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1 Introduction
FIEs play a very significant role in many areas of fixed point theory, and they have many
applications in various areas of mathematical physics, engineering, mathematical biol-
ogy, population dynamics, natural science, and mechanics (see [1, 7, 15, 19, 20, 26, 33]). It
has been seen that integral equations have a large number of applications to finding the
existence solution of integro-differential equations, differential equations, and fractional
differential equations. Recently, many authors have used the MNC technique associated
with Darbo’s fixed point theorem [3] to examine the existence and uniqueness results of
various types of FIEs. The details of this type of work can be found in these articles (see
[4-6,8,9,11-14, 17, 18, 24, 25, 30, 32, 34, 35] and the references therein).

In this work, we use Petryshyn’s fixed point theorem [29] instead of Darbo’s fixed point

theorem to establish the existence of solutions for the following FIE:

s re
z(s,¢) = G(s,¢) +F<S» grf(s’ ¢, z(s, ;))’/0‘ /(; g(S,f,r’;:, n,z(€, 77)) dndé,

¢ pd
/0 /0 h(S,C»SJI:Z(Eﬂ?))d??dS)» (1)

where (s,¢) € I = [0,¢] x [0,d]. Recently several authors used Petryshyn’s fixed point theo-
rem to find the existence of solutions for nonlinear FIEs in Banach spaces as well as Banach
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algebra (for instance see [10, 21, 22, 31] and the references therein). The following state-
ments explain the main causes why we use equation (1) and what is the perfection of our
work. The first is that the conditions in various papers will be analyzed, and the second
reason is that this paper unifies the relevant work in this area. The third condition is the
bounded condition shows that the “sublinear condition” that has been discussed in several
literature works does not have a significant role.

The paper is divided into five sections including the introduction. In Sect. 2, we present
some preliminaries and define the concept of MNC. Section 3 states and proves an ex-
istence result for equations including condensing operators using Petryshyn’s fixed point
theorem. In Sect. 4 we give examples that test the utilization of this kind of FIE. Finally,
Sect. 5 concludes the paper.

2 Preliminaries

In this work, X is a real Banach space and B; denotes closed ball center at 0 with radius
7 and 0B, = {z € X : ||z|| = r} for the sphere in X around 0 with radius 7 > 0. MNCs are
valuable tools in the analysis of existence in the operator equations and theory of fixed
point in X.

Definition 2.1 ([23]) Let Y € My and

n
,u(Y):inf{e>0:Y:UYiwith diamY; <e,i=1,2,...,n\.

i=1
Hence, 0 < #(Y) < 00. 9(Y) is called the Kuratowski MNC.

Definition 2.2 ([16]) The Hausdorff MNC
?(Y) = inf{e€ > 0 : there exists a finite e-net for Y in X }, (2)

where from a finite €-net for Y in X that means a set {z1,2»,...,2,} C X such that the ball
B.(X,z1),Bc(X,22),...,B:(X,z,) over Y. These MNCs are mutually equivalent in the sense
that

P(Y) < B(Y) <20(Y)
for a bounded set Y C X.

Theorem 2.1 LetY,Y e My and ) € R. Then
(i) 9(Y)=0ifandonly if Y € My;
(ii) Y C Y implies 9(Y) < 0(Y);
(iii) ©(ConvY) = (Y);
(iv) (Y UY) = max{®(Y),9(Y)};
V) 2(AY) = [A[9(Y); )
vi) MY +Y) <o)+ ().

>l

Here, we consider the Banach space C(I, R) with the usual norm

lIz|l = max{|z(s,§)| :(s,¢) e[}.
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Let X € C(I,R). Given € > 0, the modulus of continuity of z € Y is defined as
w(z,€) = sup{|z(s,§) —z(§,2)’ :5,5€[0,c,¢,C €[0,d),|s—8| <€, -C| < e}.
Further

w(Y,¢€) = sup{a)(z,e) 1z € Y}, wo(Y) = limw(Y,€).

e—0

Theorem 2.2 ([21]) The Hausdorff MNC is similar to
w(y) = liII(l) sup w(z, €) (3)
€—

for all bounded set Y C C(I,R).

Theorem 2.3 ([27]) Let H : X — X be a continuous mapping of X. H is called a k set
contraction if, for all D C X with D bounded, H(D) is bounded and ﬁ(HD) < k,é(D), k e
0,1).If B(HD) < B(D) for all B(D) >0, then H is called densifying or condensing map.

Theorem 2.4 ([29]) Let H : B; — X be a condensing function which fulfills the boundary
condition if H(z) = kz for some z € dB,, then k < 1. Then F(H) in B; is nonempty, where
F(H) is the set of fixed points of H.

3 Main results
Now, we study the main aim of equation (1). Namely, we assume the following assump-
tions:

(1) GeC(,R), FeC(l; x RxR,R), fe CI xR,R), g,h € C(I; x R,R), where

I=I.x1l;,  L={(¢)):0<s<c¢0<(<d§eR)},

L={(stEnel:0<E<s<c0<n<¢<d}

(2) There exist nonnegative constants ki, k2, k3, ka, k1ks < 1 such that

A

|F(s,§',z,u,x) —F(s,{,z,z},fc| <kilz—-z| + ky|lu — is| + kz|x — X|;

lf(s’ C’Z) —f(S, §-12

< kslz-Zl;

(3) There exists 7 > 0 such that the resulting bounded condition is fulfilled

sup{|G(s,§) :(s,¢) €I| + |F(s,;‘,z, u,x)| :(s,¢)el,ze [-7,7],

u € [—cdM, cdM],x € [_chZ,CdM2]} <7,
where

My =sup{|g(s,¢,&,m,2)| :forall (s5,¢,&,n) € L and z € [-7,7]},
M, = sup{|h(s,§,§,n,z)| :forall (s,¢,&,n) € I, and z € [-F, 7"]}.
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Theorem 3.1 Under assumptions (1)—(3) with kiky < 1, equation (1) has at least one so-
lution in X.

Proof Define H : B; — X in the following form:

s ¢
(H2)(s,¢) = G(s,o+F(s,;,f(s,c,z<s,;>), /0 /0 a(5,,6m2Em) dnde,

¢ pd
/ / h(s,C,S,U,Z(E,n))dndS).
0 Jo

Now, we show that H is continuous on the ball B;. Take € > 0 and z,x € B; such that ||z -
x|| < €. We get

|(H2)(s, ¢) — (Hx)(s,¢)|

s re
= ‘G(S,{) +F(S,C,f(S,C,Z(S,§)),A [) g(S,C:S,TZ,Z(E,n)) dﬁdé,

¢ pd
/0 /0 h(s,¢,&,m,2(5,m)) dn dé)

s e
—G(s,g“)—F(S,E,f(&{,x(s’f)):/o /0 g(s,¢,&m,%(&, n) dndé,

¢ pd
[ h(s,c,f,n,x(&n))dﬂd%‘)‘
S kl lf(s’ ;,Z(S, C)) —f(s,{,x(s,é’))|

s ré
+ /(2/(; /0‘ |g(s, ¢,&,m,2(§, 77)) —g(S,E,f» n,x(&, 77))| dndg

c d
+ /(3 /(; [) |h(S, LE’ TI,Z(S, 77)) - h(S, C:S, ﬂ,x(f» 77)) | d'? df
< k1k4|z(s, Z)—x(s, {,’)| + kycdw(g, €) + kscdw(h, €)
< kiky||z — x|| + kpcdw(g, €) + kscdw(h, €),

where, for € > 0, we denote

w(g:G) = Sup{ |g(Sy§,§, 1,2) —g(S»fo» W;x)i 1(8,8,8,n) e,z xe-1,7], |lz—x|| < 6}’
w(h,€) = sup{’h(s,{,%‘,n,z) - h(s,{,é‘,n,x)‘ :(s, 8,6, b,z x e [-1,7], lz—x| < e}.
Now, from the uniform continuity of g(s, ¢,&,n,2) and h(s, £, &, 1,z) on I x [—€,€] respec-
tively, then w(g, €) and w(h, €) as € — 0. Hence, we decide that H is continuous on Bj.
Next, we prove that H fulfills the densifying condition. Select € > 0 and take z € Y, where

Y is a bounded subset of X, (s1, 1), (s2, 2) € I with s1 < 5, &1 < &5 such that s; — 55 <,

{1 — & < €, we obtain
|(Hz)(s2, £2) — (H2) (51, 81)|

2 b
= ’G(SZ’ ;‘2) + F(821 ;-Z)f(SZ; §2rz(s2’ §2));/(; /0‘ g(321 §2; S} 7],2(%_, n)) dn ds;
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c pd
//h(Szyizy-‘?,'?»Z(fyﬁ))dﬂ%)
0 Jo
516
—G(Sl»fl)—F(ShChf(Sl,{l,Z(Sl»Cl)),/o /0 g(SlbeS,?],Z(E,ﬁ))dﬂdE,
¢ pd
|/ h(sl,cl,s,n,z@,n))dnds)‘
0 Jo

s2 ré
F(S2¢€2’f(52: CZ)Z(S%CZ)):/O /0 g(52’€2:%-1 n,z(§, 77)) dnds,

= Cl)l(G,E) +

¢ prd
[ [ Howcamate my ance)
2 6
_F(SZ: §2rf(52’ §27 Z(527 ;2))’/0 fo g(521 §2ru! ‘i:r Z(S’ 77)) d’) dé:r
c d
//h(sl,ﬁl,é,n,Z(S,n))dndé)‘
0o Jo

2 1o
F(32»§21f(52’ ;2:2(32»4-2))"/ f g(52»§2,u»§,2(5r '7)) d’ld‘?:
0 0

+

c pd
/ / h(Sh;l,‘i:’ 'I»Z(an))dndé)l)
0 Jo

s1oph
_F(SZ: fz,f(Sz,Cz,Z(Sz, ;2))7/0 /0 g(Sl, Suu,§,2(8, Tl)) dndg,

¢ pd
/0 /0 h(s1,¢1,8,m,2(8, 1)) dn dé‘

+

s1ora
F(52’§21f(52; ;2:2(52’C2))7/0 / g(sl!é‘liu:s’z(gr 77)) dﬂd“?»
0

¢ pd
/0 /0 h(slxé‘l!s: U:Z(grﬂ))dﬂd’?)

s1ora
_F<SZ7§2’f(Sl:é—lxz(sl)gl))!/0 A g(u‘h(b“fﬂ(f»ﬂ)) d’ldfr

c d
/ / h(sl,a,s,n,z@,n))dnds)‘
0 0

+

s1ord
F<32»;2,f(51;§1:z(51r§-1));/0 /0 g(ShCl,u,é,Z(E,’?)) dnds,
c pd
[ [ Houematem) ande)
0 Jo
s1oph
_F(sl:glyf(slrCl?z(sl:gl))rfo /0 g(51;§1yu,$,2($:77)) dndg,
c prd
fofoh(sl,ﬁ,é,n,Z(é,n))dndé)‘

¢ pd ¢ pd
AL‘h(52:§2ru:grz(u’$))dnd€_/O' /0 h(Sl,gl,M,é,Z(M,S))dnd%"

<ks

+k2

2 b s1orh
/(; /(; g(52,é'2:§»7’/»z(5r77))d77d§—/0 /(; g(Sh{l’Sran(E!n)) dnd%-'
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+ky lf(Sz, £2,2(52,62)) = f (52, 2, 2(s1, 771))| +k [f(Sz, 2,2(s1,81))
- S(Sl, (172(51; gl))| + wl(Gxe) + a)l(Fré)

<ky /0 C /0 (52,0 £,m, 206 ) — (50 0,8, 2060 )| i
v [ f et &6 m) — (51,1, 6y, m) iy
+kz/:/:1 |g (2, 2,8, m,2(5,m)) | dn dE + 1(G, €) + w1 (F €)
+ky /051 f: |g (2, 02,8, m,2(5,m)) | dn dE + kika|z(s2, £2) — 2(s1,81)

2 ré
+k2/ / |g(s2, 22, &, m,2(8,m)) | dn dE + kywi (f€),
s1 Y4
where

o1(f,€) =sup{[f(s,£,2) = f(,,2)| : Is =8| < €,1¢ — | <€,z € [-7,7]},
o1(g,€) = sup{|g(s,£,6,1,2) ¢G5, £, m,2)| 1 Is =8| < €, 1 - | <,
(s,:¢,6,m) € b,z e [-7, 71},
w1 (hy€) = sup{|h(s, ¢, &,1,2) — h3,,6,m,2)| : s - 8] < €,1¢ - | <,
(s,¢,6,m) € b,z € [-7,71},
w1(F,€) = sup{|F(s,0,2,u,%) — 53,8, 2,u,x)| 1 |s =8| < €,|¢ —{| < €,21 € [-7,7],

u € [—cdMy, cdM,],x € [-cdM,, cdM,] }
Then, using the above relation, we get

|(H2)(s2, £2) — (H2) (51, ¢1) |
< kika|z(s2,v2) = 2(s1, &1)| + ki1 (f, €) + w1 (F, €)

+ kscdw;(h,€) + kycdw(g, €) + €ky dMy + €kocM + €2 koM.
Applying limit as § — 0,
w(Hz, €) < kiksw(z, €).
This gives the following relation:
V(HY) < kikyo (Y),

hence H is a condensing map. Now, let z € dBj;, and if Hz = kz, then ||Hz|| = k||z| = k7, and
by (3), we obtain

s r
|HZ(S’§)| = G(s,g“)+F(s,§,f(s,§,z(s,§)),/(; /0 g(S,Q“,g,'?,Z(S,’I))dﬂdE,
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¢ pd
/ / h(s,c,é,n,Z(E,n))dndé)
0 Jo

<r
forall (s,¢) € I. Hence |Hz| <Frie k<1.

Corollary 3.2 Let
(1) GeC(I,R),Fe C(l; x Rx R,R), g,h € C(I, x R,R), where

I=1 x1 L={(5¢,2:0<s<¢0<¢<dseR},

L={(s¢,Emel:0<E<s<c0<n<¢=<d}
(2) There exist nonnegative constants ky, ko, ks, kg € (0,1) such that
|F(s,¢,2,u,%) = F(s,0,2, i, %| < kilz = 2| + kolu — i1] + ks|x — a1l;
(3) There exists 7 > 0 such that resulting bounded fulfills

sup{|G(s,¢) : (s,¢) € I| + |F(s,¢,21,20,23)| : (5, ¢) € L, z1 € [7,7],

2 € [—CdMl, CdMl],Zg € [—Csz, CdMg]} <r,
here

M, = sup{|g(s,§,§,n,z)| forall (s,¢,6,m) €L andz e [—7’,7]},
M2 = Sup{|h(s) §y§,U,Z)| IfOV all (Slé-)s) 7]) e12 and z € [_;':;]}'

Then

s re
Z(S,C)=G(S,§)+F<S,§,Z(S,§),/O /0 g(&é“ff,’?,z(é;’l))dﬂd&

¢ pd
A /(; h(S,{,ngI’Z(E’n))dndé)’

has at least one solution in X.

Proof The proof is linked to the beginning Theorem 3.1 and the details that follow.
Corollary 3.3 Let

(§1) FeCUI xR xR,R),feC(l;,R),ge Cl, x R,R), he C(I, x R, R);
(S2) There exist nonnegative constants (. and v such that

f(s,2,0)| < |F(s,¢,0,0)| <v;
(S3) There exist nonnegative constants ky, ky, k3 € (0,1) such that

lf(S,C;Z) _f(srg,‘%i §k1|2—2|

|F(s,¢,2,u) = F(s,¢,2, 0| < kolz = 2| + ks|u — ill;

(4)

O

Page 7 of 12
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(S4) There exist nonnegative constants cy, ¢z, dy, and dy such that
|g(5; ;» E» T],Z)| S c + C2|Z|) |h(S; C,E, nyz)| S dl + dlel;

(Ss) kl + kzchQ + kngdz <1.
Then the equation

s r¢
205,8) = £(5,£,2(5.0)) +F(s,c, [ [ etocenstem)ands,

c pd
/0‘ [) h(&(»fﬂ?»Z(E’n)) d')d§> ()

has at least one solution in X.

Proof Letr = g—ih, where N; = ky + kycdey + kscddy, Ny = (1 + kycdey + kseddy + v, and

G(s,¢)=0,  F(s,8,z,u,%) =z +F(s,¢,u,%),
where

s r¢
z=f(5,¢,2(50),  u= / / g(s,¢,8m,2(&,m) dn dé,
0 Jo
c pd
. f / (s, 2,6, 2(6,m) dn de.
0 Jo

(2) is conducted by (S2). Now, we show that (S3) is also fulfilled, we have
s rg
(s, 8)| = P(s, ¢,2(5,0)) + F(s, Z,/ / g(s,¢,6,m,2(8,m) dn dg,
o Jo

¢ pd
//h(s,§,$,n,Z(E,n))dnd$>
0 0
< |f(s.¢,2(r,0)) = f(5,2,0)| + |f(s,¢,0)|

s rg
/Ofog(s,C,Syn,Z(E,n))dndé’

’

+ ks

+|F(s,¢,0,0)

+ k3

’

¢ pd
/ / (s, ¢, &, 2(8,m) dn d
0 0

< killzll + p + kacd(c1 + 2 l2ll) + kscd(dy + da|lz])) + v,

< (k1 + kycdcy + kscddy) || z|| + i + kocdeq + kseddy + v

for all (s, ¢) € I; consequently,

No N7
+ N, =T.
N, ? =

sup|E(s, ¢,z u,%)| < Nir+ Np = Ny Y

Corollary 3.4 ([9]) Let
(E1) FeC(h xR,R),ge C(l; x R,R);
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(Ey) There exist nonnegative constants my and my such that |A(s, ¢)| < mjy; |F(s,¢,0,0)| <
my;
(E3) There exist nonnegative constants ki, ky € (0,1) such that
|F(s,¢,z,u) — F(s, &,z u6| < ki|z—Zz| + ko|u — i1];
(Es) There exist nonnegative constants hy and hy such that |g(s,¢,&,n,2)| < h1 + hy|z|;

(E5) k1 + kgcdhg <1.
Then the equation

r r¢
(s, ¢) =A(S,§)+F(S,§',Z(S,§),/O /(; g(S,C»S»UrZ("E: 77)) d'ldg) (6)

has at least one solution in X.

Proof Let7 = lf—il, where Fl = kl + kzcdhz, F2 = szdhl + my + My,

and
F(s,¢,z,u,x) = F(s,,z,u),

where

s t
Z=Z(S,€), uz/() '/0 g(s»fwf,??;z(&??))dnd?

(T,) is handled by (E;). Now, we show that (E3) is also fulfilled. We have

’

s re
2(5,)] = ‘A(s,;)+p(s,¢,z(s,;), /0 /0 ¢(5,66,n,2(6,m) dnds)

=

s rg
F(s,az<s,;>, [ g(s,;,s,n,z(s,n))dnds)—F(s,;,o,O)‘

+|F(s,2,0,0)| + |A(s,0)

’

s (¢
/ / g(s,e“,é,n,Z(%,n))dndé‘
0 0

+ |F(s,§,0,0)‘ + }A(s,;)

< kilz(s,¢)| + ks

’

< kllzll + kacd(hy + halz]) + my + my,

< (k1 + szdhz)”Z” + kycdhy + my + my

for all (s, ¢) € I; consequently,

F,

sup|F(s,,z,u,%)| <Fif + F, = F) 1-F

+F2=;'. O

4 Applications
Example 4.1

s re
2(s,¢) = g(s,¢) +/(; /0 P(S:i,ErU)Q(S»TI,Z(E,’?)) dndé
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for v =g(s,¢) and h(s, ¢, &, n,2(8,m)) = P(s, &, &,1)Q(&, 0, 2(£, 1)), which may be regarded as
a two dimensional generalization of the famous Hammerstein type FIE (see [28])

1 p1
Z(S,C)=g(S:C)+/ / h(s,é“»é:ﬁyz(frﬁ))dﬁdé,
o Jo
which is the famous two dimensional Fredholm FIE examined (e.g. [2]).

Example 4.2 Consider the following two dimensional-FIE:

s 2, 1( 1+s2? 15[
B A (il S - 2
z(s,¢) = 0 +52€2)e t3 <3+4s2§2> cosz(s, ) + 2/0 /0 En“cosz(&,n)dndé

z(&,n)l
+—/ / arctan( 2, n)|>dﬁd5 @)

for (s,¢) € I =[0,1] x [0,1]. Here, we put

1 1 1
F(s,,z,u,m) = —ze U+ =1,

2 2 2
2
f(s,¢,2) = ﬁsggzcosz(s,g),

g(&{;é; n,2) = %-77 cosz(&,n),

|2(&,n)] )

h(s,¢,&m,2) = af“a“(m

It can clearly be noticed that F, f, g, & are continuous functions on the respective domain

and
A a oA 1,1 .1 R
\F(s,¢,2,u,%) = F(s,8,2,0,%)| < < |z =2 + =|u—it| + =[x - ],
2 2 2
A 1 N
If(s:gtz) —f(5,§,2| S §|Z_Z|'

Here, ky = ko = k3 = ky = % It is seen that these functions satisfy (1) and (2). Now, we check
that (3) also holds. Take r = 3, then we get M; = M, <1 and

sup{|G(s,¢) + F(s,¢,z,u,m)| :5,¢ €[0,1],z € [-3,3],u,n € [-1,1]}
§? 2 1+ss2 1 [ [¢
s°¢ - 2
ssup‘(2(1+52§2)e t 2B 1257 cosz(s, ¢) + 2/0 /0 §n”cosz(§,n)dndé

z(&,n)|
+—/ / arctan< 2C, ﬂ)|>dﬂd5)‘

All assumptions (1)—(3) are satisfied. Hence, by Theorem 3.1, equation (7) has at least one

solution in C(I).

Page 10 of 12
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5 Conclusion

By unifying and enlarging the earlier results of [9, 11, 18, 35] and using Petryshyn’s fixed
point Theorem 3.1, in the third section, we obtained a new method to prove the existence
of solutions for some functional integral equations. The merit of Theorem 3.1 among the
others (Darbo’s and Schauder’s fixed point theorems) lies in that in applying the theorem,
one does not need to confirm that the involved operator maps a closed convex subset onto
itself. For future work, the interested researchers can obtain the existence of solution of
equation (1) in different Banach function spaces e.g. Sobolev space, Holder space, etc.
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