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Abstract
This work is concerned with the problem for stochastic genetic regulatory networks
(GRNs) subject to mixed time delays via passivity control in which mixed time delays
consist of leakage, discrete, and distributed delays. The main aim of this paper is
constructing a passivity-based criteria under impulsive perturbations such that the
proposed GRNs are stochastically stable. Based on the Lyapunov functional method
and Jensen’s integral inequality, we obtain a new set of novel passivity based
delay-dependent sufficient condition in the form of LMIs, which can be determined
via existing numerical software. Finally, we propose numerical simulations to show
the efficiency of the proposed method.
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1 Introduction
The regulatory networks have become an inevitable and a thriving field of research in the
most acclaimed biomedical and biological scientific sectors [1]. The living organisms are
regulated either directly or indirectly by genes and proteins, which make the genes get
interacted [2]. This interactive mode makes up dynamical GRNs, which control the com-
plex dynamic system of cellular functions [3]. In recent years the molecular-based GRNs
have been paid much research attention since they are a powerful tool for studying gene
regulation processes in living organisms by modeling the genetic networks with dynam-
ical systems [4]. Applications of GRNs strongly depend on the dynamic behavior of the
equilibrium point. If the equilibrium point of a neural network system is globally asymp-
totically stable, then the attraction domain of the equilibrium point is the whole space,
and convergence is a real-time phenomenon [5]. Thus it is necessary to study the stability
of GRNs in theoretical and practical situations [6].

The genetic network models are basically classified into two types, the Boolean model
and the linear differential equation model [7]. In the Boolean model the activity of each
gene is to be considered either ON or OFF, and the Boolean function of the states of genes
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describes the state of a single gene [8]. In the second type the division of gene commodi-
ties is completely resolved by proteins and mRNAs and gene systems. Besides, based on
the experiment results, time delays are unavoidable owing to the diffusion, translation,
transcription, and translocation processes of genes, which may affect the whole dynamics
process of the biological models. Hence it is essential and important to take the time delays
while designing the biochemical systems. When the time delays are discrete, it becomes
easier to express the movement of a macromolecule. While modeling GRNs, distributed
delays can be a proper modeling framework [9]. However, there have appeared few works
on the GRNs with distributed time delays; see, for example, [9, 10].

It is important to say that when constructing GRNs, the biological networks or genetic
networks are always concerned with stochastic noise in real-world gene regulation pro-
cess [11]. Moreover, in the real-world phenomena, stochastic perturbation from internal
and external noises may affect the dynamics of the biological or genetic networks [12].
Furthermore, external noises occur mostly from the random variation of one or more
control inputs and are always expressed by a Brownian motion for the controller design,
whereas internal noises are built for the GRNs [13]. Therefore it is necessary to consider
the stochastic noises in our proposed GRNs model. Recently, Zhang et al. [14] reported the
problem of stochastic GRNs subject to mixed time-varying delays in mean square asymp-
totically stable condition. Under the Lyapunov stability and new integral techniques, a
new set of sufficient conditions is derived in [15] for the stability of GRNs with stochastic
perturbations.

On the other hand, the problem of passivity analysis has been studied by many re-
searchers in many types of complex dynamic systems, including neural networks, net-
worked models, and other biological models. The passivity property means that the in-
crease of the energy stored inside the system is no more than that of the energy supplied
to the system, which guarantees the stability of the concerned system [16]. Passivity the-
ory, which was invented from electric circuit analysis, has been widely applied to many
areas of dynamical systems such as complex systems, chaos control, signal processing,
fuzzy control, and neural networks [17]. For example, the problem of passivity control of
recurrent neural networks subject to time delays and impulse perturbations is reported in
[18]. Very recently, Yang et al. [19] investigated the result of passivity condition of neural
networks with respect to distributed and discrete delays. Based on the Lyapunov stability
method and integral technique, we obtain a novel passivity condition in terms of LMIs to
ensure the Markov jump GRNs to be passive. However, there are no results on passivity
criteria for stochastic GRNs with discrete and distributed delays.

Besides, the study of leakage time delays in a dynamical system is one of the highlight
research topics and is widely successfully applied by many researchers in the recent works.
Hence the leakage time delays also have great deal on the analysis of neural networks,
and it is essential to study the problem for neural networks with leakage delays; see, for
example, [4]. Also, it is well known that impulse effects arise in the neural network systems
[20]. Moreover, impulsive phenomena can be easily seen in biological control systems such
as biological neural networks and optimal control models, where many sudden changes
occur instantly owing to the presence of impulsive effects [21]. In this connection, it is
necessary to consider the impulsive control to the passivity of neural network systems
to reflect a more realistic dynamics. Recently, the problem of dissipative control of fuzzy
neural networks subject to impulsive uncertainties and Markovian switching is studied in
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[22]. The authors in [23] investigated the exponential stability of complex-valued neural
networks with respect to impulsive perturbations and time delays under fuzzy rule. To
the best of authors’ knowledge, there is no literature on the passivity of stochastic GRNs
with leakage delays and impulsive perturbations, which encourages the current study. The
main contributions of this paper are as follows:

(i) The proposed stochastic GRNs are a comprehensive model over the other existing
GRNs [9, 13]. Particularly, we have taken many uncertain factors such as impulsive
effects, leakage delay, passivity performance, and distributed delay in a practical
point of view.

(ii) The first attempt to report the problem of stochastic GRNs with mixed time delays
via a novel passivity control.

(iii) Based on the appropriate LKF, Jensen’s integral inequality, and stochastic derivative
formula, we obtain a new set of passivity criterion in the form of LMIs to ensure
that the stochastic GRNs are stochastically stable and obey the passivity
performance index.

(iv) Several numerical simulations are provided to establish the feasibility of the
proposed method.

Notations. Rn means the n-dimensional real space; Rm×n is the set of all m × n ma-
trices; A > 0 represents a positive definite symmetric matrix; A ≥ 0 denotes a positive
semidefinite symmetric matrix; XT or AT is the transpose of a vector X or a matrix A.

2 Problem formulation
We take the following genetic networks with n proteins and n mRNAs of the form

ṅi(ς ) = –aini(ς – ν1) + bi
(
r1

(
ς – μ(ς )

))
, r2

(
ς – μ(ς )

)
, . . . , rn

(
ς – μ(ς )

)
,

ṙi(ς ) = –ciri(ς – ν2) + dini
(
ς – η(ς )

)
, i = 1, 2, . . . , n, (1)

where ν1 and ν2 denote the leakage delays of model (1), η(ς ) and μ(ς ) are discrete time-
varying delays; ni(ς ) and ri(ς ) are the absorptions of mRNA and protein of the ith node.
In model (1), there are only one output but many inputs for a single node or gene, ai

and ci denote the deterioration or dilution rates of mRNA and protein, di represents the
translation rate, and the regulatory function bi is of the form bi(r1(ς ), r2(ς ), . . . , rn(ς )) =
∑n

j=1 bij(rj(ς )). The monotonic function bij(rj(ς )) is of the Hill form. If the transcription

factor j is an activator of gene i, then bij(rj(ς )) = αij
(rj(ς )/βj)

Hj

1+(rj(ς )/βj)
Hj , and if the transcription

factor j is a repressor of gene i, then bij(rj(ς )) = αij
1

1+(rj(ς )/βj)
Hj . Here Hj denotes the Hill

coefficient, βj is a positive constant, and αij is a bounded real constant that describes the
rate from gene j to i. Hence Eq. (1) can be transformed into the form

⎧
⎨

⎩
ṅi(ς ) = –aini(ς – ν1) +

∑n
j=1 bijgj(rj(ς – μ(ς ))) + ui,

ṙi(ς ) = –ciri(ς – ν2) + dini(ς – η(ς )), i = 1, 2, . . . , n.
(2)



Senthilraj et al. Advances in Difference Equations        (2021) 2021:353 Page 4 of 26

In Eq. (2), gj(x) = (x/βj)Hj /(1 + (x/βj)Hj ), and ui =
∑

j∈Vi1
αij; ui is the basal rate. Based on the

above analysis, Eq. (2) can be written in the form

⎧
⎨

⎩
ṅ(ς ) = –An(ς – ν1) + Bg(r(ς – μ(ς ))) + u,

ṙ(ς ) = –Cr(ς – ν2) + Dn(ς – η(ς )),
(3)

where n(ς ) = [n1(ς ), n2(ς ), . . . , nn(ς )]T , r(ς ) = [r1(ς ), r2(ς ), . . . , rn(ς )]T , n(ς – η(ς )) =
[n1(ς – η(ς )), n2(ς – η(ς )), . . . , nn(ς – η(ς ))]T , g(r(ς – η(ς ))) = [g1(r1(ς – η(ς ))), g2(r2(ς –
η(ς ))), . . . , gn(rn(ς – η(ς )))]T , A = diag(a1, a2, . . . , an), C = diag(c1, c2, . . . , cn), D =
diag(d1, d2, . . . , dn), and u = [u1, u2, . . . , un]T . Here we move an intended stable point (n∗, r∗)
to the origin for model (3) by taking x(ς ) = n(ς ) – n∗, y(ς ) = r(ς ) – r∗. Therefore we have

⎧
⎨

⎩
ẋ(ς ) = –Ax(ς – ν1) + Bf (y(ς – μ(ς ))),

ẏ(ς ) = –Cy(ς – ν2) + Dx(ς – η(ς )),
(4)

where x(ς ) = [x1(ς ), x2(ς ), . . . , xn(ς )]T , y(ς ) = [y1(ς ), y2(ς ), . . . , yn(ς )]T , f (y(ς )) = [f1(y1(ς )),
f2(y2(ς )), . . . , fn(yn(ς ))]T with f (y(ς )) = g(y(ς )+r∗)–g(r∗), where gi is an increasing function
with monotonic saturation such that for all x, y ∈ R,

0 ≤ gi(x) – gi(y)
x – y

≤ ki.

It is well known that f obeys the sector condition

0 ≤ fi(x)
x

≤ ki. (5)

In this work, we consider stochastic noise and distributed delays with standard genetic
network. Then the system is given by

⎧
⎪⎪⎨

⎪⎪⎩

dx(ς ) = [–Ax(ς – ν1) + Bf (y(ς – μ(ς ))) + E
∫ ς

ς–l(ς ) f (y(s)) ds + u1(ς )] dς

+ δ(x(ς ), x(ς – η(ς )), y(ς ), y(ς – μ(ς ))) dω(ς ),

dy(ς ) = [–Cy(ς – ν2) + Dx(ς – η(ς )) + F
∫ ς

ς–h(ς ) x(s) ds + u2(ς )] dς ,

(6)

where η(ς ), μ(ς ), h(ς ), and l(ς ) are time-varying delays satisfying

0 ≤ η1 ≤ η(ς ) ≤ η2, η̇(ς ) ≤ ηd, 0 ≤ μ1 ≤ μ(ς ) ≤ μ2, μ̇(ς ) ≤ μd,

0 ≤ h(ς ) ≤ h, ḣ(ς ) ≤ hd, 0 ≤ l(ς ) ≤ l, l̇(ς ) ≤ ld, (7)

where η1,η2,μ1,μ2, h, l,ηd,μd, hd, ld are constant scalars. We define an m-dimensional
Brownian motion ω(ς ) = [ω1(ς ),ω2(ς ), . . . ,ωm(ς )]T ∈ Rm on a probability space, and δ sat-
isfies the following linear growth condition for any matrices G1, G2, G3, and G4 of appro-
priate dimensions:

trace
[
δT(

ς , x(ς ), x
(
ς – η(ς )

)
, y(ς ), y

(
ς – μ(ς )

))
δ
(
ς , x(ς ),

x
(
ς – η(ς )

)
, y(ς ), y

(
ς – μ(ς )

))]
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≤ xT (ς )G1x(ς ) + xT(
ς – η(ς )

)
G2x

(
ς – η(ς )

)
+ yT (ς )G3y(ς )

+ yT(
ς – μ(ς )

)
G4y

(
ς – μ(ς )

)
. (8)

By extending the model with impulsive control we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(ς ) = [–Ax(ς – ν1) + Bf (y(ς – μ(ς ))) + E
∫ ς

ς–l(ς ) f (y(s)) ds + u1(ς )] dς

+ δ(x(ς ), x(ς – η(ς )), y(ς ), y(ς – μ(ς ))) dω(ς ), ς �= ςk ,

	x(ςk) = Nkx(ςk),ς = ςk , k = 1, 2, . . . ,

dy(ς ) = [–Cy(ς – ν2) + Dx(ς – η(ς )) + F
∫ ς

ς–h(ς ) x(s) ds + u2(ς )] dς , ς �= ςk ,

	y(ςk) = Gky(ςk),ς = ςk , k = 1, 2, . . . ,

(9)

and

zx(ς ) = H1x(ς ), zy(ς ) = H2y(ς ).

To prove the required results, we need the following definition.

Definition 1 The genetic network (9) is said to be stochastically passive if there exists
γ > 0 such that

2E
{∫ ςf

0

[
uT

1 (s)zx(s) + uT
2 (s)zy(s)

]
ds

}
≥ –γE

{∫ ςf

0

[
uT

1 (s)u1(s) + uT
2 (s)u2(s)

]
ds

}
(10)

for all ςf ≥ 0.

3 Main results
Here we discuss the passivity condition for a class of stochastic GRNs (9) subject to leakage
and distributed delays via impulsive control.

By transformation the network system (6) can be rewritten as follows:

d
dς

[
x(ς ) – A

∫ ς

ς–ν1

x(s) ds
]

=
[

–Ax(ς ) + Bf
(
y
(
ς – μ(ς )

))
+ E

∫ ς

ς–l(ς )
f
(
y(s)

)
ds + u1(ς )

]
,

d
dς

[
y(ς ) – C

∫ ς

ς–ν2

y(s) ds
]

=
[

–Cy(ς ) + Dx
(
ς – η(ς )

)
+ F

∫ ς

ς–h(ς )
x(s) ds + u2(ς )

]
.

Now we derive a delay-dependent sufficient LMI conditions for passivity of system (9).

Theorem 3.1 For given values η1,η2,μ1,μ2,ν1,ν2, h, l,ηd,μd, hd , and ld , the neural net-
work (9) is stochastically passive if there are values λi > 0 (i = 1, 2, 3), positive definite matri-
ces Pi, Qi (i = 1, 2, . . . , 4), Ri (i = 1, 2, . . . , 8), Zi (i = 1, . . . , 4), positive diagonal matrices T1, T2,
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and matrices Mi, Ni, Si, Ui (i = 1, 2) of appropriate dimensions such that the following con-
ditions are satisfied:

P1 ≤ λ1I, (11)

Z3 ≤ λ2I, (12)

Z4 ≤ λ3I, (13)
[

P1 (I – Nk)T P1

∗ P1

]

≥ 0, k ∈Z+, (14)

[
P2 (I – Gk)T P2

∗ P2

]

≥ 0, k ∈Z+, (15)

and

� =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

�1
√

η2N √
η12M √

η12S N M S
∗ –Z1 0 0 0 0 0
∗ ∗ –Z2 0 0 0 0
∗ ∗ ∗ –(Z1 + Z2) 0 0 0
∗ ∗ ∗ ∗ –Z3 0 0
∗ ∗ ∗ ∗ ∗ –Z4 0
∗ ∗ ∗ ∗ ∗ ∗ –(Z3 + Z4)

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

< 0, (16)

where

�1 = (�ij)21×21,

�11 = –P1A – AT P1 +
[
λ1 + η2λ2 + (η2 – η1)λ3

]
G1 + P3 + Q1 + Q2 + R1 + R3 + ν2

1 R5

+ h2R8 + N1 + NT
1 , �12 = –N1 + NT

2 + S1 – M1,

�13 = �14 = 0, �15 = M1, �16 = –S1, �17 = �18 = �19 = 0,

�110 = P1B + U1B, �111 = –U1, �112 = U1 – HT
1 + P1,

�113 = 0, �114 = –U1A, �115 = 0, �116 = AT P1A,

�117 = �118 = �119 = 0, �120 = P1E + U1E , �121 = 0,

�22 =
[
λ1 + η2λ2 + (η2 – η1)λ3

]
G2 – (1 – ηd)R1 – N2 – NT

2 + S2 + ST
2 – M2 – MT

2 ,

�23 = DT P2, �24 = 0, �25 = M2, �26 = –S2,

�27 = �28 = �29 = �210 = �211 = �212 = �213 = �214 = �215 = �216 = 0,

�217 = –DT P2C, �218 = �219 = �220 = �221 = 0,

�33 = –P2C – CT P2 +
[
λ1 + η2λ2 + (η2 – η1)λ3

]
G3 + P4 + Q3 + Q4 + R2 + ν2

2 R6,

�34 = �35 = �36 = �37 = �38 = 0, �39 = KT1, �310 = �311 = �312 = 0,

�313 = –HT
2 + P2, �314 = �315 = �316 = 0, �317 = CT P2C,

�318 = �319 = �320 = 0, �321 = P2F ,
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�44 =
[
λ1 + η2λ2 + (η2 – η1)λ3

]
G4 – (1 – μd)R2,

�45 = �46 = �47 = �48 = �49 = 0, �410 = KT2,

�411 = �412 = �413 = �414 = �415 = �416 = �417 = �418 = �419 = �420 = �421 = 0,

�55 = –Q1,

�56 = �57 = �58 = �59 = �510 = �511 = �512 = �513 = �514 = �515 = �516 = �517

= �518 = �519 = �520 = �521 = 0,

�66 = –Q2,�67 = �68 = �69 = �610 = �611 = �612 = �613 = �614 = �615 = �616 = �617

= �618 = �619 = �620 = �621 = 0, �77 = –Q3,

�78 = �79 = �710 = �711 = �712 = �713 = �714 = �715

= �716 = �717 = �718 = �719 = �720 = �721 = 0, �88 = –Q4,

�89 = �810 = �811 = �812 = �813

= �814 = �815 = �816 = �817 = �818 = �819 = �820 = �821 = 0,

�99 = R4 + l2R7 – 2T1,

�910 = �911 = �912 = �913 = �914 = �915 = �916 = �917 = �918

= �919 = �920 = �921 = 0,

�1010 = –2T2, �1011 = BT UT
2 , �1012 = �1013 = �1014 = �1015 = 0,

�1016 = –BT P1A,

�1017 = �1018 = �1019 = �1020 = �1021 = 0, �1111 = η2Z1 + (η2 – η1)Z2 – U2 – UT
2 ,

�1112 = U2, �1113 = 0,�1114 = –U2A,

�1115 = �1116 = �1117 = �1118 = �1119 = 0, �1120 = U2E ,

�1121 = 0, �1212 = –γ I, �1213 = �1214 = �1215 = 0, �1216 = –P1A,

�1217 = �1218 = �1219 = �1220 = �1221 = 0, �1313 = –γ I,

�1314 = �1315 = �1316 = 0, �1317 = –P2C,

�1318 = �1319 = �1320 = �1321 = 0, �1414 = –P3,

�1415 = �1416 = �1417 = �1418 = �1419 = �1420 = �1421 = 0, �1515 = –P4,

�1516 = �1517 = �1518 = �1519 = �1520 = �1521 = 0,

�1616 = –R5, �1617 = �1618 = �1619 = 0, �1620 = –AT P1E , �1621 = 0,

�1717 = –R6, �1718 = �1719 = �1720 = 0, �1721 = –CT P2F ,

�1818 = –(1 – hd)R3, �1819 = �1820 = �1821 = 0, �1919 = –(1 – ld)R4,

�1920 = �1921 = 0, �2020 = –R7, �2021 = 0,�2121 = –R8,

MT =
[
MT

1 MT
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

NT =
[
NT

1 NT
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

ST =
[
ST

1 ST
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,
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UT =
[
UT

1 0 0 0 0 0 0 0 0 0 UT
2 0 0 0 0 0 0 0 0 0 0

]
.

Proof See the Appendix. �

Remark 1 To diminish the conservativeness, while getting the derivative of LV4(x(ς ),
y(ς )), the integral term –

∫ ς–η1
ς–η2

gT
1 (s)Z2g1(s) ds is separated into two equal parts

–
∫ ς–η1
ς–η(ς ) gT

1 (s)Z2g1(s) ds and –
∫ ς–η(ς )
ς–η2

gT
1 (s)Z2g1(s) ds by using the information about η1 ≤

η(ς ) ≤ η2, which gives conservative results.

Remark 2 In the existing works, passivity criteria for genetic networks are rarely consid-
ered, although some investigators only studied the passivity problem of stochastic genetic
networks. We found only one relevant paper [17] in the concerned field. Also, leakage
delay is considered in the genetic network model (9). The novelty of the results in this
paper pays more attention to the impulsive effects and leakage delays appearing in the
stochastic genetic networks and the relevant passivity analysis with respect to the given
time interval, and the main result of this paper is more general. In [17] the authors studied
the passivity of stochastic genetic networks with Markovian jump parameters. In com-
parison with [17], in our paper, we consider leakage, distributed delays, and impulse con-
trol. Also, discrete delays are assumed belong to an interval. Therefore our results ex-
tend and improve the results in [17]. However, to the best of our knowledge, the passiv-
ity condition of genetic networks subject to leakage and distributed delays via impulse
effects has never been studied in the literature, which shows the effectiveness of our ap-
proach.

Remark 3 Consider the network system (9) without impulse control and stochastic effects
⎧
⎨

⎩
dx(ς ) = [–Ax(ς – ν1) + Bf (y(ς – μ(ς ))) + E

∫ ς

ς–l(ς ) f (y(s)) ds + u1(ς )] dς ,

dy(ς ) = [–Cy(ς – ν2) + Dx(ς – η(ς )) + F
∫ ς

ς–h(ς ) x(s) ds + u2(ς )] dς ,
(17)

and

zx(ς ) = H1x(ς ), zy(ς ) = H2y(ς ).

Using the result of Theorem 3.1, we get the following corollary.

Corollary 3.2 Under Definition 1, for given constants η1,η2,μ1,μ2,ν1,ν2, h, l,ηd,μd, hd ,
and ld , the genetic network (17) is passive if there are positive definite matrices Pi, Qi (i =
1, 2, . . . , 4), Ri (i = 1, 2, . . . , 8), Z1, Z2, positive diagonal matrices T1, T2, and matrices Mi, Ni,
Si, Ui (i = 1, 2) of appropriate dimensions such that the following LMI holds:

� =

⎡

⎢⎢
⎢
⎣

�1
√

η2N √
η12M √

η12S
∗ –Z1 0 0
∗ ∗ –Z2 0
∗ ∗ ∗ –(Z1 + Z2)

⎤

⎥⎥
⎥
⎦

< 0, (18)

where

�1 = (�ij)21×21,
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�11 = –P1A – AT P1 + P3 + Q1 + Q2 + R1 + R3 + ν2
1 R5 + h2R8 + N1 + NT

1 ,

�12 = –N1 + NT
2 + S1 – M1, �13 = �14 = 0, �15 = M1,

�16 = –S1, �17 = �18 = �19 = 0, �110 = P1B + U1B, �111 = –U1,

�112 = U1 – HT
1 + P1, �113 = 0, �114 = –U1A, �115 = 0,

�116 = AT P1A, �117 = �118 = �119 = 0,

�120 = P1E + U1E , �121 = 0,

�22 = –(1 – ηd)R1 – N2 – NT
2 + S2 + ST

2 – M2 – MT
2 , �23 = DT P2,

�24 = 0,�25 = M2, �26 = –S2,

�27 = �28 = �29 = �210 = �211 = �212 = �213 = �214 = �215 = �216 = 0,

�217 = –DT P2C, �218 = �219 = �220 = �221 = 0,

�33 = –P2C – CT P2 + P4 + Q3 + Q4 + R2 + ν2
2 R6,

�34 = �35 = �36 = �37 = �38 = 0, �39 = KT1, �310 = �311 = �312 = 0,

�313 = –HT
2 + P2, �314 = �315 = �316 = 0, �317 = CT P2C,

�318 = �319 = �320 = 0, �321 = P2F , �44 = –(1 – μd)R2,

�45 = �46 = �47 = �48 = �49 = 0, �410 = KT2,

�411 = �412 = �413 = �414 = �415 = �416 = �417 = �418 = �419 = �420 = �421 = 0,

�55 = –Q1,

�56 = �57 = �58 = �59 = �510 = �511 = �512 = �513 = �514 = �515 = �516 = �517

= �518 = �519 = �520 = �521 = 0,

�66 = –Q2,�67 = �68 = �69 = �610 = �611 = �612 = �613 = �614 = �615 = �616

= �617 = �618 = �619 = �620 = �621 = 0, �77 = –Q3,

�78 = �79 = �710 = �711 = �712 = �713 = �714 = �715

= �716 = �717 = �718 = �719 = �720 = �721 = 0, �88 = –Q4,

�89 = �810 = �811 = �812 = �813 = �814 = �815 = �816 = �817 = �818 = �819

= �820 = �821 = 0, �99 = R4 + l2R7 – 2T1,

�910 = �911 = �912 = �913 = �914 = �915 = �916 = �917 = �918

= �919 = �920 = �921 = 0,

�1010 = –2T2, �1011 = BT UT
2 , �1012 = �1013 = �1014 = �1015 = 0,

�1016 = –BT P1A, �1017 = �1018 = �1019 = �1020 = �1021 = 0,

�1111 = η2Z1 + (η2 – η1)Z2 – U2 – UT
2 ,

�1112 = U2, �1113 = 0, �1114 = –U2A,

�1115 = �1116 = �1117 = �1118 = �1119 = 0, �1120 = U2E , �1121 = 0,

�1212 = –γ I, �1213 = �1214 = �1215 = 0, �1216 = –P1A,
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�1217 = �1218 = �1219 = �1220 = �1221 = 0, �1313 = –γ I,

�1314 = �1315 = �1316 = 0, �1317 = –P2C,

�1318 = �1319 = �1320 = �1321 = 0, �1414 = –P3,

�1415 = �1416 = �1417 = �1418 = �1419 = �1420 = �1421 = 0, �1515 = –P4,

�1516 = �1517 = �1518 = �1519 = �1520 = �1521 = 0,

�1616 = –R5,�1617 = �1618 = �1619 = 0, �1620 = –AT P1E , �1621 = 0,

�1717 = –R6, �1718 = �1719 = �1720 = 0, �1721 = –CT P2F ,

�1818 = –(1 – hd)R3, �1819 = �1820 = �1821 = 0, �1919 = –(1 – ld)R4,

�1920 = �1921 = 0, �2020 = –R7, �2021 = 0, �2121 = –R8,

MT =
[
MT

1 MT
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

NT =
[
NT

1 NT
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

ST =
[
ST

1 ST
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

UT =
[
UT

1 0 0 0 0 0 0 0 0 0 UT
2 0 0 0 0 0 0 0 0 0 0

]
.

Proof We get the proof directly from Theorem 3.1. �

Remark 4 Change the genetic network (17) without distributed delay (i.e., E = F = 0) to

⎧
⎨

⎩
dx(ς ) = [–Ax(ς – ν1) + Bf (y(ς – μ(ς ))) + u1(ς )] dς ,

dy(ς ) = [–Cy(ς – ν2) + Dx(ς – η(ς )) + u2(ς )] dς ,
(19)

and

zx(ς ) = H1x(ς ), zy(ς ) = H2y(ς ).

Corollary 3.3 gives the passivity criteria for system (19).

Corollary 3.3 Under Definition 1, for given constants η1,η2,μ1,μ2,ν1,ν2,ηd , and μd ,
the neural network described by (19) is passive if there are positive matrices Pi, Qi (i =
1, 2, . . . , 4), R1, R2, R5, R6, Z1, Z2, positive diagonal matrices T1, T2, and matrices Mi, Ni, Si,
Ui (i = 1, 2) of any appropriate dimensions such that the following LMI holds:

� =

⎡

⎢
⎢⎢
⎣

�1
√

η2N √
η12M √

η12S
∗ –Z1 0 0
∗ ∗ –Z2 0
∗ ∗ ∗ –(Z1 + Z2)

⎤

⎥
⎥⎥
⎦

< 0, (20)

where

�1 = (�ij)17×17,

�11 = –P1A – AT P1 + P3 + Q1 + Q2 + R1 + ν2
1 R5 + N1 + NT

1 ,
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�12 = –N1 + NT
2 + S1 – M1, �13 = �14 = 0, �15 = M1, �16 = –S1,

�17 = �18 = �19 = 0, �110 = P1B + U1B,

�111 = –U1, �112 = U1 – HT
1 + P1, �113 = 0, �114 = –U1A,

�115 = 0, �116 = AT P1A, �117 = 0,

�22 = –(1 – ηd)R1 – N2 – NT
2 + S2 + ST

2 – M2 – MT
2 , �23 = DT P2,�24 = 0,

�25 = M2, �26 = –S2,

�27 = �28 = �29 = �210 = �211 = �212 = �213 = �214 = �215 = �216 = 0,

�217 = –DT P2C, �33 = –P2C – CT P2 + P4 + Q3 + Q4 + R2 + ν2
2 R6,

�34 = �35 = �36 = �37 = �38 = 0, �39 = KT1, �310 = �311 = �312 = 0,

�313 = –HT
2 + P2, �314 = �315 = �316 = 0, �317 = CT P2C,

�44 = –(1 – μd)R2, �45 = �46 = �47 = �48 = �49 = 0, �410 = KT2,

�411 = �412 = �413 = �414 = �415 = �416 = �417 = 0, �55 = –Q1,

�56 = �57 = �58 = �59 = �510 = �511 = �512 = �513 = �514 = �515 = �516 = �517 = 0,

�66 = –Q2,

�67 = �68 = �69 = �610 = �611 = �612 = �613 = �614 = �615 = �616 = �617 = 0,

�77 = –Q3,

�78 = �79 = �710 = �711 = �712 = �713 = �714 = �715 = �716 = �717 = 0,

�88 = –Q4, �89 = �810 = �811 = �812 = �813 = �814 = �815 = �816 = �817 = 0,

�99 = –2T1, �910 = �911 = �912 = �913 = �914 = �915 = �916 = �917 = 0,

�1010 = –2T2, �1011 = BT UT
2 , �1012 = �1013 = �1014 = �1015 = 0,

�1016 = –BT P1A, �1017 = 0, �1111 = η2Z1 + (η2 – η1)Z2 – U2 – UT
2 ,

�1112 = U2,�1113 = 0, �1114 = –U2A, �1115 = �1116 = �1117 = 0,

�1212 = –γ I, �1213 = �1214 = �1215 = 0, �1216 = –P1A,

�1217 = 0,�1313 = –γ I, �1314 = �1315 = �1316 = 0, �1317 = –P2C,

�1414 = –P3, �1415 = �1416 = �1417 = 0, �1515 = –P4, �1516 = �1517 = 0,

�1616 = –R5,�1617 = 0,�1717 = –R6,

MT =
[
MT

1 MT
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

NT =
[
NT

1 NT
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

ST =
[
ST

1 ST
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
,

UT =
[
UT

1 0 0 0 0 0 0 0 0 0 UT
2 0 0 0 0 0 0

]
.

Proof If we set R3 = R4 = R7 = R8 = 0 in Corollary 3.2 and delete x(ς – h(ς )), f (y(ς –
l(ς ))), (

∫ ς

ς–l(ς ) f (y(s)) ds), (
∫ ς

ς–h(ς ) x(s) ds) from ζ (ς ), then we can get LMI (20), and we omit
the proof. �
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Remark 5 To the best of our knowledge, even systems (17) and (19) still have not been in-
vestigated in the previous literature, since in our system, we consider leakage delay. There-
fore the results in Corollaries 3.2 and 3.3 are new.

Remark 6 Consider the following genetic network without leakage delays:

⎧
⎨

⎩
dx(ς ) = [–Ax(ς ) + Bf (y(ς – μ(ς ))) + u1(ς )] dς ,

dy(ς ) = [–Cy(ς ) + Dx(ς – η(ς )) + u2(ς )] dς ,
(21)

and

zx(ς ) = H1x(ς ), zy(ς ) = H2y(ς ).

Corollary 3.4 Under Definition 1, for given constants η1,η2,μ1,μ2,ηd , and μd , the
genetic network (21) is passive if there are positive definite matrices P1, P2, Qi, (i =
1, 2, . . . , 4), R1, R2, Z1, Z2, positive diagonal matrices T1, T2, and matrices Mi, Ni, Si, Ui (i =
1, 2) of appropriate dimensions such that the following LMI holds:

� =

⎡

⎢⎢
⎢
⎣

�1
√

η2N √
η12M √

η12S
∗ –Z1 0 0
∗ ∗ –Z2 0
∗ ∗ ∗ –(Z1 + Z2)

⎤

⎥⎥
⎥
⎦

< 0, (22)

where

�1 = (�ij)13×13,

�11 = –P1A – AT P1 + Q1 + Q2 + R1 + N1 + NT
1 – U1A – AT UT

1 ,

�12 = –N1 + NT
2 + S1 – M1, �13 = �14 = 0, �15 = M1, �16 = –S1,

�17 = �18 = �19 = 0, �110 = P1B + U1B,

�111 = –U1 – AT UT
2 , �112 = U1 – HT

1 + P1, �113 = 0,

�22 = –(1 – ηd)R1 – N2 – NT
2 + S2 + ST

2 – M2 – MT
2 , �23 = DT P2, �24 = 0,

�25 = M2, �26 = –S2, �27 = �28 = �29 = �210 = �211 = �212 = �213 = 0,

�33 = –P2C – CT P2 + Q3 + Q4 + R2, �34 = �35 = �36 = �37 = �38 = 0,

�39 = KT1, �310 = �311 = �312 = 0, �313 = –HT
2 + P2,

�44 = –(1 – μd)R2, �45 = �46 = �47 = �48 = �49 = 0, �410 = KT2,

�411 = �412 = �413 = 0, �55 = –Q1,

�56 = �57 = �58 = �59 = �510 = �511 = �512 = �513 = 0, �66 = –Q2,

�67 = �68 = �69 = �610 = �611 = �612 = �613 = 0, �77 = –Q3,

�78 = �79 = �710 = �711 = �712 = �713 = 0, �88 = –Q4,

�89 = �810 = �811 = �812 = �813 = 0,
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�99 = –2T1, �910 = �911 = �912 = �913 = 0,

�1010 = –2T2, �1011 = BT UT
2 , �1012 = �1013 = 0,

�1111 = η2Z1 + (η2 – η1)Z2 – U2 – UT
2 , �1112 = U2, �1113 = 0,

�1212 = –γ I, �1213 = 0, �1313 = –γ I,

MT =
[
MT

1 MT
2 0 0 0 0 0 0 0 0 0 0 0

]
,

NT =
[
NT

1 NT
2 0 0 0 0 0 0 0 0 0 0 0

]
,

ST =
[
ST

1 ST
2 0 0 0 0 0 0 0 0 0 0 0

]
,

UT =
[
UT

1 0 0 0 0 0 0 0 0 0 UT
2 0 0

]
.

Proof Choose the L–K functional candidate as follows:

V1
(
x(ς ), y(ς )

)
= xT (ς )P1x(ς ) + yT (ς )P2y(ς ),

V2
(
x(ς ), y(ς )

)
=

∫ ς

ς–η1

xT (s)Q1x(s) ds +
∫ ς

ς–η2

xT (s)Q2x(s) ds

+
∫ ς

ς–μ1

yT (s)Q3y(s) ds +
∫ ς

ς–μ2

yT (s)Q4y(s) ds,

V3
(
x(ς ), y(ς )

)
=

∫ ς

ς–η(ς )
xT (s)R1x(s) ds +

∫ ς

ς–μ(ς )
yT (s)R2y(s) ds,

V4
(
x(ς ), y(ς )

)
=

∫ 0

–η2

∫ ς

ς+θ

gT
1 (s)Z1g1(s) ds dθ +

∫ –η1

–η2

∫ ς

ς+θ

gT
1 (s)Z2g1(s) ds dθ .

Similarly to Theorem 3.1, taking

ζ T (ς ) =
[
xT (ς ) xT(

ς – η(ς )
)

yT (ς ) yT(
ς – μ(ς )

)
xT (ς – η1) xT (ς – η2)

yT (ς – μ1) yT (ς – μ2) f T(
y(ς )

)
f T(

y
(
ς – μ(ς )

))
gT

1 (ς )

uT
1 (ς ) uT

2 (ς )
]
,

we can obtain (22). �

4 Stability criteria of GRN
In this section, we can reduce the LMI in Corollary 3.4 to stability conditions and compare
with those reported in [10].

Remark 7 Consider the following genetic network system:

⎧
⎨

⎩
dx(ς ) = [–Ax(ς ) + Bf (y(ς – μ(ς )))] dς ,

dy(ς ) = [–Cy(ς ) + Dx(ς – η(ς ))] dς .
(23)

Theorem 4.1 For given constants η1,η2,μ1,μ2,ηd , and μd , the neural network (23) is sta-
ble if there are positive definite matrices P1, P2, Qi (i = 1, 2, . . . , 4), R1, R2, Z1, Z2, positive di-
agonal matrices T1, T2, and matrices Mi, Ni, Si, Ui (i = 1, 2) of appropriate dimensions such
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that the following LMI holds:

� =

⎡

⎢⎢⎢
⎣

�1
√

η2N √
η12M √

η12S
∗ –Z1 0 0
∗ ∗ –Z2 0
∗ ∗ ∗ –(Z1 + Z2)

⎤

⎥⎥⎥
⎦

< 0, (24)

where

�1 = (�ij)11×11,

�11 = –P1A – AT P1 + Q1 + Q2 + R1 + N1 + NT
1 – U1A – AT UT

1 ,

�12 = –N1 + NT
2 + S1 – M1, �13 = �14 = 0, �15 = M1, �16 = –S1,

�17 = �18 = �19 = 0, �110 = P1B + U1B, �111 = –U1 – AT UT
2 ,

�22 = –(1 – ηd)R1 – N2 – NT
2 + S2 + ST

2 – M2 – MT
2 , �23 = DT P2,

�24 = 0, �25 = M2, �26 = –S2, �27 = �28 = �29 = �210 = �211 = 0,

�33 = –P2C – CT P2 + Q3 + Q4 + R2, �34 = �35 = �36 = �37 = �38 = 0,

�39 = KT1, �310 = �311 = 0, �44 = –(1 – μd)R2,

�45 = �46 = �47 = �48 = �49 = 0, �410 = KT2, �411 = 0,�55 = –Q1,

�56 = �57 = �58 = �59 = �510 = �511 = 0, �66 = –Q2,

�67 = �68 = �69 = �610 = �611 = 0, �77 = –Q3,

�78 = �79 = �710 = �711 = 0, �88 = –Q4, �89 = �810 = �811 = 0,

�99 = –2T1, �910 = �911 = 0, �1010 = –2T2, �1011 = BT UT
2 ,

�1111 = η2Z1 + (η2 – η1)Z2 – U2 – UT
2 ,

MT = 2[MT
1 MT

2 0 0 0 0 0 0 0 0 0],

NT =
[
NT

1 NT
2 0 0 0 0 0 0 0 0 0

]
,

ST =
[
ST

1 ST
2 0 0 0 0 0 0 0 0 0

]
,

UT =
[
UT

1 0 0 0 0 0 0 0 0 0 UT
2
]
.

Proof Set ting u1(ς ) = u2(ς ) = 0 in Corollary 3.4, we can obtain (24). �

5 Numerical examples
Example 1 We consider GRNs (9) subject to leakage and impulsive perturbations and take
the following parameters:

A =

[
1 0
0 1

]

, B =

[
0.4 –0.4
0 0.4

]

, C = D =

[
2 0
0 2

]

, E =

[
1.2 0
0 1.2

]

,

F =

[
0.6 0
0 0.6

]

, H1 =

[
2 1
0 –1

]

, H2 =

[
2.16 1.1

0 –1.08

]

,
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Figure 1 State responses of the mRNA concentration with impulsive control

K =

[
0.65 0

0 0.65

]

, Nk = Gk =

[
0.4 0
0 0.4

]

, G1 = G2 = G3 = G4 = 0.2I.

The activation function considered in this example is f (s) = s2/(s2 + 1). For η1 = 0.4,η2 =
1.2,μ1 = μ2 = 0.25,ν1 = ν2 = 0.15, h = 0.2, l = 0.15, and ηd = μd = hd = ld = 0.1, solving The-
orem 3.1 by using the Matlab software, we can obtain the feasible solutions and some of
the feasible matrices:

P1 =

[
129.2220 25.7043
25.7043 134.4782

]

, P2 =

[
67.7742 0.3776
0.3776 65.7241

]

,

P3 = 103 ×
[

9.4552 0.0081
0.0081 9.4605

]

, P4 =

[
1.5824 0.1443
0.1443 0.9982

]

,

Q1 = 103 ×
[

9.4389 0.0021
0.0021 7.3254

]

, Q2 = 103 ×
[

8.25478 0.0103
0.0103 5.3587

]

,

R1 = 103 ×
[

9.9357 1.2544
1.2544 9.9357

]

, R2 =

[
25.4005 –0.0903
–0.0903 24.9030

]

,

R3 =

[
4.0538 0.1067
0.1067 2.4146

]

.

For the origin criterion x(s) = [cos(s); sin(s)] and y(s) = [sin(s); cos(s)], we present the sim-
ulation results for system (9) in Fig. 1 and 2, which show that the constructed system is
passive under Definition 1.

Example 2 Consider genetic network (17) with the following parameters:

A =

[
2 0
0 2

]

, B =

[
1 –2

0.8 0

]

, C =

[
2 0
0 2

]

, D =

[
1 0
0 1

]

,
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Figure 2 State responses of the protein concentration with impulsive control

E =

[
1 –2

0.8 0

]

, F =

[
1 0
0 1

]

, H1 =

[
1.5 0.8
0 –0.5

]

, H2 =

[
2 1
0 –1

]

.

Assume that η1 = 0.35,η2 = 1.75,μ1 = μ2 = 0.2,ν1 = ν2 = 0.1, h = 0.3, l = 0.25, and f (s) =
s2/(s2 + 1). By determining LMI (18) in Corollary 3.2, we can find that the GRN (17) is
passive under Definition 1 and list some of the solutions:

P1 =

[
6.1804 –1.4806

–1.4806 14.1601

]

, P2 =

[
42.8973 0.0415
0.0415 42.3577

]

,

P3 =

[
116.8016 –5.8024
–5.8024 148.1912

]

, P4 =

[
7.7099 0.0497
0.0497 7.4925

]

,

Q1 =

[
109.8649 0.1124

0.1124 109.8649

]

, Q2 =

[
101.3564 0.0054

0.0054 101.3564

]

.

Example 3 Consider the genetic network (19) with the parametric coefficients

A =

⎡

⎢
⎣

2.7 0 0
0 2.3 0
0 0 2.2

⎤

⎥
⎦ , B =

⎡

⎢
⎣

0 0 –1.5
–3.5 0 0

0 –2.4 0

⎤

⎥
⎦ , C =

⎡

⎢
⎣

2 0 0
0 2 0
0 0 2

⎤

⎥
⎦ ,

D =

⎡

⎢
⎣

0.5 0 0
0 0.5 0
0 0 0.5

⎤

⎥
⎦ , H1 =

⎡

⎢
⎣

0.2 0.1 0
0 –0.1 0
0 0 0.2

⎤

⎥
⎦ , H2 =

⎡

⎢
⎣

0.1 0 0
0 0.2 –0.1

0.1 0 0.1

⎤

⎥
⎦ .

Choose the activation function as f (x) = x2/(x2 + 1), which means that K = 0.65I . When
η1 = μ1 = 1 and ν1 = ν2 = 0.1, the maximum allowable upper bounds (MAUBs) of η2 = μ2

for different values of ηd = μd calculated by Corollary 3.3 are listed in Table 1.
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Table 1 MAUBs of η2 =μ2 for different ηd =μd

ηd =μd 0.5 0.8 1 1.5

Corollary 3.3 0.7582 0.3541 0.3421 0.3376

Table 2 The MAUBs of η2 =μ2 for different ηd =μd

ηd =μd 0.5 0.8 1 1.5

Corollary 3.4 1.3282 1.0541 1.0421 1.0312

Example 4 Consider GRN (21) with the following parameters:

A = C =

⎡

⎢
⎣

2 0 0
0 2 0
0 0 2

⎤

⎥
⎦ , B = 0.5 ×

⎡

⎢
⎣

0 0 –2.5
–2.5 0 0

0 –2.5 0

⎤

⎥
⎦ ,

D =

⎡

⎢
⎣

1.2 0 0
0 1.2 0
0 0 1.2

⎤

⎥
⎦ , H1 =

⎡

⎢
⎣

0.2 0.1 0
0 –0.1 0
0 0 0.2

⎤

⎥
⎦ , H2 =

⎡

⎢
⎣

0.1 0 0
0 0.2 –0.1

0.1 0 0.1

⎤

⎥
⎦ .

The activation functions are selected the same as that in Example 3.
When η1 = μ1 = 0.5, the MAUBs of η2 = μ2 for various values of ηd = μd obtained by

Corollary 3.4 are calculated and listed in Table 2. We can see from Table 2 that the condi-
tion given in Corollary 3.4 still guarantees the passivity performance of the neural network
(21).

Example 5 Consider GRN (23) with the following parameters:

A =

⎡

⎢
⎣

3 0 0
0 3 0
0 0 3

⎤

⎥
⎦ , B =

⎡

⎢
⎣

0 0 –2.5
–2.5 0 0

0 –2.5 0

⎤

⎥
⎦ ,

C =

⎡

⎢
⎣

2.5 0 0
0 2.5 0
0 0 2.5

⎤

⎥
⎦ , D =

⎡

⎢
⎣

0.8 0 0
0 0.8 0
0 0 0.8

⎤

⎥
⎦ ,

Using these parameters, the MAUBs η2 compared with the results in [10] with different
η1 when μ1 = 0.125 and μ2 = 0.25 are listed in Tables 3. It is easy to see that our method
indeed gives improved results over the existing ones. This point can be also illustrated
from another kind of comparison, that is, the MAUBs μ2 for different values of μ1 when
η1 = 0.25,η2 = 0.5. Some computational results are given in Table 4. From Tables 3 and 4
we can clearly obtain that Theorem 4.1 can indeed provide much large admissible upper
bounds than the stability criterion in [10].

6 Conclusion
In this work, we discuss the stochastic passivity for GRNs with leakage, discrete, and dis-
tributed delays via impulsive perturbations. In particular, we utilize stochastic variables
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Table 3 MAUBs of η2 for various values of η1 (μ1 = 0.125,μ2 = 0.25)

Method η1 = 0.25 η1 = 0.5 η1 = 0.75 η1 = 1 η1 = 1.25

[24] 0.52 0.77 1.02 1.27 1.52
[10] 11.13 11.38 11.63 11.88 12.13
Theorem 4.1 12.38 12.72 12.95 13.21 13.47

Table 4 Maximum value of μ2 for different values of μ1 (η1 = 0.25,η2 = 0.5)

Method μ1 = 0.5 μ1 = 1 μ1 = 1.5 μ1 = 2 μ1 = 2.5

[24] 0.64 1.14 1.64 2.14 2.64
[10] 4.25 4.28 4.72 5.22 5.72
Theorem 4.1 4.39 4.42 4.95 5.43 5.98

satisfying the Bernoulli distribution to design the given random uncertainties. Based on
the LMI technique [25, 26] and Jensen’s integral inequality, we propose a novel delay-
dependent passivity condition, which not only depends upon discrete delay, but also de-
pends upon distributed delay. Numerical simulations are given to demonstrate the effec-
tiveness of the considered result. The issue of disturbance rejection of fractional-order
T-S fuzzy neural networks with probabilistic faults and probabilistic cyber-attacks is an
untreated work, which will be the problem of our future work [27, 28].

Appendix: Proof of Theorem 3.1

Proof Let

g1(ς ) = –Ax(ς – ν1) + Bf
(
y
(
ς – μ(ς )

))
+ E

∫ ς

ς–l(ς )
f
(
y(s)

)
ds + u1(ς ),

g2(ς ) = δ
(
x(ς ), x

(
ς – η(ς )

)
, y(ς ), y

(
ς – μ(ς )

))
.

To prove the passivity criteria for the genetic network (9), we construct the following Lya-
punov functional:

V
(
x(ς ), y(ς )

)
=

4∑

i=1

Vi
(
x(ς ), y(ς )

)
, (25)

where

V1
(
x(ς ), y(ς )

)
=

[
x(ς ) – A

∫ ς

ς–ν1

x(s) ds
]T

P1

[
x(ς ) – A

∫ ς

ς–ν1

x(s) ds
]

+
[

y(ς ) – C
∫ ς

ς–ν2

y(s) ds
]T

P2

[
y(ς ) – C

∫ ς

ς–ν2

y(s) ds
]

+
∫ ς

ς–ν1

xT (s)P3x(s) ds +
∫ ς

ς–ν2

yT (s)P4y(s) ds,

V2
(
x(ς ), y(ς )

)
=

∫ ς

ς–η1

xT (s)Q1x(s) ds +
∫ ς

ς–η2

xT (s)Q2x(s) ds

+
∫ ς

ς–μ1

yT (s)Q3y(s) ds +
∫ ς

ς–μ2

yT (s)Q4y(s) ds,
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V3
(
x(ς ), y(ς )

)
=

∫ ς

ς–η(ς )
xT (s)R1x(s) ds +

∫ ς

ς–μ(ς )
yT (s)R2y(s) ds

+
∫ ς

ς–h(ς )
xT (s)R3x(s) ds +

∫ ς

ς–l(ς )
f T(

y(s)
)
R4f

(
y(s)

)
ds

+ ν1

∫ 0

–ν1

∫ ς

ς+ξ

xT (s)R5x(s) ds dξ + ν2

∫ 0

–ν2

∫ ς

ς+ξ

yT (s)R6y(s) ds dξ

+ l
∫ 0

–l

∫ ς

ς+θ

f T(
y(s)

)
R7f

(
y(s)

)
ds dθ + h

∫ 0

–h

∫ ς

ς+θ

xT (s)R8x(s) ds dθ ,

V4
(
x(ς ), y(ς )

)
=

∫ 0

–η2

∫ ς

ς+θ

gT
1 (s)Z1g1(s) ds dθ +

∫ –η1

–η2

∫ ς

ς+θ

gT
1 (s)Z2g1(s) ds dθ

+
∫ 0

–η2

∫ ς

ς+θ

tr
[
gT

2 (s)Z3g2(s)
]

ds dθ +
∫ –η1

–η2

∫ ς

ς+θ

tr
[
gT

2 (s)Z4g2(s)
]

ds dθ .

Using the stochastic differentiation rule along system (9), we have

LV1
(
x(ς ), y(ς )

)

= 2
[

x(ς ) – A
∫ ς

ς–ν1

x(s) ds
]T

P1
d

dς

[
x(ς ) – A

∫ ς

ς–ν1

x(s) ds
]

+ 2
[

y(ς ) – C
∫ ς

ς–ν2

y(s) ds
]T

P2
d

dς

[
y(ς ) – C

∫ ς

ς–ν2

y(s) ds
]

+ tr
[
gT

2 (ς )P1g2(ς )
]

+ xT (ς )P3x(ς ) – xT (ς – ν1)P3x(ς – ν1) + yT (ς )P4y(ς ) – yT (ς – ν2)P4y(ς – ν2)

≤ 2
[

x(ς ) – A
∫ ς

ς–ν1

x(s) ds
]T

P1

×
[

–Ax(ς ) + Bf
(
y
(
ς – μ(ς )

))
+ E

∫ ς

ς–l(ς )
f
(
y(s)

)
ds + u1(ς )

]

+ 2
[

y(ς ) – C
∫ ς

ς–ν2

y(s) ds
]T

× P2

[
–Cy(ς ) + Dx

(
ς – η(ς )

)
+ F

∫ ς

ς–h(ς )
x(s) ds + u2(ς )

]

+ λ1
[
xT (ς )G1x(ς ) + xT(

ς – η(ς )
)
G2x

(
ς – η(ς )

)
+ yT (ς )G3y(ς )

+ yT(
ς – μ(ς )

)
G4y

(
ς – μ(ς )

)]
+ xT (ς )P3x(ς )

– xT (ς – ν1)P3x(ς – ν1) + yT (ς )P4y(ς )

– yT (ς – ν2)P4y(ς – ν2), (26)

LV2
(
x(ς ), y(ς )

)

= xT (ς )[Q1 + Q2]x(ς ) – xT (ς – η1)Q1x(ς – η1) – xT (ς – η2)Q2x(ς – η2)

× yT (ς )[Q3 + Q4]y(ς ) – yT (ς – μ1)Q3y(ς – μ1) – yT (ς – μ2)Q4y(ς – μ2), (27)

LV3
(
x(ς ), y(ς )

)

= xT (ς )
[
R1 + R3 + ν2

1 R5 + h2R8
]
x(ς ) + yT (ς )

[
R2 + ν2

2 R6
]
y(ς )

–
(
1 – η̇(ς )

)
xT(

ς – η(ς )
)
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× R1x
(
ς – η(ς )

)
–

(
1 – μ̇(ς )

)
yT(

ς – μ(ς )
)
R2y

(
ς – μ(ς )

)

–
(
1 – ḣ(ς )

)
xT(

ς – h(ς )
)

× R3x
(
ς – h(ς )

)
+ f T(

y(ς )
)[

R4 + l2R7
]
f
(
y(ς )

)

–
(
1 – l̇(ς )

)
f T(

y
(
ς – l(ς )

))
R4f

(
y
(
ς – l(ς )

))

– ν1

∫ ς

ς–ν1

xT (s)R5x(s) ds – ν2

∫ ς

ς–ν2

yT (s)R6y(s) ds

– l
∫ ς

ς–l
f T(

y(s)
)
R7f

(
y(s)

)
ds – h

∫ ς

ς–h
xT (s)R8x(s) ds

≤ xT (ς )
[
R1 + R3 + ν2

1 R5 + h2R8
]
x(ς ) + yT (ς )

[
R2 + ν2

2 R6
]

× y(ς ) – (1 – ηd)xT(
ς – η(ς )

)

× R1x
(
ς – η(ς )

)
– (1 – μd)yT(

ς – μ(ς )
)
R2y

(
ς – μ(ς )

)

– (1 – hd)xT(
ς – h(ς )

)
R3x

(
ς – h(ς )

)

+ f T(
y(ς )

)[
R4 + l2R7

]
f
(
y(ς )

)
– (1 – ld)f T(

y
(
ς – l(ς )

))
R4f

(
y
(
ς – l(ς )

))

– ν1

∫ ς

ς–ν1

xT (s)R5x(s) ds – ν2

∫ ς

ς–ν2

yT (s)R6y(s) ds

– l
∫ ς

ς–l
f T(

y(s)
)
R7f

(
y(s)

)
ds – h

∫ ς

ς–h
xT (s)R8x(s) ds, (28)

LV4
(
x(ς ), y(ς )

)

= gT
1 (ς )

[
η2Z1 + (η2 – η1)Z2

]
g1(ς ) –

∫ ς

ς–η2

gT
1 (s)Z1g1(s) ds –

∫ ς–η1

ς–η2

gT
1 (s)Z2g1(s) ds

+ η2 tr
[
gT

2 (t)Z3g2(ς )
]

–
∫ ς

ς–η2

tr
[
gT

2 (s)Z3g2(s)
]

ds

+ (η2 – η1) tr
[
gT

2 (ς )Z4g2(ς )
]

–
∫ ς–η1

ς–η2

tr
[
gT

2 (s)Z4g2(s)
]

ds

≤ gT
1 (ς )

[
η2Z1 + (η2 – η1)Z2

]
g1(ς ) –

∫ ς

ς–η2

gT
1 (s)Z1g1(s) ds –

∫ ς–η1

ς–η2

gT
1 (s)Z2g1(s) ds

+ η2λ2
[
xT (ς )G1x(ς ) + xT(

ς – η(ς )
)
G2x

(
ς – η(ς )

)
+ yT (ς )G3y(ς )

+ yT(
ς – μ(ς )

)
G4y

(
ς – μ(ς )

)]

+ (η2 – η1)λ3
[
xT (ς )G1x(ς ) + xT(

ς – η(ς )
)
G2x

(
ς – η(ς )

)
+ yT (ς )G3y(ς )

+ yT(
ς – μ(ς )

)
G4y

(
ς – μ(ς )

)]
–

∫ ς

ς–η2

tr
[
gT

2 (s)Z3g2(s)
]

ds

–
∫ ς–η1

ς–η2

tr
[
gT

2 (s)Z4g2(s)
]

ds. (29)

By Jensen’s integral inequality [16] we get

–ν1

∫ ς

ς–ν1

xT (s)R5x(s) ds ≤ –
(∫ ς

ς–ν1

x(s) ds
)T

R5

(∫ ς

ς–ν1

x(s) ds
)

, (30)
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–ν2

∫ ς

ς–ν2

yT (s)R6y(s) ds ≤ –
(∫ ς

ς–ν2

y(s) ds
)T

R6

(∫ ς

ς–ν2

y(s) ds
)

, (31)

–l
∫ ς

ς–l
f T(

y(s)
)
R7f

(
y(s)

)
ds ≤ –

(∫ ς

ς–l(ς )
f
(
y(s)

)
ds

)T

R7

(∫ ς

ς–l(ς )
f
(
y(s)

)
ds

)
, (32)

–h
∫ ς

ς–h
xT (s)R8x(s) ds ≤ –

(∫ ς

ς–h(ς )
x(s) ds

)T

R8

(∫ ς

ς–h(ς )
x(s) ds

)
, (33)

By the Leibnitz formula, for any matrices M, N , S, U of appropriate dimensions, we have
the following equalities:

0 = 2ζ T (ς )N
[

x(ς ) – x
(
ς – η(ς )

)
–

∫ ς

ς–η(ς )
g1(s) ds –

∫ ς

ς–η(ς )
g2(s) dω(s)

]
, (34)

0 = 2ζ T (ς )S
[

x
(
ς – η(ς )

)
– x(ς – η2) –

∫ ς–η(ς )

ς–η2

g1(s) ds –
∫ ς–η(ς )

ς–η2

g2(s) dω(s)
]

, (35)

0 = 2ζ T (ς )M
[

x(ς – η1) – x
(
ς – η(ς )

)
–

∫ ς–η1

ς–η(ς )
g1(s) ds –

∫ ς–η1

ς–η(ς )
g2(s) dω(s)

]
, (36)

0 = 2ζ T (ς )U
[

–Ax(ς – ν1) + Bf
(
y
(
ς – μ(ς )

))

+ E
∫ ς

ς–l(ς )
f
(
y(s)

)
ds + u1(ς ) – g1(ς )

]
, (37)

where

ζ T (ς ) =
[

xT (ς ) xT(
ς – η(ς )

)
yT (ς ) yT(

ς – μ(ς )
)

xT (ς – η1) xT (ς – η2)

yT (ς – μ1) yT (ς – μ2) f T(
y(ς )

)
f T(

y
(
ς – μ(ς )

))
gT

1 (ς ) uT
1 (ς )

uT
2 (ς ) xT (ς – ν1) yT (ς – ν2)

(∫ ς

ς–ν1

x(s) ds
)T (∫ ς

ς–ν2

y(s) ds
)T

xT(
ς – h(ς )

)
f T(

y
(
ς – l(ς )

)) (∫ ς

ς–l(ς )
f
(
y(s)

)
ds

)T (∫ ς

ς–h(ς )
x(s) ds

)T]
.

In addition, from Eq. (5) we have

fi
(
yi(ς )

)[
fi
(
yi(ς )

)
– kiyi(ς )

] ≤ 0, i = 1, 2, . . . , n,

fi
(
yi

(
ς – μ(ς )

))[
fi
(
yi

(
ς – μ(ς )

))
– kiyi

(
ς – μ(ς )

)] ≤ 0, i = 1, 2, . . . , n.

Thus, for any Tj = diag{ς1j,ς2j, . . . ,ςnj} ≥ 0, j = 1, 2, it follows that

0 ≤ –2
n∑

i=1

ςi1fi
(
yi(ς )

)[
fi
(
yi(ς )

)
– kiyi(ς )

]

– 2
n∑

i=1

ςi2fi
(
yi

(
ς – μ(ς )

))[
fi
(
yi

(
ς – μ(ς )

))
– kiyi

(
ς – μ(ς )

)]

= –2f T(
y(ς )

)
T1f

(
y(ς )

)
+ 2yT (ς )KT1f

(
y(ς )

)
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– 2f T(
y
(
ς – μ(ς )

))
T2f

(
y
(
ς – μ(ς )

))
+ 2yT(

ς – μ(ς )
)

× KT2f
(
y
(
ς – μ(ς )

))
. (38)

On the other side, the following inequalities are true for any matrices Zi ≥ 0, i = 1, 2, 3, 4:

–2ζ T (ς )N
∫ ς

ς–η(ς )
g1(s) ds ≤ η2ζ

T (ς )NZ–1
1 NTζ (ς ) +

∫ ς

ς–η(ς )
gT

1 (s)Z1g1(s) ds, (39)

–2ζ T (ς )M
∫ ς–η1

ς–η(ς )
g1(s) ds ≤ η12ζ

T (ς )MZ–1
2 MTζ (ς ) +

∫ ς–η1

ς–η(ς )
gT

1 (s)Z2g1(s) ds, (40)

–2ζ T (ς )S
∫ ς–η(ς )

ς–η2

g1(s) ds

≤ η12ζ
T (ς )S(Z1 + Z2)–1STζ (ς ) +

∫ ς–η(ς )

ς–η2

gT
1 (s)(Z1 + Z2)g1(s) ds, (41)

–2ζ T (ς )N
∫ ς

ς–η(ς )
g2(s) dω(s)

≤ ζ T (ς )NZ–1
3 NTζ (ς ) +

(∫ ς

ς–η(ς )
g2(s) dω(s)

)T

Z3

(∫ ς

ς–η(ς )
g2(s) dω(s)

)
, (42)

–2ζ T (ς )M
∫ ς–η1

ς–η(ς )
g2(s) dω(s)

≤ ζ T (ς )MZ–1
4 MTζ (ς ) +

(∫ ς–η1

ς–η(ς )
g2(s) dω(s)

)T

Z4

(∫ ς–η1

ς–η(ς )
g2(s) dω(s)

)
, (43)

–2ζ T (ς )S
∫ ς–η(ς )

ς–η2

g2(s) dω(s)

≤ ζ T (ς )S(Z3 + Z4)–1STζ (ς )

+
(∫ ς–η(ς )

ς–η2

g2(s) dω(s)
)T

(Z3 + Z4)
(∫ ς–η(ς )

ς–η2

g2(s) dω(s)
)

. (44)

Combining (26)–(44), we get

LV
(
x(ς ), y(ς )

)
– 2

[
uT

1 (ς )zx(ς ) + uT
2 (ς )zy(ς )

]
– γ

[
uT

1 (ς )u1(ς ) + uT
2 (ς )u2(ς )

]

≤ ζ T (ς )
[
�1 + η2NZ–1

1 NT + η12MZ–1
2 MT

+ η12S(Z1 + Z2)–1ST + NZ–1
3 NT + MZ–1

4 MT

+ S(Z3 + Z4)–1ST]
ζ (ς ) –

∫ ς

ς–η2

gT
1 (s)Z1g1(s) ds

–
∫ ς–η1

ς–η2

gT
1 (s)Z2g1(s) ds –

∫ ς

ς–η2

tr
[
gT

2 (s)Z3g2(s)
]

ds

–
∫ ς–η1

ς–η2

tr
[
gT

2 (s)Z4g2(s)
]

ds +
∫ ς

ς–η(ς )
gT

1 (s)Z1g1(s) ds +
∫ ς–η1

ς–η(ς )
gT

1 (s)Z2g1(s) ds

+
∫ ς–η(ς )

ς–η2

gT
1 (s)(Z1 + Z2)g1(s) ds +

(∫ ς

ς–η(ς )
g2(s) dω(s)

)T

Z3

(∫ ς

ς–η(ς )
g2(s) dω(s)

)

+
(∫ ς–η1

ς–η(ς )
g2(s) dω(s)

)T

Z4

(∫ ς–η1

ς–η(ς )
g2(s) dω(s)

)
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+
(∫ ς–η(ς )

ς–η2

g2(s) dω(s)
)T

(Z3 + Z4)
(∫ ς–η(ς )

ς–η2

g2(s) dω(s)
)

≤ ζ T (ς )�ζ (ς ) –
∫ ς

ς–η2

gT
1 (s)Z1g1(s) ds –

∫ ς–η1

ς–η2

gT
1 (s)Z2g1(s) ds

–
∫ ς

ς–η2

tr
[
gT

2 (s)Z3g2(s)
]

ds

–
∫ ς–η1

ς–η2

tr
[
gT

2 (s)Z4g2(s)
]

ds +
∫ ς

ς–η(ς )
gT

1 (s)Z1g1(s) ds +
∫ ς–η1

ς–η(ς )
gT

1 (s)Z2g1(s) ds

+
∫ ς–η(ς )

ς–η2

gT
1 (s)(Z1 + Z2)g1(s) ds +

(∫ ς

ς–η(ς )
g2(s) dω(s)

)T

Z3

(∫ ς

ς–η(ς )
g2(s) dω(s)

)

+
(∫ ς–η1

ς–η(ς )
g2(s) dω(s)

)T

Z4

(∫ ς–η1

ς–η(ς )
g2(s) dω(s)

)

+
(∫ ς–η(ς )

ς–η2

g2(s) dω(s)
)T

(Z3 + Z4)
(∫ ς–η(ς )

ς–η2

g2(s) dω(s)
)

,

where

� = �1 + η2NZ–1
1 NT + η12MZ–1

2 MT + η12S(Z1 + Z2)–1ST + NZ–1
3 NT + MZ–1

4 MT

+ S(Z3 + Z4)–1ST .

Note that

E

{[∫ ς

ς–η(ς )
g2(s) dω(s)

]T

Z3

[∫ ς

ς–η(ς )
g2(s) dω(s)

]}
= E

{∫ ς

ς–η(ς )
tr
[
gT

2 (s)Z3g2(s)
]

ds
}

,

E

{[∫ ς–η1

ς–η(ς )
g2(s) dω(s)

]T

Z4

[∫ ς–η1

ς–η(ς )
g2(s) dω(s)

]}
= E

{∫ ς–η1

ς–η(ς )
tr
[
gT

2 (s)Z4g2(s)
]

ds
}

,

E

{[∫ ς–η(ς )

ς–η2

g2(s) dω(s)
]T

(Z3 + Z4)
[∫ ς–η(ς )

ς–η2

g2(s) dω(s)
]}

= E

{∫ ς–η(ς )

ς–η2

tr
[
gT

2 (s)(Z3 + Z4)g2(s)
]

ds
}

.

So we get

E
{
LV

(
x(ς ), y(ς )

)
– 2

[
uT

1 (ς )zx(ς ) + uT
2 (ς )zy(ς )

]
– γ

[
uT

1 (ς )u1(ς ) + uT
2 (ς )u2(ς )

]}

≤ E
{
ζ T (ς )�ζ (ς )

}
. (45)

Now we define the changes of V (xς ) at impulse times ς = ςk , k ∈Z+. By (14) we have

x(ςk) – A
∫ ςk

ςk –ν1

x(s) ds = x
(
ς–

k
)

– Nk

[
x
(
ς–

k
)

– A
∫ ςk

ςk –ν1

x(s) ds
]

– A
∫ ςk

ςk –ν1

x(s) ds

= (I – Nk)
[

x
(
ς–

k
)

– A
∫ ςk

ςk –ν1

x(s) ds
]

. (46)
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Moreover, from (14) we get

[
P1 (I – Nk)T P1

∗ P1

]

≥ 0

⇔
[

I –(I – Nk)T

0 I

][
P1 (I – Nk)T P1

∗ P1

][
I 0

–(I – Nk) I

]

≥ 0

⇔
[

P1 – (I – Nk)T P1(I – Nk) 0
∗ P1

]

≥ 0

⇔ P1 – (I – Nk)T P1(I – Nk) ≥ 0. (47)

Combining (46) and (47), we have

V1
(
x(ςk)

)
=

[
x(ςk) – A

∫ ςk

ςk –ν1

x(s) ds
]T

P1

[
x(ςk) – A

∫ ςk

ςk –ν1

x(s) ds
]

=
[

x
(
ς–

k
)

– A
∫ ςk

ςk –ν1

x(s) ds
]T

(I – Nk)T P1(I – Nk)
[

x
(
ς–

k
)

– A
∫ ςk

ςk –ν1

x(s) ds
]

≤
[

x
(
ς–

k
)

– A
∫ ςk

ςk –ν1

x(s) ds
]T

P1

[
x
(
ς–

k
)

– A
∫ ςk

ςk –ν1

x(s) ds
]

,

V1
(
x(ςk)

) ≤ V1
(
x
(
ς–

k
))

.

Similarly, we can define the changes of V (yς ) at impulse times ς = ςk , k ∈ Z+. By (15) we
have

y(ςk) – C
∫ ςk

ςk –ν2

y(s) ds = y
(
ς–

k
)

– Gk

[
y
(
ς–

k
)

– C
∫ ςk

ςk –ν2

y(s) ds
]

– C
∫ ςk

ςk –ν2

y(s) ds

= (I – Gk)
[

y
(
ς–

k
)

– C
∫ ςk

ςk –ν2

y(s) ds
]

. (48)

It follows From Eq. (15) that

[
P2 (I – Gk)T P2

∗ P2

]

≥ 0

⇔
[

I –(I – Gk)T

0 I

][
P2 (I – Gk)T P2

∗ P2

][
I 0

–(I – Gk) I

]

≥ 0

⇔
[

P2 – (I – Gk)T P2(I – Gk) 0
∗ P1

]

≥ 0

⇔ P2 – (I – Gk)T P2(I – Gk) ≥ 0. (49)

Combining (48) and (49), we have

V1
(
y(ςk)

)
=

[
y(ςk) – C

∫ ςk

ςk –ν2

y(s) ds
]T

P2

[
y(ςk) – C

∫ ςk

ςk –ν2

y(s) ds
]
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=
[

y
(
ς–

k
)

– C
∫ ςk

ςk –ν2

y(s) ds
]T

(I – Gk)T P2(I – Gk)
[

y
(
ς–

k
)

– C
∫ ςk

ςk –ν2

y(s) ds
]

≤
[

y
(
ς–

k
)

– C
∫ ςk

ςk –ν2

y(s) ds
]T

P2

[
y
(
ς–

k
)

– C
∫ ςk

ςk –ν2

y(s) ds
]

,

V1
(
y(ςk)

) ≤ V1
(
y
(
ς–

k
))

.

Also, it is obvious that V2(ςk) ≤ V2(ς–
k ), V3(ςk) ≤ V3(ς–

k ), V4(ςk) ≤ V4(ς–
k ). Therefore

V
(
x(ςk), y(ςk)

) ≤ V
(
x
(
ς–

k
)
, y

(
ς–

k
))

, k ∈Z+. (50)

Using (45), we can write

E
{
LV

(
x(ς ), y(ς )

)
– 2

[
uT

1 (ς )zx(ς ) + uT
2 (ς )zy(ς )

]
– γ

[
uT

1 (ς )u1(ς ) + uT
2 (ς )u2(ς )

]}

≤ {
ζ T (ς )�ζ (ς )

}
. (51)

By applying the Schur complement lemma we can see that � is equivalent to (16), and we
get

E
{
LV

(
x(ς ), y(ς )

)
– 2

[
uT

1 (ς )zx(ς ) + uT
2 (ς )zy(ς )

]
– γ

[
uT

1 (ς )u1(ς ) + uT
2 (ς )u2(ς )

]}

< 0. (52)

By integrating (52) over the time period from 0 to ςf we have

2E
{∫ ςf

0

[
uT

1 (s)zx(s) + uT
2 (s)zy(s)

]
ds

}

≥ V
(
x(ςf )

)
– V

(
x(0)

)
– γE

{∫ ςf

0

[
uT

1 (s)u1(s) + uT
2 (s)u2(s)

]
ds

}

≥ –γE

{∫ ςf

0

[
uT

1 (s)u1(s) + uT
2 (s)u2(s)

]
ds

}
.

Therefore the stochastic genetic regulatory network (9) is passive under Definition 1,
which completes the proof. �
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