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Abstract
The shifted Chebyshev polynomials of the fifth kind (SCPFK) and the collocation
method are employed to achieve approximate solutions of a category of the
functional equations, namely variable-order time-fractional weakly singular partial
integro-differential equations (VTFWSPIDEs). A pseudo-operational matrix (POM)
approach is developed for the numerical solution of the problem under study. The
suggested method changes solving the VTFWSPIDE into the solution of a system of
linear algebraic equations. Error bounds of the approximate solutions are obtained,
and the application of the proposed scheme is examined on five problems. The
results confirm the applicability and high accuracy of the method for the numerical
solution of fractional singular partial integro-differential equations.
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1 Introduction
Partial integro-differential equations (PIDEs) with weakly singular kernels emerge in some
physical and chemical phenomena, such as the radiation of heat from semi-infinite solids,
stereology, hydrodynamics, heat conduction, and theory of elasticity [1, 2]. Due to pos-
sessing singular kernels, this category of functional equations is complicated, and directly
obtaining exact solutions of singular PIDEs is usually extremely hard. Therefore, the study
of numerical solutions of these equations is severely significant. Numerous numerical
schemes have been established to numerically solve the singular PIDEs, such as the Sinc
methods [3–6], the optimum q-homotopic analysis method [7], the finite difference meth-
ods [8–10], wavelets collocation schemes [11], and many other methods (readers can refer
to [12–15]). Fractional derivative and integral operators can better describe physical phe-
nomena of the real world, and hence researchers handle solving diverse fractional func-
tional equations. For example, the exact solutions of the time-fractional extended (2 + 1)-
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dimensional Zakharov–Kuznetsov equation and a high-dimensional time-fractional KdV-
type equation were obtained by means of the symmetry analysis method in [16, 17]. Sing
et al. suggested q-Elzakri transform method for solving multi-dimensional diffusion equa-
tions [18]. In [19], the Sumudu transform method was employed successfully for a frac-
tional blood alcohol model. Authors in [20] presented a method based on Chebyshev poly-
nomials to solve the fractional Bratu’s equation. Alderremy et al. used the finite-difference
method for the fractional two-cell cubic autocatalysis reaction model [21]. Fractional func-
tional equations with variable order (where orders are functions of the time or space or
both of them) were introduced in 1993 [22]. Due to having the memory properties, this
class of equations is a powerful tool to describe mechanics of an oscillating mass sub-
jected to a variable viscoelasticity damper and a linear spring, the motion of spherical
particle sedimentation in a quiescent viscous liquid, analysis of elastoplastic indentation
problems, and interpolating the behavior of systems with multiple fractional terms [22–
25]. Since limited works have been done on VTFPIDEs, in the present work a numerical
approach based on the bivariate Chebyshev polynomials of the fifth kind is presented to
obtain approximate solutions of the PIDEs as follows:

C
0 D

σ (x,t)
t V(x, t) +

2∑

i=0

2∑

j=0

νij
∂ i+jV(x, t)

∂xi∂tj + ρ

∫ x

0

∫ h(t)

0

F (V(ω,� ))
(x – ω)θ (t – � )ϑ

d� dω

= f(x, t), m – 1 < σ (x, t) ≤ m, (x, t) ∈ J,

(1)

with the initial and boundary conditions

V(x, 0) = φ0(x),
∂V(x, 0)

∂t
= φ1(x), V(0, t) = ψ0(t), V(1, t) = ψ1(t), (2)

where νij, ρ are real constants, θ ,ϑ ∈ [0, 1), m ∈ Z
+, and J = [0, 1] × [0, 1]. The functions

h(t), φ0(x), φ1(x), ψ0(t), ψ1(t) are known continuous ones. The functions V(x, t) and f(x, t)
are assumed to be sufficiently smooth, which guarantees the existence and uniqueness of
the solution of Eq. (1). F is an identity or a differential operator and C

0 D
σ (x,t)
t designates

the variable-order time-fractional derivative operator of the Caputo type. Equations of
the form (1) arise in problems dealing with heat conduction in materials with memory,
population dynamics, viscoelasticity, and theory of nuclear reactors (see [26, 27]).

The Chebyshev polynomials of the fifth kind have been utilized for fractional ordinary
differential equations with constant orders [28]. Modeling diverse phenomena in the dif-
ferent fields of science is performed by Eq. (1), [26, 27]. The integral part of Eq. (1) pos-
sesses a singular kernel and one of its limits is a function, which makes it hard to find
the exact solution of problem (1)–(2). The Chebyshev polynomials of the first to fourth
kinds have been widely used to solve diverse functional equations, but the orthogonal
Chebyshev polynomials of the fifth kind were taken into account less. These reasons and
the importance of the equation under study motivate the authors of the current paper
to present a new approach for solving the equation in (1). By generalizing the fifth-kind
Chebyshev polynomials to the two-dimensional case, their efficiency as basis functions is
demonstrated. Accordingly, pseudo-operational matrices of the integration and a pseudo-
operational matrix for the approximation of the integral part with the singular kernel are
derived. Besides, the relation between the one-variable basis vector X(t) and its shifted
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form, X(h(t)), is exhibited as a matrix. Using the collocation method along with the re-
sultant matrices converts the solution of the main problem to the solution of a system of
algebraic equations, and solving this algebraic system leads to an approximate solution.

Authors in [31] utilized two different basis functions (Legendre and Laguerre polyno-
mials) to construct the two-variable basis, and all computations are done for both bases,
while the proposed method in the current paper constructs the two-variable basis utiliz-
ing the fifth-kind Chebyshev polynomials. It is expected that the obtained results enjoy
less computational cost and more accuracy.

The rest of the paper is structured as follows: definitions of the fractional derivative
and integral operators, one- and two-variable Chebyshev polynomials of the fifth kind
are introduced in Sect. 2. Pseudo-operational matrices of the integration with integer and
fractional orders are derived in Sect. 3, and then with the aim of them, operational matrices
for the two-dimensional basis are constructed. The operational matrix of the product is
constructed, the integral part in (1) is approximated, and the shifted basis vector X(h(t))
is approximated in terms of the basis vector X(t). Section 4 is dedicated to describing the
suggested method, and error bounds for approximate solutions are computed in Sect. 5.
The applicability and efficiency of the proposed scheme are illustrated through several
experimental examples in Sect. 6. The paper concludes with a conclusion and discussion
in Sect. 7.

2 Fractional operators and SCPFK
2.1 Fractional operators
Definition 2.1 The variable-order time-fractional derivative operator of the Caputo type
is defined as follows [22]:

C
0 D

σ (x,t)
t V(x, t) =

1
�(m – σ (x, t))

∫ t

0
(t – � )m–σ (x,t)–1 ∂mV(x,� )

∂� m d� , (x, t) ∈ J,

where m – 1 < σ (x, t) ≤ m, m ∈ Z
+ and V(x, t) ∈ Cm(J).

Definition 2.2 The variable-order fractional integral operator in the Riemann–Liouville
sense RL

0 Iσ (x,t)
t is defined as follows [22]:

RL
0 Iσ (x,t)

t V(x, t) =
1

�(σ (x, t))

∫ t

0
(t – � )σ (x,t)–1V(x,� ) d� ,

where m – 1 < σ (x, t) ≤ m, m ∈ Z
+ and V(x, t) ∈ C(J).

Some properties of these operators are as follows:

1 RL
0 Iσ1(x,t)

t
(RL

0 Iσ2(x,t)
t g(x, t)

)
= RL

0 Iσ2(x,t)
t

(RL
0 Iσ1(x,t)

t g(x, t)
)

= RL
0 Iσ1(x,t)+σ2(x,t)

t g(x, t),

2 RL
0 Iσ (x,t)

t
(C

0 D
σ (x,t)
t g(x, t)

)
= g(x, t) – g(x, 0), 0 < σ (x, t) ≤ 1,

3 C
0 D

σ (x,t)
t tγ =

⎧
⎨

⎩
0, �σ (x, t)� > γ ,

�(γ +1)
�(γ –σ (x,t)+1) tγ –σ (x,t), otherwise,

4 RL
0 Iσ (x,t)

t tv =
�(v + 1)

�(v + σ (x, t) + 1)
tv+σ (x,t), v > –1.
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2.2 SCPFK
The bivariate Chebyshev polynomials of the fifth kind (BCPFK) are obtained from the
one-variable SCPFK. The SCPFKs are defined over the interval J = [0, 1] as follows [28]:

Xj(t) =
j∑

r=0

ρr,jtr , (3)

where

ρr,j =
22r–j

(2r)!

⎧
⎪⎨

⎪⎩

2
∑ j

2
l=� r+1

2 �
(–1)

j
2 +l–r lδl(2l+r–1)!

(2l–r)! , j even,

1
j
∑ j–1

2
l=� r

2 �
(–1)

j+1
2 +l–r(2l+1)2(2l+r)!

(2l–r+1)! , j odd,
(4)

and

δl =

⎧
⎨

⎩

1
2 , l = 0,

1, l > 0,

and ρ0,2j = 1/2j for j = 0, 1, 2, . . . . These polynomials are orthogonal with the weight func-
tion w(t) = (2t – 1)2/

√
t – t2, that is,

∫ 1

0
Xi(t)Xj(t)w(t) dt = �iδij,

where δij is the Kronecker delta function and

�i =

⎧
⎨

⎩

π

22i+1 , i even,
π (i+2)
i22i+1 , i odd.

(5)

The SCPFKs satisfy the following recurrence relation:

Xj+1(t) = (2t – 1)Xj(t) – εj+1Xj–1(t), j ≥ 1, t ∈ J ,

X0(t) = 1, X1(t) = 2t – 1,
(6)

where

εj+1 =
(j – 1)2 + j + (–1)j(2j – 1)

4j(j – 1)
.

A function Y ∈ L2
w(J) can be expanded in terms of the SCPFKs as follows:

Y(t) =
∞∑

j=0

YjXj(t), t ∈ J , (7)

where coefficients Yj, j ≥ 0, are computed as

Yj =
1
�j

∫ 1

0
Y(t)Xj(t)w(t) dt.
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The first few terms in (7) are practically required for approximating the function Y , i.e.,

Y(t) ≈ YN (t) =
N∑

j=0

YjXj(t) = XT (t)Y = YT X(t), (8)

where Y and X(t) are vectors as

Y =
[
Y0 Y1 . . . YN

]T
, X(t) =

[
X0(t) X1(t) . . . XN (t)

]T
. (9)

Now, BCPFKs are constructed using the one-variable SCPFKs on the domain J = [0, 1] ×
[0, 1] as follows:

Zij(x, t) = Xi(x)Xj(t), i, j = 0, 1, . . . , (x, t) ∈ J. (10)

These two-variable polynomials are orthogonal with respect to the weight function
W (x, t) = w(x)w(t) on J, that is,

∫ 1

0

∫ 1

0
Zij(x, t)Zkl(x, t)W (x, t) dx dt = �i�jδikδjl,

where �i, �j are defined in (5). The two-variable function Y ∈ L2
W (J) can be approximated

as follows:

Y (x, t) ≈ Y N (x, t) =
N∑

i=0

M∑

j=0

Y ijZij(x, t) = YT
�(x, t), (11)

where

Y =
[

Y 00 Y 01 . . . Y 0M Y 10 Y 11 . . . Y 1M . . .

Y N0 Y N1 . . . Y NM

]T
,

�(x, t) =
[
Z00(x, t) Z01(x, t) . . . Z0M(x, t) Z10 Z11(x, t) . . . Z1M(x, t)

. . . ZN0(x, t) ZN1(x, t) . . . ZNM(x, t)
]T

.

(12)

It must be mentioned that the vector �(x, t) is written as �(x, t) = X(x) ⊗ X(t), where ⊗
denotes the Kronecker product.

3 Pseudo-operational matrices
In this section, the pseudo-operational matrices of the integration (with integer and frac-
tional orders) and the operational matrix of the product are derived. The shifted vector
X(h(t)) is approximated in the vector X(t), and then a pseudo-operational matrix is com-
puted to approximate the integral part in (1).
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3.1 The integral pseudo-operational matrices
Lemma 3.1 For m ∈R

+, one has

∫ 1

0
tmXj(t)w(t) dt =

j∑

r=0

ρr,j
√

π

{4�(m + r + 5
2 )

�(m + r + 3)
–

4�(m + r + 3
2 )

�(m + r + 2)
+

�(m + r + 1
2 )

�(m + r + 1)

}
.

Proof Using series (3) and the weight function w(t), one has

∫ 1

0
tmXj(t)w(t) dt =

j∑

r=0

ρr,j

∫ 1

0

(
4tm+r+ 3

2 – 4tm+r+ 1
2 + tm+r– 1

2
)
(1 – t)– 1

2 dt

=
k∑

m=0

ρr,j

(
4B

(
m + r +

5
2

,
1
2

)
– 4B

(
m + r +

3
2

,
1
2

)

+ B
(

m + r +
1
2

,
1
2

))
,

where B(r, s) is the well-known beta function. �

Theorem 3.2 If X(t) is the basis vector in (9) and ε ∈ Z
+, then one gets

∫ t

0
ηεX(η) dη ≈ tε+1PεX(t), t ∈ I, (13)

where Pε is the (N + 1)-order pseudo-operational matrix of the integration of integer order,
and its entries are computed as follows:

Pε[j, m] =
√

π

�m

j∑

r=0

ρr,j

r + ε + 1

m∑

l=0

ρl,m

(4�(r + l + 5
2 )

�(r + l + 3)
–

4�(r + l + 3
2 )

�(r + l + 2)
+

�(r + l + 1
2 )

�(r + l + 1)

)
,

j, m = 0, 1, . . . , N .

Proof According to the definition of X(t), the left-hand side of relation (13) is calculated
as follows:

∫ t

0
ηεX(η) dη =

[ 0∑

r=0

ρr,0

∫ t

0
ηr+ε dη,

1∑

r=0

ρr,1

∫ t

0
ηr+ε dη, . . . ,

N∑

r=0

ρr,N

∫ t

0
ηr+ε dη

]T

=

[ 0∑

r=0

ρr,0
tr+ε+1

r + ε + 1
,

1∑

r=0

ρr,1
tr+ε+1

r + ε + 1
, . . . ,

N∑

r=0

ρr,N
tr+ε+1

r + ε + 1

]T

= tε+1

[ 0∑

r=0

ρr,0
tr

r + ε + 1
,

1∑

r=0

ρr,1
tr

r + ε + 1
, . . . ,

N∑

r=0

ρr,N
tr

r + ε + 1

]T

.

(14)

Now, tr is approximated in the polynomials Xm(t), m = 0, 1, . . . , N ,

tr ≈
N∑

m=0

ar
mXm(t), r = 0, 1, . . . , N ,
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such that

ar
m =

1
�m

∫ 1

0
trXm(t)w(t) dt

=
m∑

l=0

ρl,m
√

π

(4�(r + l + 5
2 )

�(r + l + 3)
–

4�(r + l + 3
2 )

�(r + l + 2)
+

�(r + l + 1
2 )

�(r + l + 1)

)
.

Substituting the last equality in the last row of (14) leads to the desired result. �

Remark 3.3 If �(x, t) is the bivariate vector in (12), then the pseudo-operational matrices
of integer order regarding the variables t and x are as follows:

∫ x

0
ξε�(ξ , t) dξ =

(∫ x

0
ξεX(ξ ) dξ

)
⊗ X(t)

≈ (
xε+1PεX(x)

)⊗ X(t)

= xε+1(Pε ⊗ I)
(
X(x) ⊗ X(t)

)

= xε+1
P

ε
(x)�(x, t),

∫ t

0
ηε�(x,η) dη = X(x) ⊗

(∫ t

0
ηεX(η) dη

)

≈ X(x) ⊗ (
tε+1PεX(t)

)

= tε+1(I ⊗ Pε)
(
X(x) ⊗ X(t)

)

= tε+1
P

ε
(t)�(x, t),

where P
ε
(x) and P

ε
(t) are the pseudo-operational matrices in the two-dimensional case re-

garding x and t, respectively.

Theorem 3.4 Assume that X(t) is the basis vector in (9) and RL
0 Iσ (t)

t is the variable-order
fractional integral operator in the Riemann–Liouville sense as follows:

RL
0 Iσ (t)

t g(t) =
1

�(σ (t))

∫ t

0
(t – η)σ (t)–1g(η) dη,

where σ (t), g(t) are continuous functions. Then one has

RL
0 Iσ (t)

t
(
tεX(t)

) ≈ tσ (t)+εP(σ )
ε X(t),

where P(σ )
ε is the (N + 1)-order pseudo-operational matrix of the integration of variable

order, and its entries are computed as follows:

P(σ )
ε [j, i] =

√
π

�i

j∑

r=0

ρr,j�(r + ε + 1)
�(r + σ + ε + 1)

i∑

l=0

ρl,i

(4�(r + l + 5
2 )

�(r + l + 3)
–

4�(r + l + 3
2 )

�(r + l + 2)

+
�(r + l + 1

2 )
�(r + l + 1)

)
, j, i = 0, 1, . . . , N .

Proof The proof is similar to what was done for Theorem 3.2. �
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Remark 3.5 If �(x, t) is the bivariate basis function and RL
0 Iσ (x,t)

t is the variable-order
Riemann–Liouville integral operator and ε ∈ Z

+, then a pseudo-operational matrix of the
integration with the variable order σ (x, t) is found as follows:

RL
0 Iσ (x,t)

t
(
tε�(x, t)

)
= X(x) ⊗ RL

0 Iσ (x,t)
t

(
tεX(t)

)

≈ X(x) ⊗ (
tε+σ (x,t)P(σ )

ε X(t)
)

= tε+σ (x,t)(I ⊗ P(σ )
ε

)(
X(x) ⊗ X(t)

)

= tε+σ (x,t)
P

(σ ,ε)
t �(x, t),

whereP(σ ,ε)
t is the integral pseudo-operational matrix of variable order for the two-variable

basis regarding the time variable.

3.2 The operational matrix of product
Lemma 3.6 The integration of three polynomials Xi(t), Xj(t), and Xk(t) is calculated as

qijk =
∫ 1

0
Xi(t)Xj(t)Xk(t)w(t) dt

=
j+k∑

r=0

i∑

l=0

γ (j,k)
r ρl,i

√
π

(4�(r + l + 5
2 )

�(r + l + 3)
–

4�(r + l + 3
2 )

�(r + l + 2)
+

�(r + l + 1
2 )

�(r + l + 1)

)
,

i, j, k = 0, 1, . . . , N .

Proof First, the products of Xj(t) and Xk(t) are written as follows:

Qj+k(t) = Xj(t)Xk(t) =

( j∑

m=0

ρm,jtm

)( k∑

n=0

ρn,ktn

)
=

( j+k∑

r=0

γ (j,k)
r tr

)
,

where the coefficients γ
(j,k)
r , j, k = 0, 1, . . . , N , r = 0, 1, . . . , j + k, can be calculated from Algo-

rithms 1 and 2.
Now, the quantity qijk is calculated as follows:

qijk =
∫ 1

0
Xi(t)Xj(t)Xk(t)w(t) dt =

j+k∑

r=0

γ (j,k)
r

∫ 1

0
trXi(t)w(t) dt

=
j+k∑

r=0

i∑

l=0

γ (j,k)
r ρl,i

∫ 1

0

(
4tr+l+ 3

2 – 4tr+l+ 1
2 + tr+l– 1

2
)
(1 – t)– 1

2 dt.

By definition of the beta function, the desired result is achieved. �

Algorithm 1 The computation of the coefficient γ
(j,k)
r if j ≥ k

r = 0, 1, . . . , j + k
if r > j then

γ
(j,k)
r =

∑k
l=r–j ρr–l,jρl,k

else
r1 = min{r, k}
γ

(j,k)
r =

∑r1
l=0 ρr–l,jρl,k

end if



Sadri et al. Advances in Difference Equations        (2021) 2021:348 Page 9 of 26

Algorithm 2 The computation of the coefficient γ
(j,k)
r if j < k

r = 0, 1, . . . , j + k
if r ≤ j then

r1 = min{r, j}
γ

(j,k)
r =

∑r1
l=0 ρr–l,jρl,k

else
r2 = min{r, k}
γ

(j,k)
r =

∑r2
l=r–j ρr–l,jρl,k

end if

Theorem 3.7 Suppose that X(t) is the basis vector in (9) and U is an (N + 1)-order arbi-
trary vector. Then one has

X(t)XT (t)U ≈ ŨX(t), (15)

where Ũ is the (N + 1)-order product matrix, and its entries are computed as follows:

Ũ[i, j] =
N∑

k=0

Uiqijk

�k
, i, j = 0, 1, . . . , N ,

and qijk is given by Lemma 3.6.

Proof See Theorem 4 in [29]. �

3.3 The approximation of the integral part
Theorem 3.8 If X(t) is the one-variable basis vector, then one has

∫ t

0

ηεX(η)
(t – η)β

dη ≈ tε–β+1B(β)X(t), β ∈ (0, 1), ε ∈ Z
+,

where B(β) is the (N + 1)-order pseudo-operational matrix for the integral with the weakly
singular kernel, and its entries are as follows:

B(β)[l, j] =
l∑

r=0

ρr,l
√

π�(r + ε + 1)�(1 – β)
�j�(r + ε – β + 2)

j∑

m=0

ρm,j

(4�(r + m + 5
2 )

�(r + m + 3)

–
4�(r + m + 3

2 )
�(r + m + 2)

+
�(r + m + 1

2 )
�(r + m + 1)

)
, l, j = 0, 1, . . . , N .

Proof According to the definition of X(t) and noting that

∫ t

0

ηr

(t – η)β
dη =

�(r + 1)�(1 – β)
�(r – β + 2)

tr–β+1, r = 0, 1, . . . ,
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one gets

∫ t

0

ηεX(η)
(t – η)β

dη =

⎡

⎢⎢⎢⎢⎢⎣

∑0
r=0 ρr,0

�(r+ε+1)�(1–β)
�(r+ε–β+2) tr+ε–β+1

∑1
r=0 ρr,1

�(r+ε+1)�(1–β)
�(r+ε–β+2) tr+ε–β+1

...
∑N

r=0 ρr,N
�(r+ε+1)�(1–β)

�(r+ε–β+2) tr+ε–β+1

⎤

⎥⎥⎥⎥⎥⎦

= tε–β+1

⎡

⎢⎢⎢⎢⎢⎣

∑0
r=0 ρr,0

�(r+ε+1)�(1–β)
�(r+ε–β+2) tr

∑1
r=0 ρr,1

�(r+ε+1)�(1–β)
�(r+ε–β+2) tr

...
∑N

r=0 ρr,N
�(r+ε+1)�(1–β)

�(r+ε–β+2) tr

⎤

⎥⎥⎥⎥⎥⎦
.

(16)

Using Lemma 3.1, tr , 0 ≤ r ≤ N , is written as

tr =
N∑

j=0

a(r)
j Xj(t)

=
N∑

j=0

{
1
�j

j∑

m=0

ρm,j
√

π

(4�(r + m + 5
2 )

�(r + m + 3)
–

4�(r + m + 3
2 )

�(r + m + 2)

+
�(r + m + 1

2 )
�(r + m + 1)

)}
Xj(t).

So, each component of the vector in (16) is approximated as follows:

l∑

r=0

ρr,N
�(r + ε + 1)�(1 – β)

�(r + ε – β + 2)
tr+ε–β+1

= tε–β+1

×
N∑

j=0

( l∑

r=0

ρr,l
√

π�(r + ε + 1)�(1 – β)
�j�(r + ε – β + 2)

j∑

m=0

ρm,j

(4�(r + m + 5
2 )

�(r + m + 3)

–
4�(r + m + 3

2 )
�(r + m + 2)

+
�(r + m + 1

2 )
�(r + m + 1)

))
Xj(t)

= tε–β+1
N∑

j=0

b(l, j)Xj(t), l = 0, 1, . . . , N .

Thus, one gets the following matrix representation:

∫ t

0

ηεX(η)
(t – η)β

dη = tε–β+1

⎡

⎢⎢⎢⎢⎣

b(0, 0) b(0, 1) · · · b(0, N)
b(1, 0) b(1, 1) · · · b(1, N)

...
...

. . .
...

b(N , 0) b(N , 1) · · · b(N , N)

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

X0(t)
X1(t)

...
XN (t)

⎤

⎥⎥⎥⎥⎦

= tε–β+1B(β)X(t). �
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3.4 The approximation of the shifted basis X(h(t))
Theorem 3.9 If h(t) ∈ C(J), then the shifted basis vector X(h(t)) is approximated in X(t)
as

X
(
h(t)

) ≈ �hX(t),

where �h is an (N + 1)-order matrix and is found later.

Proof Noting the definition of Xj(t) in (3), each Xj(h(t)) is written as

Xj
(
h(t)

)
=

j∑

k=0

ρj,kh
k(t), j = 0, 1, . . . , N , (17)

where coefficients ρj,k , j, k = 0, 1, . . . , N , are given by (4). Thus, the vector X(h(t)) is written
as

X
(
h(t)

)
=
[
X0

(
h(t)

)
,X1

(
h(t)

)
, . . . ,XN

(
h(t)

)]T

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0,0 0 0 · · · 0 0
ρ1,0 ρ1,1 0 · · · 0 0
ρ2,0 ρ2,1 ρ2,2 · · · 0 0

...
...

...
. . .

...
...

ρN–1,0 ρN–1,1 ρN–1,2 · · · ρN–1,N–1 0
ρN ,0 ρN ,1 ρN ,2 · · · ρN ,N–1 ρN ,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
h(t)
h2(t)

...
hN–1(t)
hN (t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= �H(t).

Now, the functions hk , k = 1, 2, . . . , N , must be approximated. First, h(t) is approximated
as follows:

h(t) ≈
N∑

k=0

�jXj(t) = �T X(t), (18)

where �j = 1
�j

∫ 1
0 h(t)Xj(t)w(t) dt. With the aid of (18), one achieves

h
k(t) ≈ �i

T X(t), �i =
(
�̃i–1)T

�, i = 1, 2, . . . , N ,

where �̃ is the (N + 1)-order operational matrix of the product, and its entries are calcu-
lated in terms of the components of the vector �. Hence, the vector H(t) is approximated
as follows:

H(t) ≈ [e1,�1,�2, . . . ,�N ]T X(t) = �X(t),

where e1 = [1, 0, . . . , 0]T . So, one attains

X
(
h(t)

) ≈ �H(t) ≈ ��X(t) = �hX(t), s.t. �h = ��. �
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Corollary 3.10 The following approximations are achieved by Theorems 3.2, 3.8, and 3.9:

∫ h(t)

0
ηεX(η) dη ≈ (

h(t)
)ε+1PεX

(
h(t)

) ≈ (
h(t)

)ε+1Pε�hX(t),

∫ h(t)

0

ηεX(η)
(t – η)β

dη ≈ (
h(t)

)ε–β+1B(β)X
(
h(t)

) ≈ (
h(t)

)ε–β+1B(β)�hX(t).

4 Methodology
To find an approximate solution for problem (1)–(2), first consider the following approx-
imation:

∂4V(x, t)
∂x2∂t2 ≈ UT�(x, t). (19)

By twice integrating (19) regarding x, the following approximations are obtained:

∂3V(x, t)
∂x∂t2 ≈ xUT

P
0
(x)�(x, t) +

∂3V(0, t)
∂x∂t2 , (20)

∂2V(x, t)
∂t2 ≈ x2UT

P
0
(x)P

1
(x)�(x, t) +

∂3V(0, t)
∂x∂t2 x + ψ ′′

0 (t). (21)

Now, setting x = 1 in (21) leads to determining the approximate value of ∂3V(0, t)/∂x∂t2:

∂3V(0, t)
∂x∂t2 ≈ ψ ′′

1 (t) – ψ ′′
0 (t) – UT

P
0
(x)P

1
(x)�(1, t) = G1(t).

Twice integrating (21) regarding t leads to the following approximations:

∂V(x, t)
∂t

≈ x2tUT
P

0
(x)P

1
(x)P

0
(t)�(x, t) + x

∫ t

0
G1(η) dη + ψ ′

0(t) – ψ ′
0(0) + φ1(x), (22)

V(x, t) ≈ x2t2UT
P

0
(x)P

1
(x)P

0
(t)P

1
(t)�(x, t) + x

∫ t

0

∫ t′

0
G1(η) dη dt′ + ψ0(t)

– ψ0(0) – ψ ′
0(0)t + tφ1(x) + φ0(x).

(23)

Again twice integrating (19) with respect to t yields the following approximations:

∂3V(x, t)
∂x2∂t

≈ tUT
P

0
(t)�(x, t) + φ′′

1 (x), (24)

∂2V(x, t)
∂x2 ≈ t2UT

P
0
(t)P

1
(t)�(x, t) + tφ′′

1 (x) + φ′′
0 (x). (25)

Integrating (25) regarding x gives the following approximation to ∂V(x, t)/∂x:

∂V(x, t)
∂x

≈ xt2UT
P

0
(t)P

1
(t)P

0
(x)�(x, t) + t

(
φ′

1(x) – φ′
1(0)

)

+ φ′
0(x) – φ′

0(0) +
∂V(0, t)

∂x
.

(26)

Deriving (23) regarding x and setting x = 0 lead to an approximation for ∂V(0, t)/∂x:

∂V(0, t)
∂x

≈
∫ t

0

∫ t′

0
G1(η) dη dt′ + tφ′

1(0) + φ′
0(0) = G2(t).
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Integrating (20) regarding t leads to the following approximation:

∂2V(x, t)
∂x∂t

≈ xtUT
P

0
(x)P

0
(t)�(x, t) +

∫ t

0
G1(η) dη + φ′

1(x). (27)

To approximate C
0 D

σ (x,t)
t V(x, t), consider the definition of the Riemann–Liouville integral

operator and the approximation in (21). Using Remark 3.5, one can write

C
0 D

σ (x,t)
t V(x, t) = RL

0 I2–σ (x,t)
t

(
D2

t V(x, t)
)

≈ RL
0 I2–σ (x,t)

t
(
x2UT

P
0
(x)P

1
(x)�(x, t) + xG1(t) + ψ ′′

0 (t)
)

≈ x2t2–σ (x,t)UT
P

0
(x)P

1
(x)P

(σ ,0)
(t) �(x, t) + xRL

0 I2–σ (x,t)
t G1(t)

+ C
0 D

σ (x,t)
t ψ0(t),

(28)

where D2
t = ∂2/∂t2. Suppose that F (V(x, t)) in the integral part in Eq. (1) is approximated

as follows:

F
(
V(x, t)

) ≈ xε1 tε2 V T�(x, t).

Now, the double integral in Eq. (1) is approximated as

∫ x

0

∫ h(t)

0

F (V(ω,� ))
(x – ω)θ (t – � )ϑ

d� dω

≈
∫ x

0

∫ h(t)

0

ωε1�ε2 V T�(ω,� )
(x – ω)θ (t – � )ϑ

d� dω

= V T
∫ x

0

ωε1 X(ω)
(x – ω)θ

dω ⊗
∫ h(t)

0

�ε2 X(� )
(t – � )ϑ

d�

≈ xε1–θ+1(
h(t)

)ε2–ϑ+1V T(B(θ )X(x)
)⊗ (

B(ϑ)X
(
h(t)

))

≈ xε1–θ+1(
h(t)

)ε2–ϑ+1V T(B(θ ) ⊗ (
B(ϑ)�h

))(
X(x) ⊗ X(t)

)

= xε1–θ+1(
h(t)

)ε2–ϑ+1V T
B

(θ ,ϑ)�(x, t),

(29)

where B
(θ ,ϑ) = B(θ ) ⊗ (B(ϑ)�h) is an (N + 1)2-order matrix. Substituting approxima-

tions (19)–(29) into Eq. (1) gives a residual function, and collocating it at tensor points
{(xi, tj)}N

i,j=0 leads to an algebraic system including (N + 1)2 equations. xi, tj are the roots
of XN+1(x) and XN+1(t), respectively. By solving the resultant system, the unknown coeffi-
cient vector U is determined, and an approximate solution is achieved from (23).

5 Error bounds
In this section, by computing error bounds of obtained approximations, an error bound
for the proposed method is presented.

Set PN = Span{Zij(t), i, j = 0, 1, . . . , N} and suppose that uN (x, t) ∈ PN is the best approxi-
mation to u(x, t) ∈ L2

W (J), in other words,

‖u – uN‖ = inf
z∈PN

‖u – z‖,

where uN (x, t) =
∑N

i=0
∑N

j=0 uijZi,j(x, t).
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Theorem 5.1 Suppose that T N
V (x, t) and VN (x, t) ∈ PN are the Taylor expansion and the

best approximation to V(x, t) ∈ L2
W (J), respectively. An approximation error can be com-

puted as follows:

‖V – VN‖L2
W (J) ≤ C0

√
π�0√

2N�2(N + 2)
,

where C0 is a positive constant and �0 = max(x,t)∈J | ∂2N+2V(x,t)
∂xN+1∂tN+1 |.

Proof The error of the Taylor expansion for function V is

V(x, t) – T N
V (x, t) =

xN+1tN+1

�2(N + 2)
∂2N+2V(ξx, ξt)
∂xN+1∂tN+1 , (ξx,ηt) ∈ J. (30)

Taking the L2-norm of Eq. (30) and using the definition of the beta function lead to the
following inequality:

‖V – VN‖2
L2

W (J) ≤ ∥∥V – T N
V
∥∥2

L2
W (J)

≤
∫ 1

0

∫ 1

0

�2
0x2N+2t2N+2

�4(N + 2)
W (x, t) dt dx

=
�2

0π

�4(N + 1)

(4�(2N + 9
2 )

�(2N + 5)
–

4�(2N + 7
2 )

�(2N + 4)
+

�(2N + 5
2 )

�(2N + 3)

)2

.

(31)

Utilizing the Stirling formula in [30] for sufficiently large N leads to the following inequal-
ities:

�(2N + 9
2 )

�(2N + 5)
≤ c1(2N)– 1

2 ,
�(2N + 7

2 )
�(2N + 4)

≤ c2(2N)– 1
2 ,

�(2N + 5
2 )

�(2N + 3)
≤ c3(2N)– 1

2 ,

where ci, i = 1, 2, 3, are positive constants. Using the above inequalities for (31) results in
the desired result. �

Theorem 5.2 Suppose that VN (x, t) and T N
V (x, t) are the best approximation and Taylor

expansion of V(x, t) ∈ L2
W (J). Error bounds for derivatives of V(x, t) can be approximated

as follows:

∥∥∥∥
∂ i+jV
∂xi∂tj –

∂ i+jVN

∂xi∂tj

∥∥∥∥
L2

W (J)
≤ C1

�i,j
√

π

�(N – i + 2)�(N – j + 2)
(
(2N – 2i)(2N – 2j)

)– 1
4 ,

where C1 is a positive constant and

�i,j = max
(x,t)∈J

∣∣∣∣
∂2N–i–j+2V(x, t)
∂xN–i+1∂tN–j+1

∣∣∣∣, i, j = 0, 1, 2.

Proof According to the Taylor expansion of the function V , one has

∂ i+jV(x, t)
∂xi∂tj –

∂ i+jT N
V (x, t)

∂xi∂tj =
xN–i+1tN–j+1

�(N – i + 2)�(N – j + 2)
∂2N–i–j+2V(ξxi ,ηtj )

∂xN–i+1∂tN–j+1 ,

(ξxi ,ηtj ) ∈ J, i, j = 0, 1, 2.

(32)
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By taking the L2-norm of (32), one gets

∥∥∥∥
∂ i+jV
∂xi∂tj –

∂ i+jT N
V

∂xi∂tj

∥∥∥∥
2

L2
W (J)

≤
∫ 1

0

∫ 1

0
�2

i,j
x2N–2i+2t2N–2j+2

�2(N – i + 2)�2(N – j + 2)
W (x, t) dt dx

=
�2

i,jπ

�2(N – i + 2)�2(N – j + 2)

×
(4�(2N – 2i + 9

2 )
�(2N – 2i + 5)

–
4�(2N – 2i + 7

2 )
�(2N – 2i + 4)

+
�(2N – 2i + 5

2 )
�(2N – 2i + 3)

)

×
(4�(2N – 2j + 9

2 )
�(2N – 2j + 5)

–
4�(2N – 2j + 7

2 )
�(2N – 2j + 4)

+
�(2N – 2j + 5

2 )
�(2N – 2j + 3)

)
.

(33)

By the Stirling formula for the sufficiently large N , one has

�(2N – 2r + 9
2 )

�(2N – 2r + 5)
≤ cr

1(2N – 2r)– 1
2 ,

�(2N – 2r + 7
2 )

�(2N – 2r + 4)
≤ cr

2(2N – 2r)– 1
2 ,

�(2N – 2r + 5
2 )

�(2N – 2r + 3)
≤ cr

3(2N – 2r)– 1
2 , r = i, j, i, j = 0, 1, 2,

where cr
m, m = 1, 2, 3, are positive constants. Combining the last inequalities with (33) leads

to the desired result. �

Theorem 5.3 Assume that σ (x, t) is a known continuous function and V(x, t) ∈ L2
W (J). An

error bound for the variable-order fractional derivative of the approximation of V(x, t) is
as follows:

∥∥C
0 D

σ (x,t)
t V – C

0 D
σ (x,t)
t VN

∥∥
L2

W (J) ≤ C2
�0

√
π

�(N + 2)�(N – σ ∗ + 2)
(
2N

(
2N – 2σ ∗))– 1

4 ,

where C2 is a positive constant, �0 is the same in Theorem 5.1, and σ ∗ = max(x,t)∈J{σ (x, t)}.

Proof By applying the operator C
0 D

σ (x,t)
t to (30), one gains

Dσ (x,t)
t V(x, t) – C

0 D
σ (x,t)
t T N

V (x, t) =
xN+1tN–σ (x,t)+1

�(N + 2)�(N – σ (x, t) + 2)
∂2N+2V(ξx,ηt)
∂xN+1∂N+1 ,

(ξx,ηt) ∈ J.
(34)

Taking the L2-norm of (34) leads to the following inequality:

∥∥C
0 D

σ (x,t)
t V – C

0 D
σ (x,t)
t VN

∥∥
L2

W (J)

≤
∫ 1

0

∫ 1

0

�0x2N+2t2N–2σ∗+2

�2(N + 2)�2(N – σ ∗ + 2)
W (x, t) dt dx (35)
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=
�2

0π

�2(N + 2)�2(N – σ ∗ + 2)

(4�(2N + 9
2 )

�(2N + 5)
–

4�(2N + 7
2 )

�(2N + 4)
+

�(2N + 5
2 )

�(2N + 3)

)

×
(4�(2N – 2σ ∗ + 9

2 )
�(2N – 2σ ∗ + 5)

–
4�(2N – 2σ ∗ + 7

2 )
�(2N – 2σ ∗ + 4)

+
�(2N – 2σ ∗ + 5

2 )
�(2N – 2σ ∗ + 3)

)
.

Using the Stirling formula for large values of N results in the following inequalities:

�(2N + 9
2 )

�(2N + 5)
≤ c1(2N)– 1

2 ,
�(2N + 7

2 )
�(2N + 4)

≤ c2(2N)– 1
2 ,

�(2N + 5
2 )

�(2N + 3)
≤ c3(2N)– 1

2 ,

�(2N – 2σ ∗ + 9
2 )

�(2N – 2σ ∗ + 5)
≤ d1

(
2N – 2σ ∗)– 1

2 ,
�(2N – 2σ ∗ + 7

2 )
�(2N – 2σ ∗ + 4)

≤ d2
(
2N – 2σ ∗)– 1

2 ,

�(2N – 2σ ∗ + 5
2 )

�(2N – 2σ ∗ + 3)
≤ d3

(
2N – 2σ ∗)– 1

2 ,

where ci, di, i = 1, 2, 3, are positive constants. Combining the resultant inequalities with
(35) leads to the desired results. �

Theorem 5.4 Suppose thatV(x, t) ∈ L2
W (J) andVN (x, t) is its approximation obtained from

the proposed method, F : R × R → R is a continuous differential operator, h(t) ∈ C(I),
h0 = maxt∈I{h(t)}, and the real number � > 0 exists such that

∥∥F
(
V(x, t)

)
– F

(
VN (x, t)

)∥∥
L2

W (J) ≤ �
∥∥V(x, t) – VN (x, t)

∥∥
L2

W (J).

The bound of the approximation error related to the integral part in Eq. (1) can be approx-
imated as follows:

∥∥∥∥
∫ x

0

∫ h(t)

0

F (V(ω,� ))
(x – ω)θ (t – � )ϑ

d� dω –
∫ x

0

∫ h(t)

0

F (VN (ω,� ))
(x – ω)θ (t – � )ϑ

d� dω

∥∥∥∥
L2

W (J)

≤ C0��0A0
√

π√
2N�2(N + 2)

,

where C0 is a positive constant, �0 is introduced by Theorem 5.1, θ ,ϑ ∈ (0, 1) and

A0 =
√
h0π

(
�( 1

2 – 2θ )�( 1
2 – 2ϑ)(4θ2 – 2θ + 1)(4ϑ2 – 2ϑ + 1)

�(3 – 2θ )�(3 – 2ϑ)

) 1
2

.

Proof According to the hypotheses of the theorem and using Theorem 5.1, one has

∥∥∥∥
∫ x

0

∫ h(t)

0

F (V(ω,� ))
(x – ω)θ (t – � )ϑ

d� dω –
∫ x

0

∫ h(t)

0

F (VN (ω,� ))
(x – ω)θ (t – � )ϑ

d� dω

∥∥∥∥
2

L2
W (J)

≤ �2
∫ x

0

∫ h(t)

0

∥∥(x – ω)–θ (t – � )–ϑ
∥∥2

L2
W (J)‖V – VN‖2

L2
W (J) d� dω

≤ �2C2
0�

2
0π

2N�4(N + 2)

∫ x

0

∫ h(t)

0

∥∥(x – ω)–θ (t – � )–ϑ
∥∥2

L2
W (J) d� dω

≤ �2C2
0�

2
0πh0

2N�4(N + 2)

(
π

�( 1
2 – 2θ )�( 1

2 – 2ϑ)(4θ2 – 2θ + 1)(4ϑ2 – 2ϑ + 1)
�(3 – 2θ )�(3 – 2ϑ)

)
. �
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Theorem 5.5 Suppose that V(x, t) and VN (x, t) are the exact and approximate solutions
of Eq. (1) and R(x, t) is the residual function/perturbation term. Then R(x, t) → 0 when
N → ∞.

Proof VN (x, t) is the approximate solution of Eq. (1), thus it satisfies the following equation:

C
0 D

σ (x,t)
t VN (x, t) +

2∑

i=0

2∑

j=0

νij
∂ i+jVN (x, t)

∂xi∂tj + ρ

∫ x

0

∫ h(t)

0

F (VN (ω,� ))
(x – ω)θ (t – � )ϑ

d� dω

– f(x, t) + R(x, t) = 0,

(36)

where R(x, t) is the residual function/perturbation term. Subtracting Eq. (36) from Eq. (1)
leads to the following equation:

R(x, t) = C
0 D

σ (x,t)
t

(
V(x, t) – VN (x, t)

)
+

2∑

i=0

2∑

j=0

νij
∂ i+j(V(x, t) – VN (x, t))

∂xi∂tj

+ ρ

∫ x

0

∫ h(t)

0

F (V(ω,� )) – F (VN (ω,� ))
(x – ω)θ (t – � )ϑ

d� dω.

(37)

By taking the L2-norm of Eq. (37) and using Theorems 5.1–5.4, a bound for R(x, t) can be
obtained as follows:

‖R‖L2
W (J) ≤ C2

�0
√

π

�(N + 2)�(N – σ ∗ + 2)
(
2N

(
2N – 2σ ∗))– 1

4

+
2∑

i=0

2∑

j=0

|νij|C1
�i,j

√
π

�(N – i + 2)�(N – j + 2)
(
(2N – 2i)(2N – 2j)

)– 1
4

+ |ρ|C0
��0

√
πA0√

2N�2(N + 2)
.

(38)

As seen, the right-hand side of (38) approaches zero if N is sufficiently large. �

6 Numerical examples
To illustrate the efficiency and applicability of the proposed scheme, five cases of Eq. (1)
are considered. Maximum absolute errors and CPU times are computed, and numerical
results are compared to those reported in [31]. Computations and simulations are done
by Maple 16 software.

Example 6.1 Consider the following variable-order time-fractional singular partial
integro-differential equation:

C
0 D

σ (x,t)
t V(x, t) – V(x, t) –

∫ x

0

∫ h(t)

0

∂2V(ω,� )
∂� 2

(x – ω) 1
2

d� dω = f(x, t), 0 < σ (x, t) ≤ 1, (39)

where (x, t) ∈ J. The initial conditions and the exact solution are as follows:

V(x, 0) =
∂V(x, 0)

∂t
= 0, V(x, t) = x2t,
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and

f(x, t) =
�(3)

�(3 – σ (x, t))
xt2–σ (x,t) – xt2 –

8
3

x
3
2 h(t).

Based on what was stated in Sect. 4, the following approximations are needed to calculate
the residual function R(x, t).

∂2V(x, t)
∂t2 ≈ UT�(x, t),

∂V(x, t)
∂t

≈ tUT
P

0
(t)�(x, t),

V(x, t) ≈ t2UT
P

0
(t)P

1
(t)�(x, t),

C
0 D

σ (x,t)
t V(x, t) = RL

0 I1–σ (x,t)
t

∂V(x, t)
∂t

≈ t2–σ (x,t)UT
P

0
(t)P

1
(t)P

(1–σ ,1)
(t) �(x, t),

∫ x

0

∫ h(t)

0

∂2V(ω,� )
∂� 2

(x – ω) 1
2

d� dω ≈ x
1
2 h(t)UT

B�(x, t), B = B( 1
2 ) ⊗ (P0�h).

Substituting the above approximations into Eq. (39) leads to the following residual func-
tion:

R(x, t) = t2–σ (x,t)UT
P

0
(t)P

1
(t)P

(1–σ ,1)
(t) �(x, t) – t2UT

P
0
(t)P

1
(t)�(x, t)

– x
1
2 h(t)UT

B�(x, t) – f(x, t).
(40)

The L2-norm of (40) is 1.2672 × 10–19 and the CPU time is 5.04 s for h(t) = cos(t),
σ (x, t) = 1, and N = 4, while the L2-norm of the residual function reported by [31] is
2.5549 × 10–16. The maximum absolute errors (MAE) and the CPU time are computed
for N = 4 and various choices of functions h(t) and σ (x, t). The reported CPU times in
Table 1 show that the proposed method has a reasonable computational time. Compar-
ing results to those reported by [31] emphasizes higher accuracy and coincidence of the
proposed method. The 3D plots of the exact and approximate solutions and the absolute
error function are depicted in Fig. 1 for N = 4, σ (x, t) = 1 – e–xt , h(t) = cos(t). Absolute er-
rors of approximate solutions at equally spaced points are listed in Table 2 and calculated
for N = 4, σi(x, t) = 1, 0.875, 0.8 + 0.005 cos(xt), i = 1, 2, 3, and h(t) = t, et2 . Data of this table
show that the numerical results are in agreement with the exact ones.

Table 1 Maximum absolute errors and CPU time for N = 4 for Example 6.1

h(t) Present method

σ (x, t) MAE CPU Error in [31]

t 1 1.7449× 10–18 3.03 s 5.4665× 10–14

0.5 1.6707× 10–19 3.43 s 2.3149× 10–12

1 – e–xt 8.4642× 10–19 14.01 s 2.2154× 10–12

cos(t) 1 4.7096× 10–19 3.09 s 5.9807× 10–14

0.5 2.6267× 10–19 3.79 s 3.1643× 10–12

1 – e–xt 1.8577× 10–18 18.70 s 3.7712× 10–12
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Figure 1 (a) 3D plot of exact solution, (b) 3D plot of approximate solution, (c) 3D plot of absolute error
function for Example 6.1 for N = 4, σ (x, t) = 1 – 0.5e–xt , and h(t) = cos(t)

Table 2 Absolute errors for N = 4 at equally spaced points (xj , tj) for Example 6.1

(xj , tj) σ1(x, t) = 1 σ2(x, t) = 0.875 σ3(x, t)

h(t) = t h(t) = et
2

h(t) = t h(t) = et
2

h(t) = t h(t) = et
2

(0.0, 0.0) 0.00 0.00 0.00 0.00 0.00
(0.1, 0.1) 2.90× 10–22 1.70× 10–22 1.90× 10–21 3.00× 10–22 1.90× 10–21 4.24× 10–21

(0.2, 0.2) 9.00× 10–22 3.30× 10–21 9.10× 10–21 3.50× 10–21 7.80× 10–21 1.16× 10–20

(0.3, 0.3) 5.00× 10–21 1.80× 10–20 1.90× 10–20 1.30× 10–20 1.30× 10–20 1.00× 10–21

(0.4, 0.4) 9.00× 10–21 3.80× 10–20 8.20× 10–20 2.10× 10–20 1.70× 10–20 2.00× 10–20

(0.5, 0.5) 2.00× 10–20 5.00× 10–20 1.20× 10–19 3.00× 10–20 1.00× 10–20 3.00× 10–20

(0.6, 0.6) 3.00× 10–20 4.00× 10–20 4.00× 10–20 1.00× 10–20 2.00× 10–20 1.00× 10–20

(0.7, 0.7) 3.00× 10–20 1.00× 10–20 2.90× 10–19 0.00 8.00× 10–20 1.00× 10–19

(0.8, 0.8) 3.00× 10–20 0.00 1.51× 10–18 1.00× 10–20 2.60× 10–19 2.00× 10–19

(0.9, 0.9) 2.00× 10–20 5.00× 10–20 5.68× 10–18 1.00× 10–20 9.70× 10–19 1.40× 10–19

(1.0, 1.0) 0.00 2.00× 10–19 1.71× 10–17 2.00× 10–20 3.90× 10–18 4.00× 10–19

Example 6.2 Consider the following variable-order time-fractional singular partial
integro-differential equation:

C
0 D

σ (x,t)
t V(x, t) – V(x, t) –

∂V(x, t)
∂x

–
∫ x

0

∫ h(t)

0

∂3V(ω,� )
∂ω∂� 2

(x – ω) 1
4

d� dω = f(x, t), (41)

where 1 < σ (x, t) ≤ 2, (x, t) ∈ J. The initial and boundary conditions are as follows:

V(x, 0) = –x,
∂V(x, 0)

∂t
= V(0, t) = 0, V(1, t) = t3 – 1.

The exact solution is V(x, t) = x(t3 – 1) and

f(x, t) =
6xt3–σ (x,t)

�(4 – σ (x, t))
–

2
3

x
3
4 h

2(t) – x
(
t3 – 1

)
– t3 + 1.
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Table 3 Maximum absolute errors for N = 5 and different choices of h(t) and σ (x, t) for Example 6.2

h(t) = t σ (x, t) = 1.25 σ (x, t) = 1.50 σ (x, t) = 1.75 σ (x, t) = 2 – 0.2e–xt

MAE 1.4000× 10–18 5.4920× 10–17 1.9500× 10–18 1.8800× 10–18

h(t) = t2 + 1 σ (x, t) = 1.25 σ (x, t) = 1.50 σ (x, t) = 1.75 σ (x, t) = 2 – 0.2e–xt

MAE 3.1600× 10–18 4.3200× 10–18 1.0168× 10–18 1.9856× 10–18

h(t) = cos(t) σ (x, t) = 1.25 σ (x, t) = 1.50 σ (x, t) = 1.75 σ (x, t) = 2 – 0.2e–xt

MAE 9.9203× 10–9 3.0399× 10–9 2.9478× 10–9 3.8210× 10–9

h(t) = sin(t) σ (x, t) = 1.25 σ (x, t) = 1.50 σ (x, t) = 1.75 σ (x, t) = 2 – 0.2e–xt

MAE 3.9225× 10–4 5.9571× 10–6 2.4618× 10–8 5.3379× 10–9

Figure 2 3D plots of absolute error functions for (a) h(t) = t, (b) h(t) = t2 + 1, (c) h(t) = cos(t), (d) h(t) = sin(t),
σ (x, t) = 2 – 0.2e–xt , and N = 5 for Example 6.2

Substituting appropriate approximations into Eq. (41) leads to the following residual func-
tion:

R(x, t) = xt2–σ (x,t)UT
P

0
(x)P

(2–σ ,0)
(t) �(x, t) –

(
xt2UT

P
0
(x)P

0
(t)P

1
(t)�(x, t) – x

)

–
(
t2Ut

P
0
(t)P

1
(t)�(x, t) – 1

)
– x

3
4 h(t)UT

B�(x, t) – f(x, t),
(42)

whereB = B( 1
4 ) ⊗ (P0�h). Maximum absolute errors of obtained approximate solutions are

seen in Table 3 for N = 5 and various choices of functions σ (x, t) and h(t). The results have
more accuracy for h(t) = t, 1 + t2. For h(t) = sin(t), the errors decrease as σ (x, t) → 2. The
3D plots of the absolute error functions are depicted in Fig. 2 for N = 5, σ (x, t) = 2–0.2e–xt ,
and diverse cases of h(t).

Example 6.3 Consider the following VTFSPIDE with the exact solution as V(x, t) = 10(t +
1)x2(1 – x)2:

C
0 D

σ (x,t)
t V(x, t) +

∂V(x, t)
∂t

+
∂V(x, t)

∂x
–

∂2V(x, t)
∂x2 –

∫ x

0

∫ h(t)

0

V(ω,� )
(x – ω) 1

2
d� dω = f(x, t),
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Table 4 Absolute errors for N = 3 and h(t) = t at equally spaced points (xj , tj) for Example 6.3

(xj , tj) σ (x, t) = 1 – 0.5e–xt σ (x, t) = 1 – cos(x)e–t σ (x, t) = 0.25 σ (x, t) = 0.50 σ (x, t) = 1

(0.0, 0.0) 0.00 0.00 0.00 0.00 0.00
(0.1, 0.1) 1.00× 10–21 0.00 1.00× 10–21 0.00 1.00× 10–21

(0.2, 0.2) 0.00 0.00 1.00× 10–20 0.00 0.00
(0.3, 0.3) 0.00 0.00 2.00× 10–20 2.00× 10–20 2.00× 10–20

(0.4, 0.4) 2.00× 10–20 3.00× 10–20 7.00× 10–20 4.00× 10–20 5.00× 10–20

(0.5, 0.5) 1.00× 10–20 6.00× 10–20 1.70× 10–19 1.70× 10–19 1.00× 10–20

(0.6, 0.6) 1.30× 10–19 5.00× 10–20 2.10× 10–19 2.00× 10–19 1.00× 10–19

(0.7, 0.7) 2.30× 10–19 9.00× 10–20 3.90× 10–19 3.50× 10–19 0.00
(0.8, 0.8) 3.00× 10–19 3.00× 10–19 6.70× 10–19 2.00× 10–20 9.30× 10–19

(0.9, 0.9) 1.99× 10–18 2.30× 10–19 1.16× 10–18 4.80× 10–19 1.60× 10–18

(1.0, 1.0) 6.79× 10–18 1.00× 10–18 5.63× 10–19 1.32× 10–18 3.37× 10–18

Table 5 Absolute errors for N = 3 and h(t) = cos(t) at equally spaced points (xj , tj) for Example 6.3

(xj , tj) σ (x, t) = 1 – 0.5e–xt σ (x, t) = 1 – cos(x)e–t σ (x, t) = 0.25 σ (x, t) = 0.50 σ (x, t) = 1

(0.0, 0.0) 0.00 0.00 0.00 0.00 0.00
(0.1, 0.1) 1.00× 10–20 1.00× 10–21 1.00× 10–21 2.00× 10–21 0.00
(0.2, 0.2) 4.00× 10–20 0.00 1.00× 10–20 2.00× 10–20 0.00
(0.3, 0.3) 1.60× 10–19 1.00× 10–20 6.00× 10–20 5.00× 10–20 4.00× 10–20

(0.4, 0.4) 3.00× 10–19 3.00× 10–20 9.00× 10–20 9.00× 10–20 4.00× 10–20

(0.5, 0.5) 6.00× 10–19 2.00× 10–20 1.40× 10–19 2.30× 10–19 0.00
(0.6, 0.6) 1.00× 10–18 0.00 1.00× 10–19 3.20× 10–19 1.00× 10–19

(0.7, 0.7) 1.61× 10–18 9.00× 10–20 0.00 4.70× 10–19 1.90× 10–19

(0.8, 0.8) 2.47× 10–18 6.70× 10–19 7.10× 10–19 1.37× 10–18 3.10× 10–19

(0.9, 0.9) 3.56× 10–18 1.95× 10–18 1.41× 10–18 2.38× 10–18 1.69× 10–18

(1.0, 1.0) 6.03× 10–18 7.10× 10–18 6.06× 10–18 7.60× 10–18 5.54× 10–18

where 0 < σ (x, t) ≤ 1, (x, t) ∈ J. The initial and boundary conditions are

V(x, 0) = 10x2(1 – x)2, V(0, t) = V(1, t) = 0,

and

f(x, t) = 10x2(1 – x)2
(

1 +
t2–σ (x,t)

�(2 – σ (x, t))

)
–

16
63

h(t)x
5
2 (t + 2)

(
16x2 – 36x + 21

)

+ 10
(
4x3 – 6x2 + 2x – 12x2 + 12x – 2

)
(t + 1).

The values of the absolute errors of the approximate solutions are computed at the points
xj = tj = 0.1j, j = 0, 1, . . . , 10, for N = 3, σ (x, t) = 1 – 0.5e–xt , 1 – cos(x)e–t , 0.25, 0.50, 1, the re-
sults are seen in Tables 4 and 5 for h(t) = t and h(t) = cos(t), respectively. Data of these ta-
bles demonstrate the agreement of the numerical results with the exact ones. The method
has high accuracy even when h(t) is a continuous function. The 3D plots of the exact and
approximate solutions and the absolute error function are observed in Fig. 3 for N = 3,
σ (x, t) = 1 – 0.3(1 + x3)e–t , h(t) = t2. The computational times of approximate solutions
are listed in Table 6 for N = 3, h(t) = t, and various cases of σ (x, t). When values of σ (x, t)
approach 1, the computational time decreases. The exact and approximate solutions are
compared in Fig. 4 for N = 3, σ (x, t) = 1 – cos(x)e–t , h(t) = cos(t) at t = 0.25, 0.50, 0.75, 1. As
seen, the approximate solutions are in good agreement with the exact ones.
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Figure 3 (a) 3D plot of exact solution, (b) 3D plot of approximate solution, (c) 3D plot of absolute error
function for N = 3, h(t) = t2, σ (x, t) = 1 – 0.3(1 + x3)e–t for Example 6.3

Table 6 CPU time for N = 3 and h(t) = t for Example 6.3

σ (x, t) 1 – 0.5e–xt 1 – cos(x)e–t 0.25 0.50 1
CPU Time 6.96 7.63 3.78 2.80 1.78

Figure 4 Exact and approximate solutions for N = 3,
σ (x, t) = 1 – cos(x)e–t , h(t) = cos(t) at times t = 0.25,
0.50, 0.75, 1 for Example 6.3

Example 6.4 Consider the variable-order fractional partial integro-differential equation
with the weakly singular kernel

C
0 D

σ (x,t)
t V(x, t) +

∂V(x, t)
∂x

–
∫ x

0

∫ h(t)

0

V(ω,� )
(t – � ) 1

2
d� dω = f(x, t),

where 0 < σ (x, t) ≤ 1, (x, t) ∈ J. The initial and boundary conditions and the exact solution
are, respectively,

V(x, 0) = V(0, t) = 0, V(x, t) = t sin(x),



Sadri et al. Advances in Difference Equations        (2021) 2021:348 Page 23 of 26

Table 7 Absolute errors for h(t) = t and σ (x, t) = 0.5 at equally spaced points (xj , tj) for Example 6.4

(xj , tj) N = 3 N = 4 N = 5 Error in [31]

(0.0, 0.0) 0.0000 0.0000 0.0000 0.00
(0.1, 0.1) 5.5521× 10–7 1.7993× 10–8 1.3365× 10–9 8.50× 10–8

(0.2, 0.2) 2.8124× 10–6 3.5316× 10–8 2.4635× 10–9 9.24× 10–8

(0.3, 0.3) 8.2040× 10–8 1.6510× 10–7 8.9275× 10–9 8.24× 10–8

(0.4, 0.4) 1.7251× 10–5 5.7729× 10–7 2.1087× 10–8 1.59× 10–7

(0.5, 0.5) 5.1356× 10–5 8.4428× 10–7 1.0769× 10–7 2.50× 10–7

(0.6, 0.6) 9.4605× 10–5 5.8758× 10–7 2.1640× 10–7 2.42× 10–7

(0.7, 0.7) 1.3139× 10–4 1.7271× 10–7 2.8260× 10–7 2.19× 10–7

(0.8, 0.8) 1.4741× 10–4 8.6705× 10–7 2.7865× 10–7 4.80× 10–7

(0.9, 0.9) 1.4313× 10–4 7.6574× 10–7 2.7263× 10–7 9.18× 10–7

(1.0, 1.0) 1.4740× 10–4 3.6546× 10–7 3.1361× 10–7 6.83× 10–7

Table 8 Absolute errors for h(t) = t and σ (x, t) = 0.8 + 0.005 cos(xt) sin(x) at equally spaced points
(xj , tj) for Example 6.4

(xj , tj) N = 3 N = 4 N = 5 Error in [31]

(0.0, 0.0) 0.0000 0.0000 0.0000 0.00
(0.1, 0.1) 4.6564× 10–7 1.3174× 10–8 9.1996× 10–10 6.71× 10–8

(0.2, 0.2) 2.1675× 10–6 1.9799× 10–8 2.7846× 10–9 5.56× 10–8

(0.3, 0.3) 9.2951× 10–7 1.6713× 10–7 8.3848× 10–9 3.44× 10–8

(0.4, 0.4) 1.7223× 10–5 5.4651× 10–7 2.1337× 10–8 1.00× 10–7

(0.5, 0.5) 4.9474× 10–5 7.8736× 10–7 1.0666× 10–7 1.75× 10–7

(0.6, 0.6) 9.0602× 10–5 5.2274× 10–7 2.1247× 10–7 1.48× 10–7

(0.7, 0.7) 1.2583× 10–4 2.3837× 10–7 2.7283× 10–7 1.05× 10–7

(0.8, 0.8) 1.4134× 10–4 9.3766× 10–7 2.6298× 10–7 3.36× 10–7

(0.9, 0.9) 1.3712× 10–4 8.3631× 10–7 2.5434× 10–7 7.37× 10–7

(1.0, 1.0) 1.3951× 10–4 4.6873× 10–7 2.9456× 10–7 8.58× 10–7

Figure 5 Absolute error functions for N = 5, h(t) = t,
x = 1, and diverse cases of σ (x, t) for Example 6.4

and

f(x, t) =
t1–σ (x,t)

�(2 – σ (x, t))
sin(x) + t cos(x) +

(
4
3

t
3
2 –

2
3
(
t – h(t)

) 1
2
(
2t + h(t)

))(
cos(x) – 1

)
.

The values of absolute errors of the approximate solutions are computed at the points xj =
tj = 0.1j, j = 0, 1, . . . , 10, for N = 3, 4, 5 and h(t) = t, and the results are seen in Tables 7 and 8
for σ (x, t) = 0.5 and σ (x, t) = 0.8+0.005 cos(xt) sin(x), respectively. As seen, by increasing N
the values of the absolute errors decrease. Also, results are compared to the results of [31]
for M = 4, N = 1. The results obtained from the proposed method enjoy higher accuracy
than those reported in [31]. The figures of the absolute error functions are depicted in
Fig. 5 for N = 5, x = 1, h(t) = t, and σ (x, t) = 1 – 0.1e–xt , 1 – 0.3e–xt , 1 – 0.5e–xt , 1 – 0.7e–xt .
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Table 9 Maximum absolute errors and CPU time of Example 6.5 for h(t) = t and σ (x, t) = 1

N

2 4 6 8 10

MAE 8.2253× 10–4 2.2614× 10–6 3.3966× 10–9 2.7954× 10–12 1.5947× 10–15

CPU 3.24 3.44 13.38 47.47 147.67

Figure 6 Approximate solutions of Example 6.5 for
N = 5, h(t) = t, x = 1, and different values of σ (x, t)

Example 6.5 Consider the variable-order time-fractional partial integro-differential equa-
tion with the weakly singular kernel

C
0 D

σ (x,t)
t V(x, t) + V(x, t) –

∫ x

0

∫ t

0

∂V(ω,� )
∂�

(x – ω) 1
3

d� dω = f(x, t), 0 < σ (x, t) ≤ 1, (x, t) ∈ J.

The initial and boundary conditions are

V(x, 0) = cos(x), V(0, t) = 1 + sin(t),

the exact solution is V(x, t) = cos(x) + sin(t) if σ (x, t) = 1, and

f(x, t) = cos(x) + sin(t) + cos(t) +
3
2

x
2
3 sin(t).

Maximum absolute errors and CPU time are seen in Table 9 for h(t) = t, σ (x, t) = 1, and var-
ious values of N . By increasing N , the maximum absolute error decreases and CPU times
show that the proposed method has a reasonable computational cost. The plots of the ap-
proximate solutions are observed in Fig. 6 for N = 5, h(t) = t, σ (x, t) = 0.8, 0.85, 0.9, 0.95, 1,
and x = 1. When the values of σ (x, t) approach 1, approximate solutions get close to the
exact solution in the case σ (x, t) = 1.

7 Conclusion
The fifth-kind Chebyshev polynomials were proposed to deal with the numerical solution
of a class of partial integro-differential equations with weakly singular kernels. To this
end, bivariate Chebyshev polynomials were constructed with the help of the one-variable
ones, and their pseudo-operational matrices were derived by obtaining matrices for the
one-dimensional case. Resultant matrices and approximations were utilized along with the
collocation method to solve the problem under study. Error bounds were computed, and
using them we showed that the residual function tends to zero if the number of terms in the
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solution series is chosen sufficiently large. The proposed method reduces the volume of
computations by presenting reliable algorithms. The numerical results demonstrated the
efficiency and applicability of the method since they had a good agreement with the exact
ones, and the numerical results had less error in comparison with those reported in [31].
Therefore, the Chebyshev polynomials of the fifth kind are suggested to be considered as
basis functions for various types of spectral and pseudo-spectral methods. By observing
the stated facts, the suggested method can be employed easily to solve delay integro-partial
differential equations and some nonlinear partial differential equations.
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