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Abstract
This paper focuses on the finite-time stability of linear stochastic fractional-order
systems with time delay for α ∈ ( 12 , 1). Under the generalized Gronwall inequality and
stochastic analysis techniques, the finite-time stability of the solution for linear
stochastic fractional-order systems with time delay is investigated. We give two
illustrative examples to show the interest of the main results.
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1 Introduction
Fractional-order systems are dynamical systems that can be modeled by a fractional differ-
ential equation carried with a non-integer derivative. Recently, much research work was
focused on such a concept, for example [1–3]. Indeed, the authors in [1] have presented
the problem of the existence and uniqueness of solutions of boundary value problems
(BVPs) for a nonlinear fractional differential equation of order 2 < α < 3. In addition, the
work in [2] has concentrated on solution of fractional differential equations via coupled
fixed point. Furthermore, Badr Alqahtani et al. in [3] have suggested a solution for Volterra
fractional integral equations by hybrid contractions.

Since the middle of the last century, the control theory has been subject to a revolu-
tion and a very huge amount of research work in the literature. A great majority of work,
established until now, has focused on the classical integer-order systems, modeled with
differential equations where an integer-order derivative is used. Meanwhile, with the de-
velopment of science and applied mathematics, it has been discovered that several physical
systems are really described with differential fractional-order equations, where a fractional
derivative order is used. Consequently, such systems cannot be effectively modeled using
the classical differential integer-order equations. As a result to this fact, a growing inter-
est is being given by researchers in the last few decades, to investigate fractional-order
systems and various problems inside the control theory, such as state estimation, con-
trol, finite-time stability and fault diagnosis, are being tackled. Note that, compared to the
integer-order case, the fractional-order framework represents a fertile field of research,
since it has been “recently” addressed by researchers and several specific questions are
still to investigate for fractional-order systems.
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In the literature, many researchers have been studied the stability of the solution for
fractional-order system (see [10–12] and [17–19]). In some cases, however, it is advan-
tageous that a dynamical system has the finite-time stability (FTS) property which plays
an essential issue in the analysis of the transient behavior of systems. The FTS can be
divided into two types. The stability of a system on a finite-time interval is studied; see
[4, 5, 7, 9, 13] and [15] and [20–23]. The other work can be described as the trajectories
of the system converges on a finite-time interval to the equilibrium point; see [16].

The main contribution of this research work is to deal with the FTS of a class of linear
stochastic fractional-order systems with time delay for α ∈ ( 1

2 , 1) using the generalized
Gronwall inequality and the classical techniques of the stochastic analysis.

The structure of the paper is organized as follows. In Sect. 2, we introduce some hy-
potheses and classical notions. In Sect. 3, by applying the generalized Gronwall inequality,
the FTS of linear stochastic fractional-order systems with time delay is studied. In Sect. 4,
we give two illustrative examples to show our theory.

2 Preliminaries and definitions
In this section, we introduce some basic notions and definitions which are useful for our
results. For more details see [6] and [14].

Let {X,F , (Ft)t≥0,P} be a complete probability space with a filtration fulfilling the usual
conditions. W (t) is a 1-dimensional Brownian motion defined on the probability space.

Let C([–τ , 0];Rn) be the space of the continuous functions ϕ : [–τ , 0] → R
n with the

norm ‖ϕ‖ = sup–τ≤s≤0 ‖ϕ(s)‖ where ‖λ‖ =
√

λTλ for any λ ∈ R
n. Consider the linear

stochastic fractional-order time delay systems of the form

CDα
0,ty(t) = Ay(t) dt + By(t – ν) dt + Cy(t – ν) dW (t), (2.1)

where the initial condition is {x(t), –ν ≤ t ≤ 0} = ϕ(t) ∈R
n.

CDα
0,t denotes the operator of the Caputo fractional derivative (CFD) of order 1

2 < α < 1;
A; B; C ∈R

n×n.

Definition 2.1 Given 0 < η < 1. The CFD is defined as

CDη
0,sx(s) =

1
�(1 – η)

d
ds

∫ s

0
(s – ζ )–η

(
x(ζ ) – x(0)

)
dζ . (2.2)

Definition 2.2 The Mittag-Leffler function (MLF) in two parameters is defined by

Eβ ,μ(z) =
∑
m≥0

zm

�(mβ + μ)
, (2.3)

where β > 0, μ > 0 z ∈C.

Remark 2.1 For μ = 1, Eβ ,1 = Eβ and E1,1(z) = exp(z).

Definition 2.3 System (2.1) is finite-time stochastically stable (FTSS) w.r.t. {δ, ε, T}, δ < ε,
if

E‖ϕ‖2 < δ
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implying

E
∥∥y(t)

∥∥2 < ε, ∀t ∈ [0, T].

3 Main results
Let T > ν and m ∈N with (m + 1)ν < T ≤ (m + 2)ν .

Theorem 3.1 System (2.1) is FTSS with respect to (δ, ε, T), if the following condition is
fulfilled:

lT (ν) ≤ ε

δ
, (3.1)

with

lT (ν) =
[

4 +
M1

2
(
1 – e–2T)

lm+1(ν) + M2
T2α–1

2α – 1
lm+1(ν)

]
e(M3+2)T ,

lk+1(ν) =
[

4 +
M1

2
(
1 – e–2(k+1)ν)lk(ν) + M2

((k + 1)ν)2α–1

2α – 1
lk(ν)

]
e(M3+2)(k+1)ν ,

for k ∈ [0, m], l0(ν) = 1, M1 = 8�(2α–1)
4α�2(α) ‖B‖2, M2 = 4

�2(α)‖C‖2 and M3 = 8�(2α–1)
4α�2(α) ‖A‖2.

Proof The solution of the system (2.1) satisfies the following equation:

y(t) = y(0) +
1

�(α)

∫ t

0
(t – s)α–1Ay(s) ds +

1
�(α)

∫ t

0
(t – s)α–1By(s – ν) ds

+
1

�(α)

∫ t

0
(t – s)α–1Cy(s – ν) dW (s). (3.2)

Using the Cauchy–Schwartz inequality, we get

∥∥y(t)
∥∥2 ≤ 4‖ϕ‖2 +

4
�2(α)

[(∫ t

0
(t – s)α–1‖A‖∥∥y(s)

∥∥ds
)2

+
(∫ t

0
(t – s)α–1‖B‖∥∥y(s – ν)

∥∥ds
)2]

+
4

�2(α)

∥∥∥∥
∫ t

0
(t – s)α–1Cy(s – ν) dW (s)

∥∥∥∥
2

≤ 4‖ϕ‖2 +
4

�2(α)

(∫ t

0
e2s(t – s)2α–2 ds

)[∫ t

0
e–2s‖A‖2∥∥y(s)

∥∥2 ds

+
∫ t

0
e–2s‖B‖2∥∥y(s – ν)

∥∥2 ds
]

+
4

�2(α)

∥∥∥∥
∫ t

0
(t – s)α–1Cy(s – ν) dW (s)

∥∥∥∥
2

.

Taking the expectation on the two sides, one has

E
∥∥y(t)

∥∥2 ≤ 4E‖ϕ‖2
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+
8�(2α – 1)
�2(α)4α

e2t
[∫ t

0
e–2s‖A‖2

E
∥∥y(s)

∥∥2 ds +
∫ t

0
e–2s‖B‖2

E
∥∥y(s – ν)

∥∥2 ds
]

+
4

�2(α)

∫ t

0
(t – s)2α–2‖C‖2

E
∥∥y(s – ν)

∥∥2 ds.

Then

E
∥∥y(t)

∥∥2 ≤ 4E‖ϕ‖2 + M1e2t
∫ t

0
e–2s

E
∥∥y(s – ν)

∥∥2 ds

+ M2

∫ t

0
(t – s)2α–2

E
∥∥y(s – ν)

∥∥2 ds

+ M3e2t
∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds, (3.3)

where M1 = 8�(2α–1)
4α�2(α) ‖B‖2, M2 = 4

�2(α)‖C‖2 and M3 = 8�(2α–1)
4α�2(α) ‖A‖2.

Thus,

e–2t
E

∥∥y(t)
∥∥2 ≤ 4E‖ϕ‖2 + M1

∫ t

0
e–2s

E
∥∥y(s – ν)

∥∥2 ds

+ M2

∫ t

0
(t – s)2α–2

E
∥∥y(s – ν)

∥∥2 ds

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds, (3.4)

For t ∈ [0,ν], we obtain

e–2t
E

∥∥y(t)
∥∥2 ≤ 4E‖ϕ‖2 + M1

∫ t

0
e–2s

E
∥∥y(s – ν)

∥∥2 ds

+ M2

∫ t

0
(t – s)2α–2

E
∥∥y(s – ν)

∥∥2 ds

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds

≤ 4E‖ϕ‖2 +
M1

2
(
1 – e–2t)

E‖ϕ‖2 +
M2t2α–1

2α – 1
E‖ϕ‖2

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds

≤
(

4 +
M1

2
(
1 – e–2ν

)
+

M2ν
2α–1

2α – 1

)
E‖ϕ‖2

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds.

By the Gronwall inequality, we have

e–2t
E

∥∥y(t)
∥∥2 ≤

(
4 +

M1

2
(
1 – e–2ν

)
+

M2ν
2α–1

2α – 1

)
eM3t

E‖ϕ‖2. (3.5)
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Therefore, we obtain

E
∥∥y(t)

∥∥2 ≤
(

4 +
M1

2
(
1 – e–2ν

)
+

M2ν
2α–1

2α – 1

)
e(M3+2)ν

E‖ϕ‖2

≤ l1(ν)E‖ϕ‖2, ∀t ∈ [0,ν],

where l1(ν) = (4 + M1
2 (1 – e–2ν) + M2ν2α–1

2α–1 )e(M3+2)ν .
For t ∈ [ν, 2ν], we have

e–2t
E

∥∥y(t)
∥∥2 ≤ 4E‖ϕ‖2 +

M1

2
(
1 – e–2t)l1(ν)E‖ϕ‖2 +

M2t2α–1

2α – 1
l1(ν)E‖ϕ‖2

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds

≤
(

4 +
M1

2
(
1 – e–2(2ν))l1(ν) +

M2(2ν)2α–1

2α – 1
l1(ν)

)
E‖ϕ‖2

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds.

Using the Gronwall inequality, we get

E
∥∥y(t)

∥∥2e–2t ≤
(

M1

2
(
1 – e–2(2ν))l1(ν) + 4 +

M2(2ν)2α–1

2α – 1
l1(ν)

)
E‖ϕ‖2eM3t . (3.6)

Therefore, we obtain

E
∥∥y(t)

∥∥2 ≤
(

4 +
M1

2
(
1 – e–2(2ν))l1(ν) +

M2(2ν)2α–1

2α – 1
l1(ν)

)
e(M3+2)(2ν)

E‖ϕ‖2

≤ l2(ν)E‖ϕ‖2, ∀t ∈ [0,ν],

where l2(ν) = (4 + M1
2 (1 – e–2(2ν))l1(ν) + M2(2ν)2α–1

2α–1 l1(ν))e(M3+2)(2ν).
For t ∈ [0, (k + 1)ν], k ∈ [0, m], we have

e–2t
E

∥∥y(t)
∥∥2 ≤ 4E‖ϕ‖2 +

M1

2
(
1 – e–2t)lk(ν)E‖ϕ‖2 +

M2t2α–1

2α – 1
lk(ν)E‖ϕ‖2

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds

≤
(

4 +
M1

2
(
1 – e–2(k+1)ν)lk(ν) +

M2((k + 1)ν)2α–1

2α – 1
lk(ν)

)
E‖ϕ‖2

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds.

Using the Gronwall inequality, we have

e–2t
E

∥∥y(t)
∥∥2

≤
(

4 +
M1

2
(
1 – e–2(k+1)ν)lk(ν) +

M2((k + 1)ν)2α–1

2α – 1
lk(ν)

)
E‖ϕ‖2eM3t . (3.7)
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Therefore, we obtain

E
∥∥y(t)

∥∥2 ≤
(

4 +
M1

2
(
1 – e–2(1+k)ν)lk(ν) +

M2((1 + k)ν)2α–1

2α – 1
lk(ν)

)
e(M3+2)(1+k)ν

E‖ϕ‖2

≤ lk+1(ν)E‖ϕ‖2, ∀t ∈ [
0, (1 + k)ν

]
,

where lk+1(ν) = (4 + M1
2 (1 – e–2(1+k)ν)lk(ν) + M2((1+k)ν)2α–1

2α–1 lk(ν))e(M3+2)(1+k)ν .
For all t ∈ [0, T], we get

E
∥∥y(t)

∥∥2 ≤
(

4 +
M1

2
(
1 – e–2T)

lm+1(ν) + M2
T2α–1

2α – 1
lm+1(ν)

)
e(M3+2)T

E‖ϕ‖2, (3.8)

which completes the proof. �

Remark 3.2 It is clear that l0(ν) ≤ l1(ν) ≤ · · · ≤ lT (ν).

Remark 3.3 In the case when 0 < T ≤ ν , we obtain the FTS for the system (2.1) if we have
the following condition:

lT (ν) =
[

4 +
M1

2
(
1 – e–2T)

+ M2
T2α–1

2α – 1

]
e(M3+2)T ≤ ε

δ
.

Theorem 3.4 System (2.1) is FTSS with respect to (δ, ε, I), if the following condition A is
fulfilled:

max
(
e2ν , 4

)
exp

[(
M1 + M3

2α – 1
+ 2

)
T

]
E2α–1

(
M2�(2α – 1)T2α–1) ≤ ε

δ
, (3.9)

where M1 = 8�(2α–1)
4α�2(α) ‖B‖2, M2 = 4

�2(α)‖C‖2 and M3 = 8�(2α–1)
4α�2(α) ‖A‖2.

Proof By inequality (3.3), we get the following estimation:

E
∥∥y(t)

∥∥2 ≤ 4E‖ϕ‖2 + M1e2t
∫ t

0
e–2s

E
∥∥y(s – ν)

∥∥2 ds

+ M2

∫ t

0
(t – s)2α–2

E
∥∥y(s – ν)

∥∥2 ds

+ M3e2t
∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds. (3.10)

Thus,

e–2t
E

∥∥y(t)
∥∥2 ≤ 4E‖ϕ‖2 + M1

∫ t

0
e–2s

E
∥∥y(s – ν)

∥∥2 ds

+ M2e–2t
∫ t

0
(t – s)2α–2

E
∥∥y(s – ν)

∥∥2 ds

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds

≤ 4E‖ϕ‖2 + M1

∫ t

0
e–2s

E
∥∥y(s – ν)

∥∥2 ds
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+ M2

∫ t

0
(t – s)2α–2e–2s

E
∥∥y(s – ν)

∥∥2 ds

+ M3

∫ t

0
e–2s

E
∥∥y(s)

∥∥2 ds.

Let h(t) = e–2t
E‖y(t)‖2, then we obtain, ∀t ∈ [0, T],

h(t) ≤ 4E‖ϕ‖2 + M1e–2ν

∫ t

0
h(s – ν) ds + M2e–2ν

∫ t

0
(t – s)2α–2h(s – ν) ds

+ M3

∫ t

0
h(s) ds

≤ 4E‖ϕ‖2 + M1

∫ t

0
h(s – ν) ds + M2

∫ t

0
(t – s)2α–2h(s – ν) ds

+ M3

∫ t

0
h(s) ds.

Let g(t) = supθ∈[–ν,t] h(θ ), for all t ∈ [0, T].
We have, ∀s ∈ [0, T], h(s) ≤ g(s) and h(s – ν) ≤ g(s).
Thus, for all t ∈ [0, T], we obtain

h(t) ≤ 4E‖ϕ‖2 + (M1 + M3)
∫ t

0
g(s) ds + M2

∫ t

0
(t – s)2α–2g(s) ds.

Therefore, using a change of variable v = t – s, we have ∀θ ∈ [0, t]

h(θ ) ≤ 4E‖ϕ‖2 + (M1 + M3)
∫ θ

0
g(s) ds + M2

∫ θ

0
s2α–2g(θ – s) ds. (3.11)

θ 	→ ∫ θ

0 s2α–2g(θ – s) ds and θ 	→ ∫ θ

0 g(s) ds are two increasing functions because g is non-
negative and increasing. Thus, we have ∀θ ∈ [0, t]

h(θ ) ≤ 4E‖ϕ‖2 + (M1 + M3)
∫ t

0
g(s) ds + M2

∫ t

0
s2α–2g(t – s) ds. (3.12)

Thus, we get ∀t ∈ [0, T]

g(t) ≤ max
{

sup
θ∈[–ν,0]

h(θ ), sup
θ∈[0,t]

h(θ )
}

≤ max
{

e2ν , 4
}
E‖ϕ‖2 + (M1 + M3)

∫ t

0
g(s) ds + M2

∫ t

0
s2α–2g(t – s) ds

≤ max
{

e2ν , 4
}
E‖ϕ‖2 + (M1 + M3)

∫ t

0
g(s) ds + M2

∫ t

0
(t – s)2α–2g(s) ds.

Using the generalized Gronwall inequality (Corollary 2.3 in [8]), for t ∈ [0, T], we get

g(t) ≤ max
(
e2ν , 4

)
E‖ϕ‖2 exp

[
(M1 + M3)

t
2α – 1

]
E2α–1

(
M2�(2α – 1)t2α–1). (3.13)
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Then, for all t ∈ [0, T], we obtain

h(t) ≤ max
(
e2ν , 4

)
E‖ϕ‖2 exp

[
(M1 + M3)

t
2α – 1

]
E2α–1

(
M2�(2α – 1)t2α–1). (3.14)

Therefore, for all t ∈ [0, T], we have

E
∥∥y(t)

∥∥2 ≤ max
(
e2ν , 4

)
E‖ϕ‖2 exp

[(
M1 + M3

2α – 1
+ 2

)
t
]

E2α–1
(
M2�(2α – 1)t2α–1)

≤ max
(
e2ν , 4

)
E‖ϕ‖2 exp

[(
M1 + M3

2α – 1
+ 2

)
T

]
E2α–1

(
M2�(2α – 1)T2α–1).

Then, if E‖ϕ‖2 < δ and condition A hold, we have E‖y(t)‖2 < ε,∀t ∈ [0, T].
The proof is therefore complete. �

4 Illustrative examples
Two illustrative examples, in this section, show the usefulness and interest of the main
results.

Example 4.1 Consider the following system:

CDα
0,tx(t) =

(
0.2 0
0 0.1

)(
x1(t)
x2(t)

)
dt +

(
0.5 0
0 0.4

)(
x1(t – ν)
x2(t – ν)

)
dt

+

(
0.5 0
0 1

)(
x1(t – ν)
x2(t – ν)

)
dW (t), (4.1)

where the initial condition is

x(t) = ϕ(t), –ν ≤ t ≤ 0.

It is easily to verify that ‖A‖ = 0.2, ‖B‖ = 0.5, and ‖C‖ = 1.
Let δ = 0.1, ε = 10 and ν = 0.1.
Based on the inequality (3.1) in Theorem 3.1 with α = 0.9, the calculated estimated time

T of the system (4.2) is equal to T = 0.3, however, using Theorem 3.4, the computed esti-
mated time T in inequality (3.9) is equal to T = 0.23.

Example 4.2 Consider the following system:

CDα
0,tx(t) =

(
1 0
0 0.8

)(
x1(t)
x2(t)

)
dt +

(
0.1 0
0 0.05

)(
x1(t – ν)
x2(t – ν)

)
dt

+

(
0.08 0

0 0.1

)(
x1(t – ν)
x2(t – ν)

)
dW (t), (4.2)

where the initial condition is

x(t) = ϕ(t), –ν ≤ t ≤ 0.



Mchiri et al. Advances in Difference Equations        (2021) 2021:345 Page 9 of 10

It is easily to verify that ‖A‖ = 1, ‖B‖ = 0.1, and ‖C‖ = 0.1.
Let δ = 0.1, ε = 10 and ν = 0.1.
Based on the inequality (3.9) in Theorem 3.4 with α = 0.6, the calculated estimated time

T of the system (4.1) is equal to T = 1.27, however, using Theorem 3.1, the computed
estimated time T in inequality (3.1) is equal to T = 0.295.

5 Conclusion
In this paper, finite-time stability of linear stochastic fractional-order systems with time
delay has been investigated. Both the Gronwall lemma and stochastic calculus techniques
have been used to study the finite-time stability. We have analyzed two illustrative exam-
ples to show the interest of our results. Note that the oldest two fractional derivatives in
the literature are the Caputo derivative and the Riemann–Liouville fractional derivative.
The choice of the Caputo derivative is addressed in our work because it is better for the
stability analysis than the one defined by Riemann–Liouville. As a perspective of this work,
an extension to other types of fractional derivative can be an interesting future research.
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