemic model for HBV transmission.

J. Biol. Dyn. 14(1), 788–801 (2020)
33. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes.

Wiley, New York (1962)


	Mathematical model of survival of fractional calculus, critics and their impact: How singular is our world?
	Abstract
	Keywords

	Introduction
	Review of some anti-nonsingular kernel
	Index law
	Initial conditions and zero-zero criticism

	Fundamental theorem of fractional calculus
	Mathematical model of anti-nonsingular kernel
	Positiveness and boundedness of solutions
	Positive solutions with nonlocal operators
	Analysis of equilibrium points
	Reproduction number
	Strength number

	Stability analysis
	Lyapunov for endemic case
	Lyapunov function for the disease-free case
	Second derivative of Lyapunov
	Equilibrium points for second order

	Existence and uniqueness
	Stochastic model of survival of fractional calculus
	Existence of unique global positive solution
	Extinction for criticism

	Optimal control for the model of survival of fractional calculus
	Numerical solution of the model with exponential decay process
	Numerical solution of the model with Mittag-Lefﬂer process
	Numerical solution of the model with power-law process
	Numerical solution of the model with fractal-fractional exponential kernel
	Numerical solution of the model with fractal-fractional Mittag-Lefﬂer kernel
	Numerical solution of the model with fractal-fractional power-law kernel
	Numerical simulation
	Conclusion and prediction
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Publisher's Note
	References


