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Abstract
In the existing study, we investigate the criteria of existence of solution for relatively
new categories of ϕ-Caputo fractional differential equations and inclusions problems
equipped with nonlocal ϕ-integral boundary conditions. In order to achieve the
desired goal, we use α–ψ -contractive mappings and the theory of approximate
endpoint. In the final stage, we exhibit some examples to provide the illustrations of
our theoretical findings.
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1 Introduction
The calculus of arbitrary order, particularly the fractional order calculus, has been con-
sidered as the most useful branch of mathematics in various applied sciences and engi-
neering. In order to foster the large capacity of identities and operators introduced in this
theory, the scientist and researchers focused on modeling the variety of physical phenom-
ena involving fraction settings. The researchers have made a significant amount of contri-
bution towards the investigation of fractional differential equations (FDEs) and inclusions
(FDIs) which can be seen in [1–10] and the references cited therein. Utilizing the tech-
niques of functional analysis and fixed point theory, a huge number of writings by many
academicians have appeared, in which the existence aspects, the property of uniqueness,
and the stability analysis of solutions for a variety of FDEs and FDIs of initial and boundary
value problems are analyzed [11–14].

Almeida [15] in 2017 launched an extension of classical Caputo operator to ϕ-Caputo
operator, where the kernel relies on the increasing function ϕ. The ϕ-Caputo fractional
derivative’s most often used advantage is its ability to gather all previously implemented
fractional derivatives. This generalized operator has the semigroup property, which is es-
sential for obtaining the solution structure. Therefore, the derivative ϕ-Caputo fractional
is considered as a modified form of a derivative of fractional order. By referring to the ϕ-
Caputo operator and its generalization, there are many studies which we refer the readers
to [16–22].
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In year 2014, Tariboon et al. [23] considered the following category of fractional differ-
ential equations involving nonlocal fractional integral condition:

⎧
⎪⎪⎨

⎪⎪⎩

RLDσ∗
0+ μ∗(a) = �(a,μ∗(a)), a ∈ [0, M];

μ∗(0) = 0,

μ∗(M) =
∑m

i=1 βH
i Ipi ,ϕ

0+ μ∗(ξi),

where 1 < σ ∗ ≤ 2, RLDσ∗
0+ denotes the RL-fractional derivative of order σ ∗, HIpi

0+ denotes the
Hadamard fractional derivative of order pi > 0, ξi ∈ (0, M), � : [0, M] ×R →R and βi ∈R,
i ∈ {1, 2, . . . , m} with the property that

∑m
i=1

βiξiσ∗–1
(σ∗–1)pi �= Mσ∗–1.

In the subsequent year, Ntouyas et al. [24] studied the following class of RL-fractional
differential equations along with nonlocal fractional integral conditions of Hadamard type:

⎧
⎪⎪⎨

⎪⎪⎩

RLDσ∗
0+ μ∗(a) = F(a,μ∗(a)), a ∈ [0, M];

μ∗(0) = 0,

μ∗(M) =
∑m

i=1 βH
i Ipi ,ϕ

0+ μ∗(ξi),

where 1 < σ ∗ ≤ 2, RLDσ∗
0+ denotes the RL-fractional derivative of order σ ∗, HIpi

0+ denotes
the Hadamard fractional derivative of order pi > 0, ξi ∈ (0, M), � : [0, M] ×R → P(R) and
βi ∈R, i = 1, 2, . . . , m, with the property that

∑m
i=1

βiξiσ∗–1
(σ∗–1)pi �= Mσ∗–1.

The above theory gives us motivation and leads us to introducing the following class
of fractional differential equations involving boundary conditions in the framework of ϕ-
Caputo fractional derivative:

⎧
⎪⎪⎨

⎪⎪⎩

CDσ∗ ,ϕ
0 μ∗(a) = �(a,μ∗(a)), a ∈ J = [s0, M];

μ∗(s0) = 0,

μ∗(M) =
∑m

i=1 βi
RLIpi ,ϕ

0 μ∗(ξi),

(1)

where CDσ∗ ,ϕ
0 is the ϕ-Caputo fractional derivative of order σ ∗, 1 < σ ∗ < 2, RLIpi ,ϕ

0 is the RL-
ϕ-fractional integral of order pi > 0, ξi ∈ (s0, M), � : J × R → R and βi ∈ R i = 1, 2, . . . , m.
We also explore the solutions’ existence of the following fractional differential inclusion
BVP:

⎧
⎪⎪⎨

⎪⎪⎩

CDσ∗ ,ϕ
0 μ∗(a) ∈ K(a,μ∗(a)), a ∈ J ;

μ∗(s0) = 0,

μ∗(M) =
∑m

i=1 βi
RLIpi ,ϕ

0 μ∗(ξi),

(2)

where K : J ×R→ P(R) is a set-valued compact map.
By reviewing a broad variety of published papers concerning existence and notions of

uniqueness in the light of problems with fractional boundary values, we will see that many
authors use conventional methods based on renowned fixed point methods for obtaining
desirable outcomes in respect to solutions. Our work in the present research is novel in
introducing a new development of two ϕ-fractional differential problems equipped with
nonlocal boundary conditions and then constructing new operators which belong to a
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new class of core functions. The α-admissible and α–ψ-counteractive maps are two ma-
jor functions of this category. Using such a broad class of functions defined on space ad-
mitting properties (P1) and (P2), we investigate the existence criteria of two BVPs (1) and
(2). Moreover, we derive another condition of the existence of solutions from the (AEP)-
property for the assumed multifunction and the aid of endpoint notion. It is notable that
our procedures for presumed problems (1) and (2) were used in few works, and we apply
these approaches to a nonlocal BVP for the first time.

The contents of the present manuscript are organized in the following way. Within the
following section, some necessary notions are mounted in the sense of a ϕ-calculus. At the
beginning of Sect. 3, we supply a lemma that presents the solution of fractional BVP (1)
as an integral equation, and after that utilizing the ideas of Samet et al. [25], the criteria
of solutions’ existence of the aforementioned BVP are provided. While considering the
inclusion version of the proposed BVP, Sect. 4 deals with the solutions’ existence with
the aid of α–ψ-contractive functions on multifunctions and AEP-property of problem
(2). The last section is devoted to the illustration of results presented in Sects. 3 and 4 in
terms of numerical examples.

2 Preliminaries
We compile and study some basic and auxiliary concepts in the present section of this
study in the context of our analytical approach. For a function μ∗ : [0, +∞) →R, we recall
the FRL-integral of order σ ∗ > 0 as follows:

RLIσ∗
s0 μ∗(a) =

∫ a

s0

(a – q)σ∗–1

�(σ ∗)
μ∗(q) dq (3)

for a finite value of the integral [26, 27]. At this stage, we presume that n–1 < σ ∗ < n so that
n = [σ ∗] + 1. The FRL-derivative of order σ ∗ for a continuous function μ∗ : [0, +∞) → R

is defined by

RLDσ∗
s0 μ∗(a) =

(
d

da

)n ∫ a

s0

(a – q)n–σ∗–1

�(n – σ ∗)
μ∗(q) dq (4)

for a finite value of the integral [26, 27]. Assuming μ∗ ∈ AC(n)
R

([0, +∞)) (a class of absolutely
continuous functions), Caputo fractional derivative is defined by

CDσ∗
s0 μ∗(a) =

∫ a

s0

(a – q)n–σ∗–1

�(n – σ ∗)
μ∗(n)(q) dq (5)

for a finite value of the integral [26, 27].
Now, assume an increasing function ϕ ∈ Cn(J) with ϕ′(a) > 0 for every s0 ≤ a ≤ M. Then

an integral in the sense of ϕ-Riemann–Liouville of a function μ∗ : J → R of order σ ∗ de-
pending on the given increasing function ϕ is introduced as

RLIσ∗ ;ϕ
s0 μ∗(a) =

1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
μ∗(q) dq (6)

provided that the RHS of (6) is finite-valued [27–29]. Observe that, if ϕ(a) = a, the ϕ-
FRL integral (6) becomes classical FRL-integral (3). The σ ∗ ordered ϕ-FRL derivative of a
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continuous function μ∗ : [0, +∞) →R is illustrated as

RLDσ∗ ;ϕ
s0 μ∗(a) =

1
�(n – σ ∗)

(
1

ϕ′(a)
d

da

)n ∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)n–σ∗–1
μ∗(q) dq (7)

provided that the RHS of (7) is finite-valued [27–29]. Likewise, if ϕ(a) = a, it would be
apparent that the ϕ-FRL derivative (7) becomes classical RL-derivative (4). Motivated by
such operators, Almeida proposed the following formula of a new Caputo derivative of
ϕ-variant:

CDσ∗ ;ϕ
s0 μ∗(a) =

1
�(n – σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)n–σ∗–1
(

1
ϕ′(q)

d
dq

)n

μ∗(q) dq (8)

provided that the RHS of (8) is finite-valued [15]. It is noteworthy that if ϕ(a) = a, the
ϕ-Caputo fractional derivative (8) becomes classical Caputo derivative (5). In the follow-
ing lemmas, we can observe some interesting properties of the ϕ-fractional operators of
Caputo and Riemann–Liouville sense.

Lemma 2.1 ([15, 27–29]) Suppose that σ ∗, 	∗, and β∗ are positive, an increasing function
ϕ ∈ Cn(J) with ϕ′(a) > 0 for any a ∈ J . Then

(i1) RLIσ∗ ;ϕ
s0

(RLI	∗ ;ϕ
s0 μ∗)(a) =

(RLIσ∗+	∗ ;ϕ
s0 μ∗)(a),

(i2) RLIσ∗ ;ϕ
s0

(
ϕ(a) – ϕ(s0)

)β∗
=

�(β∗ + 1)
�(σ ∗ + β∗ + 1)

(
ϕ(a) – ϕ(s0)

)σ∗+β∗
,

(i3) CDσ∗ ;ϕ
s0

(
ϕ(a) – ϕ(s0)

)β∗
=

�(β∗ + 1)
�(β∗ – σ ∗ + 1)

(
ϕ(a) – ϕ(s0)

)β∗–σ∗ (
β∗ > σ ∗),

(i4) RLDσ∗ ;ϕ
s0

(RLI	∗ ;ϕ
s0 μ∗)(a) =

(RLI	∗–σ∗ ;ϕ
s0 μ∗)(a),

(
σ ∗ < 	∗).

Lemma 2.2 ([15]) Assume σ ∗ ∈ (n – 1, n) and ϕ ∈ Cn(J) a nondecreasing function with
ϕ′(a) > 0 for every a ∈ J . Then, for any μ∗ ∈ Cn–1(J),

RLIσ∗ ;ϕ
s0

(CDσ∗ ;ϕ
s0 μ∗)(a) = μ∗(a) –

n–1∑

j=0

(δϕ)jμ∗(s0)
j!

(
ϕ(a) – ϕ(s0)

)j,
(

δϕ =
1

ϕ′(a)
d

da

)

.

In light of the aforementioned lemma, the authors have checked that the series solution
of the homogeneous equation (CDσ∗ ;ϕ

s0 μ∗)(a) = 0 are demonstrated as follows:

μ∗(a) =
n–1∑

j=0

k̃∗
j
(
ϕ(a) – ϕ(s0)

)j

= k̃∗
0 + k̃∗

1
(
ϕ(a) – ϕ(s0)

)
+ k̃∗

2
(
ϕ(a) – ϕ(s0)

)2 + · · · + k̃∗
n–1

(
ϕ(a) – ϕ(s0)

)n–1,

where n – 1 < σ ∗ < n and k̃∗
0 , k̃∗

1 , . . . , k̃∗
n–1 ∈R [15].

Regarding (N ,‖ · ‖) a normed space, the classes PCL(N) (closed), PBN(N) (bounded),
PCP(N) (compact), and PCV(N) (convex) consist of a respective form of the subsets of N .

Definition 1 ([30]) Consider υ : R → R as a real-valued function and v as a multifunc-
tion.
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(i) F is u.s.c on N if F(υ∗) ∈ PCL(N) for any υ∗ ∈ N and also a neighborhood N∗
0 of υ∗

exists subject to F(N∗
0 ) ⊆V for V⊆ N in which V is an arbitrary open set.

(ii) A real-valued map υ : R →R is upper semi-continuous such that
lim supn→∞ υ(ςn) ≤ υ(ς ) for each {ςn}n≥1 with ςn → ς .

Definition 2 ([30]) A metric attributed to Pompeiu–Hausdorff Hd : (P(N))2 → R ∪ {∞}
is defined as

Hd
(
Q∗

1, Q∗
2
)

= max
{

sup
q∗

1∈Q∗
1

d
(
q∗

1, Q∗
2
)
, sup

q∗
2∈Q∗

2

d
(
Q∗

1, q∗
2
)}

,

where d is considered to be the metric of N and also d(Q∗
1, q∗

2) = infq∗
1∈Q∗

1
d(q∗

1, q∗
2) and

d(q∗
1, Q∗

2) = infq∗
2∈Q∗

2
d(q∗

1, q∗
2).

Definition 3 ([30]) For F : N → PCL(N) and υ1,υ2 ∈ N , let the following inequality hold:

Hd
(
F(υ1), F(υ2)

) ≤ d(υ1,υ2).

Then F is said to be: (H1) a Lipschitz map if  > 0; (H2) a contraction if 0 <  < 1.

Definition 4 ([30]) An element μ∗ ∈ N is termed an endpoint of a multi-valued function
L : N → P(N) whenever we get L(μ∗) = {μ∗}. The multi-valued map � has an approximate
endpoint criterion (AEP) if

inf
μ∗

1∈N
sup

μ∗
2∈L(μ∗

1)
d
(
μ∗

1,μ∗
2
)

= 0.

Definition 5 ([30])
(i) � : S×R → P(R) is Caratheodory if ς → �(ς , u) is measurable for any u ∈R and

u → �(ς , u) is u.s.c for a.e. ς ∈ S.
(ii) A Caratheodory multifunction � : S×R → P(R) is L1-Caratheodory if, for any

η > 0, μη ∈ L1(S,R+) exists subject to ‖�(ς , u)‖ = supς∈S{|ν| : ν ∈ �(ς , u)} ≤ μη(ς )
for all |u| ≤ η and for almost all ς ∈ S.

We will use a particular set of functions and properties that are relevant to the argumen-
tative purposes of this article. This mapping category was first defined by Samet, Vetro,
and Vetro [25] in 2012. Regard � consisting of all nondecreasing functions ψ : [0,∞) →
[0,∞) such that, for every a > 0,

∑∞
n=1 ψn(a) < ∞ and and α : N2 → R≥0. [25] The self-

map T on (N , d) is regarded as α-admissible if α(Tμ∗
1, Tμ∗

2) ≥ 1 whenever α(μ∗
1,μ∗

2) ≥ 1
and is α–ψ-contraction

α
(
μ∗

1,μ∗
2
)
d
(
Tμ∗

1, Tμ∗
2
) ≤ ψ

(
d
(
μ∗

1,μ∗
2
))

for every μ∗
1,μ∗

2 ∈ N . Moreover, the normed space N admits that (P1) if {μ∗
n}n≥1 is any

sequence in N with α(μ∗
n,μ∗

n+1) ≥ 1 and μ∗
n tends to μ∗, for every n ≥ 1, the inequality

α(μ∗
n,μ∗) ≥ 1 follows. A generalized version of α–ψ-contraction was given by [31, 32].

Karapinar et al. [33] proved some new fixed point results concerning α–ψ-contraction
and applied them for the existence of solution of FDEs.
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After the notions presented by Samet et al. [25], next year, Mohammadi et al. came up
with another classification of such maps generalizing the previous one [34]. The set-valued
map L having bounded and closed values on N is regarded as α-admissible if, for every
μ∗

1 ∈ N and μ∗
2 ∈ Lμ∗

1, α(μ∗
2,μ∗

3) ≥ 1 whenever α(μ∗
1,μ∗

2) ≥ 1 for every μ∗
3 ∈ Lμ∗

2 and is
α–ψ-contractive if

α
(
μ∗

1,μ∗
2
)
Hd

(
Lμ∗

1, Lμ∗
2
) ≤ ψ

(
d
(
μ∗

1,μ∗
2
))

for every member μ∗
1,μ∗

2 ∈ N . Moreover, the normed space N admits that (P2) if {μ∗
n}n≥1

is any sequence in N with α(μ∗
n,μ∗

n+1) ≥ 1 and μ∗
n tends to μ∗, there is a sequence {μ∗

n}
containing a subsequence {μ∗

nk
} satisfying α(μ∗

nk
,μ∗) ≥ 1 for all natural numbers k.

Our claims are based on the following theorems until the conclusion of this study.

Theorem 1 ([25]) Regard (N , d), a complete metric space, ψ ∈ � , a real-valued map α on
N2. Regarding a self-map T on N as α-admissible and α–ψ-contractive with α(μ∗

0, Tμ∗
0) ≥

1 for some μ∗
0 ∈ N together with N admitting property (P1). This yields that a fixed point

of the map T exists.

Theorem 2 ([35]) Regarding N a complete normed space, operators T1 and T2 defined
on a bounded, convex and closed subset B �= ∅ of N confirms that, for every μ∗

1,μ∗
2 ∈ B,

T1μ
∗
1 + T2μ

∗
2 ∈ B, operator T1 is continuous and compact while that of T2 is contractive.

Then there is a member μ∗ of B with T1μ
∗
1 + T2μ

∗
2 = μ∗.

Theorem 3 ([34]) Regard (N , d) a complete metric space, ψ ∈ � , a real-valued map α

on N2. Regard a bounded and closed set-valued map L on N as α-admissible and α–ψ-
contractive with α(μ∗

0,μ∗
1) ≥ 1 for some μ∗

0 ∈ N and μ∗
1 ∈ Lμ∗

0 together with N admitting
(P2). This yields that L possesses a fixed point.

Theorem 4 ([30]) Regard (N , d) a complete metric space, ψ ∈ � is upper semi-continuous
together with lim infa→∞(a – ψ(a)) > 0 for a > 0, a bounded and closed set-valued map L
on N admits the inequality Hd(Lμ∗

1, Lμ∗
2) ≤ ψ(d(μ∗

1,μ∗
2)) for every μ∗

1,μ∗
2 ∈ N . This yields

that the map L follows the approximate endpoint property iff there exists a unique endpoint
of it.

3 Fractional ϕ-BVP (1)
In the current situation of study we are beginning to pursue the basic deductions of a
potential solution of problem (1) via nonlinear methods in the theory of fixed point of
an operator under consideration. In respect of achieving the goals, regard N = {μ∗(a) :
μ∗(a) ∈ C(J ,R)} a Banach space supplied with ‖μ∗‖N = supa∈J |μ∗(a)| for all μ∗ ∈ N . The
solution of the suggested problem (1) is presented in the next lemma in the form of an
integral equation which helps us to present the existence criteria.

Lemma 3.1 Let �∗ ∈ C(J ,R) be the continuous function, then the function μ∗(a) ∈ N is a
solution for the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

CDσ∗ ,ϕ
0 μ∗(a) = �∗(a), a ∈ J ;

μ∗(s0) = 0,

μ∗(M) =
∑m

i=1 βi
RLIpi ,ϕ

0 μ∗(ξi),
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if and only if μ∗(a) is a solution for the following:

μ∗(a) = RLIσ∗ ,ϕ
0 �∗(a) –

(ϕ(a) – ϕ(s0))
�

[

RLIσ∗ ,ϕ
0 �∗(M) –

m∑

i=1

βi
RLIpi+σ∗ ,ϕ

0 �∗(ξi)

]

. (9)

Proof Let μ∗(a) be the solution of BVP. Choose k0, k1 ∈R such that

μ∗(a) = RLIσ∗ ,ϕ
0 �∗(a) – k0 – k1

(
ϕ(a) – ϕ(s0)

)
. (10)

By using μ(s0) = 0, we have k0 = 0

μ∗(a) = RLIσ∗ ,ϕ
0 �∗(a) – k1

(
ϕ(a) – ϕ(s0)

)
. (11)

Operating fractional Riemann–Liouville integral having order pi > 0 for (11), we have

RLIpi ,ϕ
0 μ∗(a) = RLIpi+σ∗ ,ϕ

0 �∗(a) – k1
(ϕ(a) – ϕ(s0))pi+1

�(pi + 2)
, (12)

RLIσ∗ ,ϕ
0 �∗(M) – k1

(
ϕ(M) – ϕ(s0)

)
=

m∑

i=1

βi
RLIpi+σ∗ ,ϕ

0 �∗(ξi) – k1

m∑

i=1

βi
ξpi+1

�(pi + 2)
. (13)

Thus

k1

[
(
ϕ(M) – ϕ(s0)

)
–

m∑

i=1

βi
ξpi+1

�(pi + 2)

]

= RLIσ∗ ,ϕ
0 �∗(M) –

m∑

i=1

βi
RLIpi+σ∗ ,ϕ

0 �∗(ξi) (14)

implies that

� =
(
ϕ(M) – ϕ(s0)

)
–

m∑

i=1

βi
ξpi+1

�(pi + 2)
�= 0, (15)

k1 =
1
�

[

RLIσ∗ ,ϕ
0 �∗(M) –

n∑

i=1

βi
RLIpi+σ∗ ,ϕ

0 �∗(ξi)

]

, (16)

μ∗(a) = RLIσ∗ ,ϕ
0 �∗(a) –

(ϕ(a) – ϕ(s0))
�

[

RLIσ∗ ,ϕ
0 �∗(M) –

m∑

i=1

βi
RLIpi+σ∗ ,ϕ

0 �∗(ξi)

]

, (17)

where � is defined in (15). �

Throughout this work we use the following:

RLIσ∗ ,ϕ
0 �

(
a,μ∗(a)

)
=

1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
�
(
q,μ∗(q)

)
dq, (18)

RLIpi+σ∗ ,ϕ
0 �

(
ξi,μ∗(ξi)

)
=

1
�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
�
(
q,μ∗(q)

)
dq, (19)

where ξi ∈ J , i = 1, 2, . . . , m. Let N = C(J ,R).
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We define the operator T : N → N by

Tμ∗(a) = RLIσ∗ ,ϕ
0 �

(
a,μ∗(a)

)
–

(ϕ(a) – ϕ(s0))
�

[

RLIσ∗ ,ϕ
0 �

(
M,μ∗(M)

)

–
m∑

i=1

βi
RLIpi+σ∗ ,ϕ

0 �
(
ξi,μ∗(ξi)

)
]

. (20)

It is noted that BVP has a solution if T has a fixed point.

For the sake of convenience in writing, we set

�1 =
(|ϕ(M) – ϕ(s0)|)σ∗

�(σ ∗ + 1)
+

(|(ϕ(M) – ϕ(s0))|)σ∗+1

|�|�(σ ∗ + 1)

+
m∑

i=1

βi
m(|(ϕ(M) – ϕ(s0))|)pi+σ∗+1

|�|�(pi + σ ∗ + 1)
, (21)

�2 =
‖η∗‖(|ϕ(M) – ϕ(s0)|)σ∗+1

|�|�(σ ∗ + 1)
+

m∑

i=1

mβi
‖η∗‖(|ϕ(M) – ϕ(s0)|)piσ∗+1

|�|�(pi + σ ∗ + 1)
. (22)

Theorem 5 Let ψ ∈ � , G : R2 →R be a mapping, � : J ×N → N be a continuous function,
suppose that

C1: |�(a,μ∗
1(a)) – �(a,μ∗

2(a))| ≤ λ∗ψ(|μ∗
1 – μ∗

2|) for all μ∗
1,μ∗

2 ∈ N and

G
((

μ∗
1,μ∗

2
)) ≥ 0.

C2: There exists μ∗
0 ∈ N such that

G(
(
μ∗

0(a), Tμ∗
0(a)

) ≥ 0

for all a ∈ J , and

G
((

μ∗
1(a),μ∗

2(a)
)) ≥ 0

implies

G
((

Tμ∗
1(a), Tμ∗

2(a)
)) ≥ 0

for every μ∗
1,μ∗

2 ∈ N and a ∈ J .
C3: For every sequence {μ∗

n}n≥1 in N with μ∗
n → μ∗ and

G
(
μ∗

n(a),μ∗
n+1(a)

) ≥ 0

for every n ∈N and a ∈ J , we get

G
((

μ∗
n(a),μ∗(a)

)) ≥ 0.

Then at least one solution of problem (1) exists.
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Proof Assume μ∗
1,μ∗

2 ∈ N such that G((μ∗
1(a),μ∗

2(a))) ≥ 0 for all a ∈ J . Then

∣
∣Tμ∗

1(a) – Tμ∗
2(a)

∣
∣

≤ 1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1∣∣�
(
q,μ∗

1(q)
)

– �
(
q,μ∗

2(q)
)∣
∣dq

+
|(ϕ(a) – ϕ(s0))|

|�|�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1∣∣�
(
q,μ∗

1(q)
)

– �
(
q,μ∗

2(q)
)∣
∣dq

+
m∑

i=1

βi
|(ϕ(a) – ϕ(s0))|
|�|�(pi + σ ∗)

×
∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1∣∣�
(
q,μ∗

1(q)
)

– �
(
q,μ∗

2(q)
)∣
∣dq

≤ λ∗

�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
ψ

(∣
∣μ∗

1 – μ∗
2
∣
∣
)

dq

+
λ∗|(ϕ(a) – ϕ(s0))|

|�|�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
ψ

(∣
∣μ∗

1 – μ∗
2
∣
∣
)

dq

+
m∑

i=1

βi
λ∗|(ϕ(a) – ϕ(s0))|

|�|�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
ψ

(∣
∣μ∗

1 – μ∗
2
∣
∣
)

dq

≤ λ∗ψ(‖μ∗
1 – μ∗

2‖)(|ϕ(a) – ϕ(s0)|)σ∗

�(σ ∗ + 1)
+

λ∗ψ(‖μ∗
1 – μ∗

2‖)(|(ϕ(a) – ϕ(s0))|)σ∗+1

|�|�(σ ∗ + 1)

+
m∑

i=1

βi
λ∗ψ(‖μ∗

1 – μ∗
2‖)(|(ϕ(a) – ϕ(q))|)pi+σ∗+1

|�|�(pi + σ ∗ + 1)

= λ∗
{

(|ϕ(M) – ϕ(s0)|)σ∗

�(σ ∗ + 1)
+

(|(ϕ(M) – ϕ(s0))|)σ∗+1

|�|�(σ ∗ + 1)

+
m∑

i=1

βi
m(|(ϕ(M) – ϕ(s0))|)pi+σ∗+1

|�|�(pi + σ ∗ + 1)

}

ψ
(∥
∥μ∗

1 – μ∗
2
∥
∥
)
. (23)

Hence, |Tμ∗
1(a) – Tμ∗

2(a)| ≤ �1λ
∗ψ(‖μ∗

1 – μ∗
2‖). We regard a nonnegative function α on

N × N by

α
(
μ∗

1,μ∗
2
)

=

⎧
⎨

⎩

1 if G((μ∗
1(a),μ∗

2(a))) ≥ 0,

0 otherwise

for all μ∗
1,μ∗

2 ∈ N . Then we have α(μ∗
1,μ∗

2)d(Tμ∗
1, Tμ∗

2) ≤ ψ(d(μ∗
1,μ∗

2)) for all μ∗
1,μ∗

2 ∈ N ,
which indicates that the operator T is an α–ψ-contractive type. In addition, one can easily
verify that T is α-admissible and 1 ≤ α(μ∗

0, Tμ∗
0). Further, assume that a sequence {μ∗

n} in
N tends to μ∗ with 1 ≤ α(μ∗

n,μ∗
n+1) for all n. Due to the structure of α, it implies that

G
((

μ∗
n(a),μ∗

n+1(a)
)) ≥ 0.

Due to assertion (C3), we have

G
((

μ∗
n(a),μ∗(a)

)) ≥ 0,



Iqbal and Hussain Advances in Difference Equations        (2021) 2021:350 Page 10 of 22

which asserts that α(μ∗
n,μ∗) ≥ 1 for all n. Therefore N admits property (P1). Theorem 1

is thus applied, and we find that the operator T possesses μ∗ ∈ N as a fixed point, which
in turn is a solution of the proposed BVP (1). The proof is complete. �

Theorem 6 Regard a continuous function � : J × N → N . We assume the following:
C4: A continuous function L∗ on J exists such that

∣
∣�

(
a,μ∗

1
)

– �
(
a,μ∗

2
)∣
∣ ≤ L∗(a)

(∣
∣μ∗

1 – μ∗
2
∣
∣
)

for all a ∈ J and μ∗
1,μ∗

2 ∈ N .
C5: There exist a continuous function η∗ : J → R

+ and a nondecreasing function ψ : J →
R

+ such that

�
(
a,μ∗

1
) ≤ η∗(a)ψ

(∣
∣μ∗

1
∣
∣
)

for all a ∈ J and μ∗
1 ∈ N . Then the fractional BVP has at least one solution whenever

K∗ = ‖L∗‖�1 where ‖L∗‖ = supa∈J |L∗(a)|.

Proof Let ‖η∗‖ = supa∈J |η∗(a)| and ε ≥ ‖m∗‖‖η∗‖�1 Let us define a set Vε = {μ∗ ∈ N :
‖μ∗‖ ≤ ε}. It is easy to verify that Vε is a nonempty, convex, closed, bounded subset of
Banach space N . We now define two operators T1 and T2 on a set Vε by

T1μ∗(a) =
1

�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
�
(
q,μ∗(q)

)
dq (24)

T2μ∗(a) =
ϕ(a) – ϕ(s0)

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
�
(
q,μ∗(q)

)
dq,

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
�
(
q,μ∗(q)

)
dq

]

. (25)

For all a ∈ J , put ‖m∗‖ = supa∈J ψ(‖μ∗(a)‖), for μ∗
1,μ∗

2 ∈ Vε we have

∣
∣T1μ∗

1(a) + T2μ∗
2(a)

∣
∣

=
1

�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1∣∣�
(
q,μ∗

1(q)
)∣
∣dq

+
ϕ(a) – ϕ(s0)

|�|

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1∣∣�
(
q,μ∗

2(q)
)∣
∣dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1∣∣�
(
q,μ∗

2(q)
)∣
∣dq

]

≤ 1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
η∗(q)ψ

(∣
∣μ∗

1(q)
∣
∣
)

dq

+
ϕ(a) – ϕ(s0)

|�|

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
η∗(q)ψ

(∣
∣μ∗

2(q)
∣
∣
)

dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
η∗(q)ψ

(∣
∣μ∗

2(q)
∣
∣
)

dq

]
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≤ ‖η∗‖|ϕ(M) – ϕ(s0)|σ∗

�(σ ∗ + 1)
ψ

(∥
∥μ∗∥∥)

+
‖η∗‖|ϕ(M) – ϕ(s0)|σ∗+1

|�|�(σ ∗ + 1)
ψ

(∥
∥μ∗∥∥)

+ m
m∑

i=1

βi
‖η∗‖|ϕ(M) – ϕ(s0)|pi+σ∗+1

|�|�(pi + σ ∗ + 1)
ψ

(∥
∥μ∗∥∥)

=
∥
∥η∗∥∥�1

∥
∥m∗∥∥ ≤ ε. (26)

Hence |T1μ∗
1(a) + T2μ∗

2(a)| ≤ ε, which implies that |T1μ∗
1(a) + T2μ∗

2(a)| ∈ Vε . By hypoth-
esis, the function � is continuous, which thus implies that the operator T1 is continuous.
Moreover,

∣
∣T1μ∗(a)

∣
∣ ≤ 1

�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1∣∣�
(
q,μ∗(q)

)∣
∣dq

≤ 1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
η∗(q)ψ

(∥
∥μ∗∥∥)

dq

≤ ‖η∗‖‖m∗‖|ϕ(M) – ϕ(s0)|σ∗

�(σ ∗ + 1)
(27)

for all μ∗ ∈ Vε . Hence,

∥
∥T1μ∗(a)

∥
∥ ≤ ‖m∗‖‖η∗‖|ϕ(M) – ϕ(s0)|σ∗

�(σ ∗ + 1)
,

which implies the uniform boundedness of the operator T1 on Vε . Over the next move,
we would pursue that T1 as a compact operator on Vε . To achieve this, we take a1, a2 ∈ J
with a2 > a1, thus we have

∣
∣T1μ∗(a2) – T1μ∗(a1)

∣
∣

=
1

�(σ ∗)

∫ a2

s0

ϕ′(q)
(
ϕ(a2) – ϕ(q)

)σ∗–1∣∣�
(
q,μ∗(q)

)∣
∣dq

–
1

�(σ ∗)

∫ a1

s0

ϕ′(q)
(
ϕ(a1) – ϕ(q)

)σ∗–1∣∣�
(
q,μ∗(q)

)∣
∣dq

=
1

�(σ ∗)

∫ a1

s0

ϕ′(q)
[(

ϕ(a2) – ϕ(q)
)σ∗–1 –

(
ϕ(a1) – ϕ(q)

)σ∗–1]∣∣�
(
q,μ∗(q)

)∣
∣dq

+
1

�(σ ∗)

∫ a2

a1

ϕ′(q)
(
ϕ(a2) – ϕ(q)

)σ∗–1∣∣�
(
q,μ∗(q)

)∣
∣dq

≤ 1
�(σ ∗)

∫ a1

s0

ϕ′(q)
[(

ϕ(a2) – ϕ(q)
)σ∗–1 –

(
ϕ(a1) – ϕ(q)

)σ∗–1]∣∣ψ
(
μ∗(q)

)∣
∣dq

+
1

�(σ ∗)

∫ a2

a1

ϕ′(q)
(
ϕ(a2) – ϕ(q)

)σ∗–1∣∣ψ
(
μ∗(q)

)∣
∣dq

× ‖m∗‖
�(σ ∗ + 1)

[
–
(
ϕ(a2) – ϕ(a1)

)σ∗
+

(
ϕ(a2) – ϕ(s0)

)σ∗

–
(
ϕ(a1) – ϕ(s0)

)σ∗
+

(
ϕ(a2) – ϕ(a1)

)σ∗]

× ‖m∗‖
�(σ ∗ + 1)

[(
ϕ(a2) – ϕ(s0)

)σ∗
–

(
ϕ(a1) – ϕ(s0)

)σ∗]
, (28)
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which implies that |T1μ∗(a2) – T1μ∗(a1)| → 0 as a1 → a2. Thus T1 is equicontinuous
and is relatively compact on Vε . The operator is now compact due to the application of
Arzela–Ascoli theorem. In the last stage, we intend to show that T2 is contractive:

∣
∣T2μ∗

1(a) – T2μ∗
2(a)

∣
∣

≤ |ϕ(a) – ϕ(s0)|
|�|

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1∣∣�
(
q,μ∗

1(q)
)

– �
(
q,μ∗

2(q)
)∣
∣dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1∣∣�
(
q,μ∗

1(q)
)

– �
(
q,μ∗

2(q)
)∣
∣dq

]

≤ |ϕ(a) – ϕ(s0)|
|�|

×
[

1
�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1∣∣η∗(q)
∣
∣
[
ψ

(∣
∣μ∗

1(q)
∣
∣
)

– ψ
(∣
∣μ∗

2(q)
∣
∣
)]

dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

×
∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1∣∣η∗(q)
∣
∣
[
ψ

(∣
∣μ∗

1(q)
∣
∣
)

– ψ
(∣
∣μ∗

2(q)
∣
∣
)]

dq

]

≤ ‖η∗‖|μ∗
1 – μ∗

2||ϕ(a) – ϕ(s0)|
|�|

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1 dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1 dq

]

≤
[

‖η∗‖(|ϕ(M) – ϕ(s0)|)σ∗+1

|�|�(σ ∗ + 1)
+

m∑

i=1

mβi
‖η∗‖(|ϕ(M) – ϕ(s0)|)pi+σ∗+1

|�|�(pi + σ ∗ + 1)

]
∣
∣μ∗

1 – μ∗
2
∣
∣

≤ �2
∣
∣μ∗

1 – μ∗
2
∣
∣, (29)

which implies that

∣
∣T2μ∗

1(a) – T2μ∗
2(a)

∣
∣ ≤ �2

∣
∣μ∗

1 – μ∗
2
∣
∣.

Therefore, the operator T2 is contractive on Vε with constant �2 < 1. So BVP (1) has at
least one solution. �

4 Fractional ϕ-BVP (2)
We will discuss the existence of solutions to problem (2) in this section. We recall a func-
tion μ∗ ∈ CN (J , N) is announced as the solution of problem (2) provided that it follows the
boundary conditions, and there exists a function μ∗ ∈ L1(J) such that μ∗(a) ∈ K(a,μ∗(a))
for almost all a ∈ J and

μ∗(a) =
1

�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
μ∗(q) dq

–
(ϕ(a) – ϕ(s0))

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
μ∗(q) dq
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+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
μ∗(q) dq

]

(30)

for all a ∈ J . For each μ∗ ∈ N , we demonstrate the selections’ set of K by

SK ,μ∗ =
{
μ∗ ∈ L1(J) : μ∗(a) ∈ K

(
a,μ∗(a)

)
for all most all a ∈ J

}
.

Assume the operator L : N → P(N) by

L
(
μ∗) =

{
r ∈ N : there exists μ∗ ∈ SK ,μ∗ such that r(a) = π (a) for all a ∈ J

}
, (31)

where

π (a) =
1

�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
μ∗(q) dq

–
(ϕ(a) – ϕ(s0))

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
μ∗(q) dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
μ∗(q) dq

]

. (32)

Theorem 7 Regard a set-valued map K : J × N → PCP(N). Suppose that
C6: The set-valued map K is bounded and integrable with the property that K(·,μ∗

1) :
J → PCP(N) is measurable for μ∗

1 ∈ N .
C7: There are a member ω ∈ C(J , [0,∞)) and a map ψ ∈ � such that

Hd
(
K

(
a,μ∗

1
)
, K

(
a, μ́∗

1
)) ≤ ω(a)λ∗

‖ω‖ ψ
(∣
∣μ∗

1 – μ́∗
1
∣
∣
)

(33)

for all a ∈ J and μ∗
1, μ́∗

1 ∈ N , where λ∗ = 1
�1

.
C8: There exists a function G : R2 ×R

2 →R such that G((μ∗
1, μ́∗

1)) ≥ 0 for all μ∗
1, μ́∗

1 ∈ N .
C9: A sequence {μ∗

n} of points of N such that μ∗
n → μ∗ and

G
((

μ∗
n(a),μ∗

n+1(a)
)) ≥ 0

for all a ∈ J , n ≥ 1, there exists a subsequence {μ∗
nj
} of {μ∗

n} with

G
((

μ∗
nj

(a),μ∗(a)
)) ≥ 0

for all a ∈ J and 1 ≤ j.
C10: There are elements μ∗

0 of N and r of L(μ∗
0) with

G
((

μ∗
0(a), r(a)

)) ≥ 0

for all a ∈ J , where the operator L : N → P(N).
C11: For every member μ∗ of N and r of L(μ∗) such that

G
((

μ∗(a), r(a)
)) ≥ 0,
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an element w∗ of L(μ∗) exists such that

G
((

r(a), w∗(a)
)) ≥ 0

for all a ∈ J . Then BVP (2) has a solution.

Proof Eventually, the point fixed by the map L is characterized as a solution of BVP (2).
For all μ∗ ∈ N , the set-valued map a → K(a,μ∗(a)) is closed-valued as well as measurable,
so there is a selection of the map K which is measurable and the set SK ,μ∗ is nonempty.
We would prove that L(μ∗) is closed as a subset of N for all μ∗ ∈ N . Assume a convergent
sequence {μ∗

n} of points of L(μ∗) tending to μ∗. Corresponding to every n, an element
μ∗

n ∈ SK ,μ∗ exists such that

μ∗
n(a) =

1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
ϒn(q) dq

–
(ϕ(a) – ϕ(s0))

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
ϒn(q) dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
ϒn(q) dq

]

(34)

for all a ∈ J . Since the values of K are compact, on the basis of this observation, we consider
a subsequence of {μ∗

n} that tends to μ∗ in L1(J). Hence, μ∗
n ∈ SK ,μ∗ and

μ∗
n(a) → μ∗(a) =

1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
ϒ(q) dq

–
(ϕ(a) – ϕ(s0))

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
ϒ(q) dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
ϒ(q) dq

]

(35)

for all a ∈ J , which implies μ∗ ∈ L(μ∗), and so the values of L are closed. Since the set-
valued map K is compact-valued as well, it is indeed simple to demonstrate that L(μ∗) is
bounded for all μ∗ ∈ N . We have to show that the set-valued map L is α–ψ-contractive.
To do this, we regard

α
(
μ∗, μ́∗) =

⎧
⎨

⎩

1 if G((μ∗(a), μ́∗(a))) ≥ 0,

0 otherwise,
(36)

for all μ∗, μ́∗ ∈ N and r∗
1 ∈ L(μ́∗), choose μ∗

1 ∈ SK ,μ́∗ such that

r∗
1 =

1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
ϒ1(q) dq

–
(ϕ(a) – ϕ(s0))

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
ϒ1(q) dq
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+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
ϒ1(q) dq

]

(37)

for all a ∈ J .

Hd(K
(
a,μ∗(a)

)
, K

(
a, μ́∗(a)

) ≤ ω(a)λ∗

‖ω‖ ψ
(∣
∣μ∗

1 – μ́∗
1
∣
∣
)

(38)

for all μ∗, μ́∗ ∈ N with G((μ∗(a), μ́∗(a))) ≥ 0 for all a ∈ J . Therefore, an element π ∈
K(a,μ∗(a)) exists such that

∣
∣μ∗

1(a) – π
∣
∣ ≤ ω(a)λ∗

‖ω‖ ψ
(∣
∣μ∗

1 – μ́∗
1
∣
∣
)
. (39)

Now assume a set-valued map B∗ : J → P(N) which is given as follows:

B∗(a) =
{

π ∈ N :
∣
∣μ∗

1 – π (a)
∣
∣ ≤ ω(a)λ∗

‖ω‖ ψ
(∣
∣μ∗

1 – μ́∗
1
∣
∣
)
}

for all a ∈ J . Notice that the set-valued map B∗(·) ∩ K(a,μ∗(a)) is measurable because μ∗
1

and τ = ω(a)λ∗
‖ω‖ ψ(|μ∗

1 – μ́∗
1|) are measurable. Now let μ∗

2 ∈ K(a,μ∗(a))

∣
∣μ∗

1(a) – μ∗
2(a)

∣
∣ ≤ ω(a)λ∗

‖ω‖ ψ
(∣
∣μ∗

1 – μ́∗
1
∣
∣
)

(40)

for all a ∈ J . Let us define r∗
2 ∈ L(a) by

r∗
2(a) =

1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
ϒ2(q) dq

–
(ϕ(a) – ϕ(s0))

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
ϒ2(q) dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
ϒ2(q) dq

]

(41)

for all a ∈ J . Let supa∈J |ω(a)| = ‖ω‖, then

∣
∣r∗

1 – r∗
2
∣
∣ ≤ 1

�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1∣∣ϒ1(q) – ϒ2(q)
∣
∣dq

–
(ϕ(a) – ϕ(s0))

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1∣∣ϒ1(q) – ϒ2(q)
∣
∣dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1∣∣ϒ1(q) – ϒ2(q)
∣
∣dq

]

≤ (|ϕ(M) – ϕ(s0)|)σ∗

�(σ ∗ + 1)
‖ω‖ψ(∥

∥μ∗ – μ́∗∥∥) λ∗

‖ω‖

+
(|(ϕ(M) – ϕ(s0))|)σ∗+1

|�|�(σ ∗ + 1)
‖ω‖ψ(∥

∥μ∗ – μ́∗∥∥) λ∗

‖ω‖
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+
m∑

i=1

βi
m(|(ϕ(M) – ϕ(s0))|)pi+σ∗+1

|�|�(pi + σ ∗ + 1)
‖ω‖ψ(∥

∥μ∗ – μ́∗∥∥) λ∗

‖ω‖

=

[
(|ϕ(M) – ϕ(s0)|)σ∗

�(σ ∗ + 1)
+

(|(ϕ(M) – ϕ(s0))|)σ∗+1

|�|�(σ ∗ + 1)

+
m∑

i=1

βi
m(|(ϕ(M) – ϕ(s0))|)pi+σ∗+1

|�|�(pi + σ ∗ + 1)

]

‖ω‖ψ(∥
∥μ∗ – μ́∗∥∥) λ∗

‖ω‖

= �1‖ω‖ψ(∥
∥μ∗ – μ́∗∥∥) λ∗

‖ω‖
= �1λ

∗ψ
(∥
∥μ∗ – μ́∗∥∥)

. (42)

Thus α(μ∗, μ́∗)Hd(L(μ∗), L(μ́∗)) ≤ ψ(‖μ∗ – μ́∗‖) holds for all μ∗, μ́∗ ∈ N , which implies
that L(μ∗) is an α–ψ-contractive set-valued mapping. Now, let μ∗ ∈ N and μ́∗ ∈ L be two
functions such that α(μ∗, μ́∗) ≥ 1. In this case,

G
((

μ∗(a), μ́∗(a)
)) ≥ 0.

So, there exists a function π ∈ L(μ́∗) such that

G
((

μ́∗(a),π (a)
)) ≥ 0.

This follows that α(μ́∗,π ) ≥ 1, which implies that the operator L is α-admissible. Now,
suppose that μ∗

0 ∈ N and μ́∗ ∈ L(μ∗
0) are such that

G
((

μ∗
0(a), μ́∗(a)

)) ≥ 0

for all a ∈ J . Then we have α(μ∗
0, μ́∗) ≥ 1. Let {μ∗

n} be a sequence in N such that μ∗
n → μ∗

and α(μ∗
n,μ∗

n+1) ≥ 1 for all n. Then we get

G
((

μ∗
n(a),μ∗

n+1(a)
)) ≥ 0.

By using C9 there exists a subsequence {μ∗
nj
} of {μ∗

n} such that

G
((

μ∗
nj

(a),μ∗(a)
)) ≥ 0

for all a ∈ J . Thus α(μ∗
n,μ∗) ≥ 1 for all j, which implies that the Banach space N admits

(P2). As a conclusion, Theorem 4 is proved, therefore the mapping L admits a fixed point
which is the solution for BVP (2). �

Theorem 8 Let K : J × N → P(N) be a set-valued mapping. Assume that
C12: There exists a nonnegative function ψ : [0,∞) → [0,∞) which is nondecreasing up-

per semi-continuous such that lim inf→∞(a – ψ(a)) > 0 and ψ(a) < a for all a > 0.
C13: The multifunction K : J × N → P(N) is bounded and integrable with K(·,μ∗

1′μ∗
2′ ) :

J → P(N) is measurable for all μ∗
1,μ∗

2 ∈ N .
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C14: There exists a nonnegative function ω ∈ C(J , [0,∞)) such that

H
∗
d
(
K

(
a,μ∗

1
)

– K
(
a, μ́∗

1
)) ≤ ω(a)λ∗ψ

(∣
∣μ∗

1 – μ́∗
1
∣
∣
)

for all μ∗
1, μ́∗

1 ∈ N .
C15: L admits the approximate endpoint property. Then there exists a solution to BVP (2).

Proof We ought to prove that the set-valued mapping L : N → P(N) has an endpoint. In
the beginning, we have to make sure that L(μ∗) is closed for all μ∗ ∈ N . Since the map a →
K(a,μ∗(a)) is measurable and is closed-valued for all μ∗ ∈ N , the map K has a measurable
selection, and so SK ,μ∗ �= ∅ for all μ∗ ∈ N . Following the method given in Theorem 7, we can
easily show that L(μ∗) is closed. Moreover, the boundedness of L(μ∗) can be verified since
the map K is compact. At last, we can easily observe that the inequality Hd(L(μ∗), L(π )) ≤
ψ(‖μ∗ – π‖) is satisfied. Suppose that μ∗,π ∈ N and r∗

1 ∈ L(π ). Choose μ∗
1 ∈ SK ,π such

that

r∗
1 =

1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
ϒ1(q) dq

–
(ϕ(a) – ϕ(s0))

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
ϒ1(q) dq

+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
ϒ1(q) dq

]

(43)

for all a ∈ J . Therefore,

Hd
(
K

(
a,μ∗) – K

(
a,π (a)

)) ≤ ω(a)λ∗ψ
(∣
∣μ∗ – π

∣
∣
)

for all a ∈ J , there exists � ∗ ∈ K(a,μ∗(a)) such that

∣
∣μ∗

1(a) – � ∗∣∣ ≤ ωλ∗ψ
(∣
∣μ∗ – π

∣
∣
)
.

Assuming a set-valued mapping O∗ : J → P(N) defined by

O∗(a) =
{
μ∗ ∈ N :

∣
∣ϒ1 – ϒ(a)

∣
∣ ≤ ω(a)λ∗ψ

(∣
∣μ∗(a) – π (a)

∣
∣
)}

. (44)

The map μ∗
1 is measurable and ϕ∗ = ω(a)λ∗ψ(|μ∗ – π |), therefore, the set-valued map

O∗(·) ∩ K(a,μ∗(a)) is measurable. Now we choose μ∗
2 ∈ K(a,μ∗(a)) such that

∣
∣ϒ1(a) – ϒ2(a)

∣
∣ ≤ ω(a)

1
�1

ψ
(∣
∣μ∗ – π

∣
∣
)

for all a ∈ J . Select r∗
2 ∈ L(μ∗) such that

r∗
2(a) =

1
�(σ ∗)

∫ a

s0

ϕ′(q)
(
ϕ(a) – ϕ(q)

)σ∗–1
ϒ2(q) dq

–
(ϕ(a) – ϕ(s0))

�

[
1

�(σ ∗)

∫ M

s0

ϕ′(q)
(
ϕ(M) – ϕ(q)

)σ∗–1
ϒ2(q) dq
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+
m∑

i=1

βi
1

�(pi + σ ∗)

∫ ξi

s0

ϕ′(q)
(
ϕ(ξi) – ϕ(q)

)pi+σ∗–1
ϒ2(q) dq

]

(45)

for all a ∈ J . On the lines of Theorem 8, we get

∥
∥r∗

1 – r∗
2
∥
∥ = sup

a∈J

∣
∣r∗

1(a) – r∗
2(a)

∣
∣

≤ (�1)λ∗ψ
(∥
∥μ∗ – μ́∗∥∥)

= ψ
(∥
∥μ∗ – μ́∗∥∥)

. (46)

Hence, Hd(L(μ∗), L(π )) ≤ ψ(‖μ∗ – μ́∗‖) for all μ∗,μ∗′ ∈ N . By using (C15) one can easily
find that L has the endpoint property. Now, by using Theorem 4, there exists μ∗ ∈ N such
that L(μ∗) = {μ∗}. This implies that μ∗ is a solution of BVP (2). �

5 Examples
Example 1 Consider the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

CD1.79,exp(a+1)
0 μ∗(a) = a cos(a)|μ∗(a)|

340(|μ∗(a)|+1) , a ∈ [0, 1];

μ∗(0) = 0,

μ∗(1) = 0.71RLI1.69,exp(a+1)
0 μ∗(0.37) + 0.85RLI1.93,exp(a+1)

0 μ∗(0.39),

where a ∈ [0, 1], σ ∗ = 1.79, s0 = 0, M = 1, M = 2, p1 = 1.69, p2 = 1.93, ξ1 = 0.37, ξ2 = 0.39,
β1 = 0.71, β2 = 0.85. Here, CD1.79,exp(a+1)

0 denotes the fractional derivative of the Caputo

Figure 1 Graph of the function �(a,μ∗)

Figure 2 Graph of the function a
340ψ (|μ∗|)
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Figure 3 Comparison of the inequality �(a,μ∗)
≤ a

340ψ (|μ∗|)

type of order 1.79 and RLIpi
0 denotes the fractional integral of the Riemann–Liouville type

of order pi. Let the continuous mapping be defined by �(a,μ∗(a)) = a cos(a)|μ∗(a)|
340(|μ∗(a)|+1) , we have

∣
∣�

(
a,μ∗

1(a)
)

– �
(
a,μ∗

2(a)
)∣
∣

≤ a
340

∣
∣μ1 – μ∗

2
∣
∣.

Put η∗(a) = a
340 for all a ∈ [0, 1], then ‖η∗‖ = 0.00295. Consider the continuous and non-

decreasing function ψ : [0; 1] → R
+ defined by ψ(a) = a for all a ∈ R

+. Then we have
�

∗(a,μ∗(a)) ≤ a
340ψ(|μ∗|) (see the comparison of Fig. 1 and Fig. 2 which is presented in

Fig. 3). Then we have � = 1.6094 �1 = 5.0139, �2 = 0.0098 < 1. Now, by using Theorem 6,
BVP has a solution.

Example 2 Consider the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

CD1.3,exp(a/2)
0 μ∗(a) ∈ [0, exp( 3√a+1)

30 +
√

π cos(coth(a))
2+exp(a) + a sin(a)|μ∗(a)|

126(a+7) ], a ∈ [0, 3];

μ∗(0) = 0,

μ∗(3) = 0.69RLI1.37,exp(2a)
0 μ∗(0.37) + 0.72RLI1.82,exp(2a)

0 μ∗(0.38),

where σ ∗ = 1.3, s0 = 0, M = 3, M = 2, p1 = 1.37, p2 = 1.82, ξ1 = 0.37, ξ2 = 0.38, β1 = 0.69,
β2 = 0.72. Here, CD1.3,exp(a/2)

0 denotes the fractional derivative of the Caputo type of or-
der 0.3 and RLI1.37,exp(a/2)

0
RLI1.82,exp(a/2)

0 denotes the fractional integrals of the Riemann–
Liouville type of orders 1.37 and 1.82. Let the continuous set-valued mapping K : [0, 3] ×
R → P(R) be defined by K(a,μ∗(a)) = [a, exp( 3√a+1)

30 +
√

π cos(coth(a))
2+exp(a) + a sin(a)|μ∗(a)|

126(a+7) ]. For μ∗
1,μ∗

2 ∈
R, we have

H
(
K

(
a,μ∗

1(a)
)

– K
(
a,μ∗

2(a)
))

≤ a
63

1
2
[∣
∣sin

(
μ∗

1(a)
)

– sin
(
μ∗

2(a)
)∣
∣
]

≤ a
63

ψ
(∣
∣μ∗

1(a) – μ∗
2(a)

∣
∣
)

≤ ϑ(a)ψ
(∣
∣μ∗

1(a) – μ∗
2(a)

∣
∣
) 1
�∗

1
. (47)
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Choose the nonnegative function ω ∈ C([0, 3], [0,∞)) defined by ω(a) = a
63 for all a ∈ [0, 3].

Then ‖ω‖ = 3
63 = 0.047. Also, consider the nonnegative and nondecreasing upper semi-

continuous function ψ : [0, 3) → [0, 3) defined by ψ(a) = a
2 for almost all a > 0. It is clear

that lima→∞ inf(a – ψ(a)) > 0 and ψ(a) < a for all a > 0. Then we have Hd(K(a,μ∗
1(a)) –

K(a,μ∗
2(a))) ≤ ω(a)ψ(|μ∗

1(a) – μ∗
2(a)|) 1

�1
. Then we have �1 = 27.2258, � = 3.4493, λ∗ =

0.0367. Consider the operator L : N → P(N) by

L
(
μ∗) =

{
r ∈ N : there exists μ∗ ∈ SK ,μ∗ such that r(a) = π (a) for all a ∈ [0, 3]

}
, (48)

where

π (a) =
1

�(1.3)

∫ a

0
ϕ′(q)

(
ϕ(a) – ϕ(q)

)0,3
ϒ(q) dq

–
(ϕ(a) – 1)

3.4493

[
1

�(1.3)

∫ 3

0
ϕ′(q)

(
ϕ(M) – ϕ(q)

)0.3
ϒ(q) dq

+
2∑

0

βi
1

�(pi + 1.3)

∫ ξi

0
ϕ′(q)

(
ϕ(ξi) – ϕ(q)

)pi+0.3
μ∗(q) dq

]

. (49)

Now, by using Theorem 8, BVP has a solution.

6 Conclusion
A number of natural phenomena emerging in science and technology are modeled by frac-
tional differential equations (FDEs). The present study deals with a novel class of ϕ-CF
nonlocal BVP in the fractional ϕ-Caputo sense equipped with ϕ-RLF-integral nonlocal
boundary conditions. We considered the class of admissible mappings w.r.t. to the map-
ping α equipped with a nondecreasing control function and proved the solutions’ exis-
tence of fractional ϕ-BVPs (1) and (2). The requisite criteria for the existence of solution
corresponding to the inclusion version of ϕ-BVP have been explored utilizing the AEP-
property. Finally, several simulative examples have been developed to validate research
findings. Indeed, one can consider more complex FDEs and FDIs involving ϕ-Caputo frac-
tional derivative and even some other fractional operators with the variety of boundary
conditions and can prove the solutions’ existence using fixed point theory and functional
analysis.
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