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Abstract
The impulsive synchronization of a fractional-order complex-variable network is
investigated. Firstly, static impulsive controllers are designed and the corresponding
synchronization criteria are derived. From the criteria, the impulsive gains can be
calculated. Secondly, adaptive impulsive controllers are designed. Noticeably, the
impulsive gains can be adjusted to the needed values adaptively. Finally, numerical
examples are provided to verify the results.
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1 Introduction
In recent years, fractional-order differential systems have gained increasing attentions due
to the fact that they can better describe the memory and hereditary properties, such as
elastic systems, dielectric polarization, heat conduction, electromagnetic waves, and fi-
nancial systems [1–12]. In [7–9], the authors designed some kinds of memristive hyper-
chaotic system and discussed their applications. In [11], the author studied a fractional-
order financial system. For those large-scale fractional-order systems, they usually contain
large number of interactive individuals and are modeled by fractional-order dynamical
network. The nodes denote the individuals and the edges denote the interactions among
individuals. In [13], the authors considered fractional-order neural networks. In [14], the
authors investigated a time-delay neural network.

Synchronization of dynamical networks has been extensively studied [15–37], with a
view on power grids, unmanned aircraft operation, parallel image processing, and so on.
However, due to the complexities of a dynamic network, achieving synchronization by
inner adjustment is difficult and even impossible. Therefore, appropriate external con-
trollers need to be designed. So far, many control schemes have been adopted to design
suitable controllers, such as impulsive control [16, 21–32], intermittent control [38–41],
pinning control [42, 43], and feedback control [44, 45].

In the real world, many complex systems cannot be controlled by continuous control
and endure continuous disturbance. Impulsive control, as a typical discontinuous control
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scheme, has been widely adopted to design proper controllers, i.e., the controllers are ap-
plied to the systems only at certain moments. That is, the impulsive controllers have a rela-
tively simple structure and are easy to implement and have low cost. Researchers have ob-
tained many valuable results about impulsive control and synchronization in integer-order
dynamical networks [21–26, 29, 30, 32]. From a practical point of view, a fractional-order
network can describe some practical phenomena more accurate than an integer-order
model. Therefore, impulsive control is adopted to study the synchronization of fractional-
order dynamical networks as well. In [27], the authors investigated impulsive stabilization
and synchronization of fractional-order complex-valued neural networks. In [28], the au-
thors investigated synchronization for a class of fractional-order linear complex networks
via impulsive control. In [27, 28], some useful synchronization conditions are obtained,
from which the impulsive gains and intervals can be calculated for a given network. How-
ever, for different networks, it is necessary to calculate the required impulsive intervals and
gains repetitively. Therefore, how to design the universal impulsive controllers deserves
further studies.

In this paper, we introduce the fractional-order complex-variable dynamical network
model and present some preliminaries in Sect. 2. In Sect. 3, we design static and adaptive
impulsive controllers, respectively. For static impulsive controllers, we derive the sufficient
conditions for achieving synchronization. For adaptive impulsive controllers, we provide
the updating laws of the impulsive gains. We perform three numerical examples to verify
the results in Sect. 4. In Sect. 5, we give the conclusions.

2 Model description and preliminaries
In this section, some definitions and lemma are recalled.

Definition 1 ([3, 6]) For an integrable function f (t) : [t0, +∞) → R, its αth-order frac-
tional integral is defined as

t0 Iα
t f (t) =

1
�(α)

∫ t

t0

(t – s)α–1f (s) ds, t ≥ t0,

where �(·) stands for the Gamma function and α > 0.

Definition 2 ([3, 6]) For function f ∈ Cm([t0, +∞),R), its αth-order Caputo derivative is
defined by

t0 Dα
t f (t) =

1
�(m – α)

∫ t

t0

(t – s)m–α–1f (m)(s) ds, t > t0,

where m is a positive integer such that m – 1 < α < m.

Lemma 1 ([27]) For ∀t0 ∈ R and a real-valued continuous function V (t) on [t0, +∞), if
there exists a constant θ such that

t0 Dα
t V (t) ≤ θV (t), 0 < α < 1,

then

V (t) ≤ V (t0)e
θ

�(α+1) (t–t0)α .
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Consider a fractional-order complex-variable dynamical network, described by

tσ Dα
t xk(t) = f

(
xk(t)

)
+ b

N∑
l=1

akl�xl(t), t ∈ (tσ , tσ+1],σ = 0, 1, 2, . . . , (1)

where k = 1, 2, . . . , N , 0 < α < 1, xk(t) = (xk1(t), xk2(t), . . . , xkn(t))T ∈ C
n is the state variable

of node k, f : Cn →C
n is a nonlinear complex-valued vector function, b > 0 is the coupling

strength, � = diag(γ1,γ2, . . . ,γn) is the inner coupling matrix. A = (akl) ∈ R
N×N is the zero-

row-sum outer coupling matrix representing the network topology, defined as: if node k
is affected by node l (k �= l), then akl �= 0; otherwise, akl = 0. The time series {tσ } satisfies
0 = t0 < t1 < t2 < · · · < tσ < tσ+1 < · · · and tσ → +∞ as σ → +∞.

The network (1) is said to achieve synchronization, if limt→∞ ‖xk(t) – s(t)‖ = 0, where
s(t) is a solution of an isolated node, i.e., tσ Dα

t s(t) = f (s(t)) for t ∈ (tσ , tσ+1].
The controlled network with impulsive controllers is written as

tσ Dα
t xk(t) = f

(
xk(t)

)
+ b

N∑
l=1

akl�xl(t), t ∈ (tσ , tσ+1),

xk
(
t+
σ+1

)
= xk

(
t–
σ+1

)
+ B(tσ+1)

(
xk

(
t–
σ+1

)
– s

(
t–
σ+1

))
,

(2)

where xk(t+
σ+1) = limt→t+

σ+1
xk(t) and xk(t–

σ+1) = limt→t–
σ+1

xk(t). Any solution of (2) satisfies
xk(t–

σ+1) = xk(tσ+1). B(tσ+1) ∈ (–2, –1)∪ (–1, 0) is the impulsive gain at t = tσ+1, B(t0) = 0 and
B(t) = 0 for t �= tσ+1.

Assumption 1 Suppose that there exists a positive constant L such that

(
x(t) – s(t)

)T(
f
(
x(t)

)
– f

(
s(t)

))
+

(
f
(
x(t)

)
– f

(
s(t)

))T(
x(t) – s(t)

)

≤ L
(
x(t) – s(t)

)T(
x(t) – s(t)

)

holds for any x(t), s(t) ∈C
n and t > 0.

Throughout this paper, we make Assumption 1. Since the coupling matrix is a zero-row-
sum matrix and the impulsive gains B(tσ+1) ∈ (–2, –1) ∪ (–1, 0), according to the discus-
sions in Refs. [12] and [46], the existence of the solutions of (3) is guaranteed.

Let ek(t) = xk(t) – s(t), we have the following error system:

tσ Dα
t ek(t) = f

(
xk(t)

)
– f

(
s(t)

)
+ b

N∑
l=1

akl�el(t), t ∈ (tσ , tσ+1),

ek
(
t+
σ+1

)
= ek

(
t–
σ+1

)
+ B(tσ+1)ek

(
t–
σ+1

)
, t = tσ+1.

(3)

3 Main results
In what follows, let e(t) = ((e1(t))T , (e2(t))T , . . . , (eN (t))T )T , τσ = tσ+1 – tσ be the impulsive
intervals, λ be the largest eigenvalue of matrix b(A + AT ) ⊗ �, θ = L+λ

�(α+1) , and δ(t) = (1 +
B(t))2. From the definition of B(t), one has δ(t) = 1 for t �= tσ .
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Theorem 1 Suppose that Assumption 1 holds. If there exists a constant ξ > 0 such that

ln δ(t) + ξ + θτα
σ < 0, σ = 1, 2, . . . , (4)

hold, then network (2) achieves synchronization.

Proof Consider the following Lyapunov functional candidate:

V
(
e(t)

)
=

N∑
k=1

eT
k (t)ek(t), t ∈ (tσ , tσ+1].

When t ∈ (tσ , tσ+1), the derivative of V (e(t)) is

tσ Dα
t V

(
e(t)

) ≤
N∑

k=1

eT
k (t)

(
tσ Dα

t ek(t)
)

+
N∑

k=1

(
tσ Dα

t eT
k (t)

)
ek(t)

=
N∑

k=1

(eT
k (t)(f

(
xk(t) – f

(
s(t)

))
+

(
f
(
xk(t) – f

(
s(t)

))T ek(t)
)

+ b
N∑

k=1

N∑
l=1

(
eT

l (t)akl�ek(t) + eT
k (t)akl�el(t)

)

≤ LeT (t)e(t) + beT (t)
(
A + AT) ⊗ �e(t)

≤ (L + λ)V
(
e(t)

)
,

which gives

V
(
e(t)

) ≤ V
(
e
(
t+
σ

))
e

L+λ
�(α+1) (t–tσ )α

= V
(
e
(
t+
σ

))
eθ (t–tσ )α . (5)

When t = tσ+1, one has

V
(
e
(
t+
σ+1

))
=

N∑
k=1

eT
k
(
t+
σ+1

)
ek

(
t+
σ+1

)

=
(
1 + B(tσ+1)

)2
N∑

k=1

eT
k
(
t–
σ+1

)
ek

(
t–
σ+1

)

= δ(tσ+1)V
(
e
(
t–
σ+1

))
. (6)

When σ = 0, from (5) and (6),

V
(
e
(
t–
1
)) ≤ V

(
e(t0)

)
exp

(
θτα

1
)
,

V
(
e
(
t+
1
)) ≤ δ(t1)V

(
e
(
t–
1
)) ≤ δ(t1)V

(
e(t0)

)
exp

(
θτα

1
)
.

When σ = 1,

V
(
e
(
t–
2
)) ≤ V

(
e(t1)

)
exp

(
θτα

2
) ≤ δ(t1)V

(
e(t0)

)
exp

(
θ
(
τα

1 + τα
2
))

,
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V
(
e
(
t+
2
)) ≤ δ(t2)V

(
e
(
t–
2
))

≤ δ(t2)δ(t1)V
(
e(t0)

)
exp

(
θ
(
τα

1 + τα
2
))

= V
(
e(t0)

) 2∏
ε=1

δ(tε) exp
(
θτα

ε

)
.

By induction,

V
(
e
(
t+
σ

)) ≤ V
(
e(t0)

) σ∏
ε=1

δ(tε) exp
(
θτα

ε

)
, σ = 1, 2, . . . .

From inequalities (4),

δ(tε) exp
(
θτα

ε

) ≤ exp(–ξ ), ε = 1, 2, . . . ,

and

V
(
e
(
t+
σ

)) ≤ V
(
e(t0)

)
exp(–σξ ).

That is, V (e(t+
σ )) → 0 when σ → +∞. Therefore, when t ∈ (tσ , tσ+1],

V
(
e(t)

) ≤ V
(
e
(
t+
σ

))
exp

(
θ (t – tσ )α

)
,

i.e., V (e(t)) → 0 and ‖ek(t)‖ → 0 as t → +∞. This completes the proof. �

Remark 1 By simple calculations, we can estimate the positive constant θ in Theorem 1,
and then calculate the impulsive gains from conditions (4). However, for different net-
works, we must repeatedly calculate the impulsive gains. Therefore, we design adaptive
impulsive controllers to avoid this situation.

Theorem 2 Suppose that Assumption 1 holds. If there exists a constant ξ > 0 such that the
following conditions:

ln δ(tσ ) + ξ + θ̂ (tσ )τα < 0, σ = 0, 1, 2, . . . , (7)

hold, where θ̂ (t) is the estimated value of θ , tσ Dα
t θ̂ (t) = �(α + 1)ω

∑N
k=1 eT

k (t)ek(t), t ∈
(tσ , tσ+1] and ω > 0 is a positive constant, then the controlled network (2) achieves syn-
chronization.

Proof Consider the following Lyapunov function:

V
(
e(t)

)
=

N∑
k=1

eT
k (t)ek(t) +

δ(t)
2ω

(
θ̂ (t) – θ

)2, t ∈ (tσ , tσ+1].

When t ∈ (tσ , tσ+1), the function V (e(t)) can be written as

V
(
e(t)

)
=

N∑
k=1

eT
k (t)ek(t) +

1
2ω

(
θ̂ (t) – θ

)2,
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and the derivative of V (e(t)) can be calculated as

tσ Dα
t V

(
e(t)

) ≤
N∑

k=1

(
tσ Dα

t eT
k (t)

)
ek(t) +

N∑
k=1

eT
k (t)

(
tσ Dα

t ek(t)
)

+
1
ω

(
θ̂ (t) – θ

)
tσ Dα

t θ̂ (t)

=
N∑

k=1

(
eT

k (t)
(
f
(
xk(t)

)
– f

(
s(t)

))
+

(
f
(
xk(t)

)
– f

(
s(t)

))T ek(t)
)

+ b
N∑

k=1

N∑
l=1

(
eT

l (t)akl�ek(t) + eT
k (t)akl�el(t)

)

+ �(α + 1)
(
θ̂ (t) – θ

) N∑
k=1

eT
k (t)ek(t)

≤ �(α + 1)θ̂ (t)eT (t)e(t)

≤ �(α + 1)θ̂ (tσ+1)V
(
e(t)

)
,

which gives

V
(
e(t)

) ≤ V
(
e
(
t+
σ

))
exp

(
θ̂ (tσ+1)(t – tσ )α

)
. (8)

When t = tσ+1, one has

V
(
e
(
t+
σ+1

))
=

N∑
k=1

eT
k
(
t+
σ+1

)
ek

(
t+
σ+1

)
+

δ(tσ+1)
2ω

(
θ̂ (t) – θ

)2

=
(
1 + B(tσ+1)

)2
N∑

k=1

eT
k
(
t–
σ+1

)
ek

(
t–
σ+1

)
+

δ(tσ+1)
2ω

(
θ̂ (t) – θ

)2

= δ(tσ+1)

( N∑
k=1

eT
k
(
t–
σ+1

)
ek

(
t–
σ+1

)
+

1
2ω

(
θ̂ (t) – θ

)2
)

= δ(tσ+1)V
(
e
(
t–
σ+1

))
. (9)

Therefore, similar to the proof of Theorem 1, the proof is completed. �

Remark 2 When τσ and ξ are fixed, we choose

– exp

(
–

ξ + θ̂ (tσ )τσ

2

)
– 1 + ε ≤ B(tσ ) ≤ exp

(
–

ξ + θ̂ (tσ )τσ

2

)
– 1 – ε,

such that the conditions (7) is satisfied, where ε > 0 is an arbitrary constant.

4 Numerical illustrations
Example 1 Choose the node dynamics as the fractional-order complex-variable Lorenz
system [47]

tσ Dα
t xk1(t) = a

(
xk2(t) – xk1(t)

)
,
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Figure 1 The orbits of ‖sk(t)‖ for fractional-order complex-variable Lorenz system with s(0) = (3 + 2j; 1 + 1j; 3)T

tσ Dα
t xk2(t) = bxk1(t) – xk2(t) – xk1(t)xk3(t),

tσ Dα
t xk3(t) =

1
2
(
xk1(t)xk2(t) + xk1(t)xk2(t)

)
– cxk3(t),

where xk1 and xk2 are complex variables, xk3 is real variable, which is chaotic when the
system parameters are chosen as a = 10, b = 28, c = 8/3, α = 0.995 and τσ = 0.05σ . Figure 1
shows the orbits of ‖sk(t)‖ with s(0) = (3 + 2j, 1 + j, 3)T and j =

√
–1. From Fig. 1, there exist

three constants M1 = 19, M2 = 26, M3 = 47 such that ‖s1‖ ≤ M1, ‖s2‖ ≤ M2, ‖s3‖ ≤ M3.
Therefore, one has

(
xk(t) – s(t)

)T(
f (xk) – f (s)

)
+

(
f (xk) – f (s)

)T(
xk(t) – s(t)

)

= –2aek1ek1 – 2ek2ek2 – 2ce2
k3 + (a + b – s3)(ek1ek2 + ek1ek2)

+ s2(ek1ek3 + ek1ek3)

≤ –2aek1ek1 – 2ek2ek2 – 2ce2
k3 + (a + b + M3)(ek1ek2 + ek1ek2)

+ M2(ek1ek3 + ek1ek3)

≤ (
–2a + (a + b + M3)μ + M2ν

)
ek1ek1 +

(
–2 + (a + b + M3)μ–1)ek2ek2

+
(
–2c + M2ν

–1)e2
k3,

where μ > 0, ν > 0. Choosing μ = 1.05, ν = 0.31 gives L = 79 in Assumption 1.
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Consider the synchronization of network (2) with 10 nodes. Choose b = 0.5, � =
diag(1, 1, 1) and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–3 1 0 2 0 –2 1 0 0 1
0 –6 0 1 0 1 2 1 0 1

–2 1 –5 0 1 2 0 2 0 1
1 1 0 –4 1 0 –2 0 3 0
0 1 –1 0 –6 0 1 2 1 2
0 1 2 1 0 –5 0 –1 0 2
2 0 0 2 0 2 –7 0 0 1
0 –2 3 0 2 0 1 –4 0 0
1 0 3 0 –1 1 0 0 –4 0
0 1 0 1 –2 0 0 2 1 –3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which gives λ = 0.4693. In numerical simulations, choose ξ = 0.001, the impulsive gains
B(tσ ) = –0.9, σ = 1, 2, . . . , one has δ(tσ ) = 0.01. By simple calculations, we have ln δ(t) + ξ +
θτα

σ = –0.5707 < 0, i.e., the conditions (4) hold and the synchronization can be achieved.
The initial values of s(t) and xk(t) are chosen randomly. Figure 2 shows the orbits of the
real and imaginary parts of xkl(t) and sl(t), k = 1, 2, . . . , 10, l = 1, 2, 3. The superscripts r and
i denote the real parts and the imaginary parts, respectively.

Example 2 Consider the above network in Example 1 via the adaptive impulsive con-
trollers. Choose ω = 0.01, ξ = 0.001 and θ̂ (0) = 1. According to Remark 2, choose

B(tσ ) = exp

(
–

ξ + θ̂ (tσ )τσ

2

)
– 1 – ε,

Figure 2 The orbits of the real and imaginary parts of xkl(t) and sl(t)
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with ε = 0.001. Figure 3 shows the orbits of the real and imaginary parts of xkl(t) and sl(t),
k = 1, 2, . . . , 10, l = 1, 2, 3. Figure 4 shows the impulsive gains B(tσ ).

Figure 3 The orbits of the real and imaginary parts of xkl(t) and sl(t)

Figure 4 The impulsive gains B(tσ ) versus σ
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Figure 5 The orbits of ‖ekl(t)‖

Example 3 Choose the node dynamics as fractional-order hyperchaotic complex Lü sys-
tem [48]

Dα
t0 xk1 = 42(xk2 – xk1) + xk4,

Dα
t0 xk2 = 25xk2 + xk4 – xk1xk3,

Dα
t0 xk3 =

1
2

(xk1xk2 + xk1xk2) – 6xk3,

Dα
t0 xk4 =

1
2

(xk1xk2 + xk1xk2) – 5xk4,

where k = 1, 2, . . . , N , xk1 and xk2 are complex variables, xk3 and xk4 are real variables, α =
0.995. Choose the same A as Example 1, the initial values s(0) = (3 + 2j, 1 + j, 3, 4)T and xk(t)
are chosen randomly.

Choose τσ = 0.2, ω = 0.001, ξ = 0.001 and θ̂ (0) = 0.1. According to Remark 2, choose

B(tσ ) = exp

(
–

ξ + θ̂ (tσ )τσ

2

)
– 1 – ε,

with ε = 0.001. Figure 5 shows the orbits of the real and imaginary parts of xkl(t) and sl(t),
k = 1, 2, . . . , 10, l = 1, 2, 3. Figure 6 shows the impulsive gains B(tσ ).

From Examples 2 and 3, the impulsive gains need not be calculated in advance for dif-
ferent networks. And they can adjust themselves to the required values according to the
updating laws. That is, the adaptive impulsive controllers are universal to some extent.

5 Conclusions
Both static and adaptive impulsive controllers were designed. Two corresponding syn-
chronization conditions were derived as well. Particularly, for the adaptive impulsive con-
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Figure 6 The impulsive gains B(tσ ) versus σ

trollers, the updating law for the impulsive gains was provided. Examples 2 and 3 demon-
strated the points well and implied that the adaptive impulsive controllers are universal
for different networks.
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