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1 Introduction
The Banach contraction principle [1] and its generalizations have been applied in various
disciplines of mathematics, economics, and engineering. One of the interesting applica-
tions of Banach contraction principle is to study the graph neural network model [2] (see
also [3, 4]). In some cases when we do not have uniqueness of the fixed point, such a map
fixes a circle which we call a fixed circle, the fixed-circle problem arises naturally in prac-
tice. There exist a lot of examples of self-mappings that map a circle onto themselves and
fix all the points of the circle, whereas the circle is not fixed by the self-mapping.

Take x0 ∈ � and given � ≥ 0 an arbitrary real. A circle and a disc with center x0 and
radius � are defined on a metric space (�, d) as follows, respectively:

C(x0,�) =
{

x ∈ � : d(x0, x) = �
}

,

and

D(x0,�) =
{

x ∈ � : d(x0, x) ≤ �
}

.

A mapping φ : � → � fixes the circle C(x0,�) (resp. the disc D(x0,�)) if φ(x) = x for all x ∈
C(x0,�)(resp. x ∈ D(x0,�)).

Denote by C the set of all complex numbers with the usual metric d(r1, r2) = |r1 – r2| for
all r1, r2 ∈C, and let φ : C →C be defined by

φ(r) =

⎧
⎨

⎩

1
r if r �= 0,

0 if r = 0,
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where r is the conjugate of r. Then φ fixes all points of the circle C0,1 = {r ∈ C : |r| ≤
1}. It is worth pointing out that there exist some mappings which map the circle Cr0,ι to
themselves, but do not fix all points of the circle Cr0,ι. For instance, let ψ : C → C be
defined by

ψ(r) =

⎧
⎨

⎩

1
r if r �= 0,

0 if r = 0.

Then ψ(C0,1) = C0,1, but ψ does not fix all points of C0,1. In fact, the mapping ψ fixes
only two points of the unit circle.

The results on fixed circles and fixed discs have been studied in metric and generalized
metric spaces via different contractive conditions (see [5–14]).

The concept of an F-contraction given by Wardowski [15] proved to be another mile-
stone in fixed point theory. Numerous research papers on F -contractions have been pub-
lished, see for instance [16–32].

Jleli and Samet [33, 34] introduced another generalization of BCP, known as a θ -
contraction, and obtained some fixed point theorems for θ -contraction type mappings.
Liu [35] introduced the concept of (ϒ ,	)-contraction and established fixed point re-
sults for such mappings in metric spaces. Recently, Ameer [36] introduced common fixed
point results for generalized multivalued (α∗

K ,ϒ ,	)-contractions in αK -complete par-
tial b-metric spaces. Moreover, Ameer [37, 38] introduced common fixed point results
for generalized multivalued (ϒ ,	)-contractions in complete metric and b-metric spaces.
Ameer et al. [39] initiated the notion of rational (	,ϒ ,	)-contractive pair of mappings
(where 	is a binary relation) and established new common fixed point results for these
mappings in complete metric spaces, see also ([40, 41]).

In this paper, we study mappings that not only fix one element, but also fix a well-defined
set of “fixed points” which is either a circle, or a disc. We present some results on fixed
circles and discs for some types of contraction self-mappings, namely L(ω,C)-contractions
[42], Ćirić [43] type L(ω,C)-contractions, and Hardy–Rogers [44] type L(ω,C)-contractions
in the setting of metric spaces. We discuss some results on fixed circles (discs) of integral
type contractive single-valued maps. Moreover, we give an application of our obtained
results to a discontinuous self-mapping that has a fixed circle.

2 Preliminaries
First, let F : (0,∞) → (–∞,∞) be such that

(F1) F is strictly increasing;
(F2) for each sequence {γn}∞n=1 ⊂ (0,∞),

lim
n→∞ F(γn) = –∞ ⇔ lim

n→∞γn = 0;

(F3) there is κ ∈ (0, 1) such that limt→0+ tκF(t) = 0.
Define F1 = {F : (0,∞) → (–∞,∞), F satisfies (F1)} and F2 = {F : (0,∞) → (–∞,∞),

F satisfies (F1) – (F3)}.
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Definition 2.1 ([15]) Let T : χ → χ be defined on a metric space (χ , d). Such T is named
an F-contraction if there exist τ > 0 and F ∈F2 such that

�, j ∈ χ , d
(
T(�), T(j )

)
> 0 ⇒ τ + F

(
d
(
T(�), T(j )

)) ≤ F
(
d(�, j )

)
. (2.1)

The related fixed point result is as follows:

Theorem 2.2 ([15]) Each F- contraction self-mapping on a complete metric space admits
a unique fixed point.

Piri and Kumam [45] replaced assumption (F3) of F by:
(F́3) F is continuous.
Take F∗ = {F : (0,∞) → (–∞,∞), F verifies (F1), (F2), and (F́3)}.

Definition 2.3 ([45]) T : χ → χ defined on a metric space (χ , d) is named an F-
contraction (with F ∈F∗) if there exist τ > 0 and F ∈F∗ such that (2.1) holds.

The main result of Piri and Kumam [45] is as follows.

Theorem 2.4 ([45]) Each F-contraction self-mapping (with F ∈F∗) on a complete metric
space admits a unique fixed point.

Remark 2.5 Mention that the function F given as F(ς ) = – 1
ςq (with q ≥ 1) is in the set F∗,

but it does not belong to F2. Also, the function F defined by

F(ς ) = –
1

(ς + [ς ])k , k ∈
(

0,
1
l

)
, l > 1,

is in F2, but does not belong to F∗. However, there is also at least one function F defined
by F(ς ) = ln(ς ) which belongs to both F∗ and F2. Hence, the families F∗ and F2 are
overlapping.

In 2014, the concept of θ -contractions was initiated by Jleli and Samet [33].
The self-mapping T defined on the metric space (χ , d) is named a θ -contraction, when-

ever there exist θ ∈ � and k ∈ (0, 1) such that

�, j ∈ χ , d
(
T(�), T(j )

) �= 0 �⇒ θ
(
d
(
T(�), T(j )

)) ≤ [
θ (d(�, j )

]k ,

where � = {θ : (0,∞) → (1,∞)|θ verifies (�1) – (�3)}
(�1) θ is nondecreasing;
(�2) for each sequence {tn} in (0,∞),

lim
n→∞ θ (tn) = 1 iff lim

n→∞ tn = 0+;

(�3) there are ρ ∈ (0, 1) and ϑ ∈ (0,∞] such that limt−→0+ θ (t)–1
tρ = ϑ .

Define � = {� : � satisfies (�1)}.

Theorem 2.6 ([33]) Each θ -contraction mapping on a complete metric space admits a
unique fixed point.
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3 Results on fixed circles and discs
Throughout this paper, we denote by � be the set of functions L : (0,∞) → (0,∞) such
that L is nondecreasing. We consider �∗ = {ω : (0,∞) → (0,∞)|ω satisfies (ω1) and (ω2)}:

(ω1) ω is monotone increasing, that is, x < ς implies ω(x) ≤ ω(ς );
(ω2) ω(t) < t for every t > 0.
In this section, we initiate the notion of L(ω,C)-contractions, Ćirić type L(ω,C)-contractions,

and L(ω,C)-weak contractions and establish some related results on fixed circles (discs).

Definition 3.1 The mapping φ : χ → χ is called an L(ω,C)-contraction if there are ω ∈ �∗,
L ∈ �, and x0 ∈ χ such that, for all x ∈ χ ,

d
(
x,φ(x)

)
> 0 ⇒ L

(
d
(
x,φ(x)

)) ≤ ω
(
L
(
d(x, x0)

))
.

Definition 3.2 The mapping φ : χ → χ is said to be a Ćirić type L(ω,C)-contraction if there
are ω ∈ �∗, L ∈ �, and x0 ∈ χ such that, for all x ∈ χ ,

d
(
x,φ(x)

)
> 0 ⇒ L

(
d
(
x,φ(x)

)) ≤ ω
(
L
(
Mc(x, x0)

))
,

where

Mc(x, x0) = max

{
d(x, x0), d(x,φ(x)),

d(x0,φ(x0)), d(x,φ(x0))+d(x0,φ(x))
2

}

.

Definition 3.3 The mapping φ : χ → χ is said to be an L(ω,C)-weak contraction if there
exist ω ∈ �∗, L ∈ �, and x0 ∈ χ such that, for all x ∈ χ ,

d
(
x,φ(x)

)
> 0 ⇒ L

(
d
(
x,φ(x)

)) ≤ ω
(
L
(
Mc(x, x0)

))
,

where

Mc(x, x0) = max

{
d(x, x0),νd(x,φ(x)) + (1 – ν) d(x0,φ(x0)),

νd(x0,φ(x0)) + (1 – ν) d(x,φ(x)), d(x,φ(x0))+d(x0,φ(x))
2

}

, (3.1)

and ν ∈ [0, 1).

Remark 3.4 Take ν = 0 in Definition 3.3, then Definition 3.3 reduces to Definition 3.2.

Proposition 3.5 Let (χ , d) be a metric space and φ : χ → χ be an L(ω,C)-weak contraction
with x0 ∈ χ , then x0 = φ(x0).

Proof Suppose that x0 �= φ(x0). By Definition 3.2, one gets

L
(
d
(
x0,φ(x0)

)) ≤ ω
(
L
(
Mc(x0, x0)

))
,

where

Mc(x0, x0) = max

{
d(x0, x0), d(x0,φ(x0)),

d(x0,φ(x0)), d(x0,φ(x0))+d(x0,φ(x0))
2

}

.
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This implies that

L
(
d
(
x0,φ(x0)

)) ≤ ω
(
L
(
d
(
x0,φ(x0)

)))
< L

(
d
(
x0,φ(x0)

))
.

It is a contradiction. Therefore, x0 = φ(x0). �

Now, we introduce our result on fixed circles.

Theorem 3.6 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
φ is an L(ω,C)-weak contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ C(x0,�), then φ fixes
the circle C(x0,�).

Proof Let x ∈ C(x0,�). Suppose that x ∈ C(x0,�), x �= φ(x). By definition of �, we have
d(x,φ(x)) ≥ �. By Proposition 3.5 and (3.1), we get

L
(
d
(
x,φ(x)

)) ≤ ω
(
L
(
Mc(x, x0)

))
< L

(
Mc(x, x0)

)
, (3.2)

where

Mc(x, x0) = max

{
d(x, x0),νd(x,φ(x)) + (1 – ν) d(x0,φ(x0)),

νd(x0,φ(x0)) + (1 – ν) d(x,φ(x)), d(x,φ(x0))+d(x0,φ(x))
2

}

= max
{
�,νd

(
x,φ(x)

)
, (1 – ν) d

(
x,φ(x)

)}
.

Now, we have three cases:
(1) max{�,νd(x,φ(x)), (1 – ν) d(x,φ(x))} = �, then from (3.2), the definition of �, and the

monotony of L, we get

L(�) ≤ ω
(
L(�)

)
< L(�).

It is a contradiction.
(2) max{�,νd(x,φ(x)), (1 – ν) d(x,φ(x))} = νd(x,φ(x)), then we have two possibilities, ν =

0 or ν ∈ (0, 1). If ν = 0, then from (3.2) we have

L
(
d
(
x,φ(x)

)) ≤ ω
(
L(0)

)
< L(0),

which contradicts the definition of L. Suppose that ν ∈ (0, 1). Hence, from (3.2) and the
monotony of L, we get

L
(
d
(
x,φ(x)

)) ≤ ω
(
L
(
νd

(
x,φ(x)

)))
< L

(
νd

(
x,φ(x)

))

≤ L
(
d
(
x,φ(x)

))
,

which is a contradiction.
(3) max{�,νd(x,φ(x)), (1 – ν) d(x,φ(x))} = (1 – ν) d(x,φ(x)), then from (3.2) and the

monotony of L, we get

L
(
d
(
x,φ(x)

)) ≤ ω
(
L
(
(1 – ν) d

(
x,φ(x)

)))
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≤ ω
(
L
(
d
(
x,φ(x)

)))
< L

(
d
(
x,φ(x)

))
.

It is a contradiction. Therefore, φ(x) = x for all x ∈ C(x0,�). Thus, C(x0,�) is a fixed circle
of φ. �

The following is a result on fixed discs.

Theorem 3.7 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
φ is an L(ω,C)-weak contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ D(x0,�), then φ fixes
the disc D(x0,�).

Proof The mapping φ fixes the disc C(x0,�) (from Theorem 3.6). Now, to show that φ fixes
the disc D(x0,�), it is sufficient to prove that φ fixes any circle C(x0,�) with � < �. Let x ∈ C(x0,�).
Suppose that x ∈ C(x0,�) with x �= φ(x). From Proposition 3.5 and (3.1), we get

L
(
d
(
x,φ(x)

)) ≤ ω
(
L
(
Mc(x, x0)

))
< L

(
Mc(x, x0)

)
, (3.3)

where

Mc(x, x0) = max

{
d(x, x0),νd(x,φ(x)) + (1 – ν)d(x0,φ(x0)),

νd(x0,φ(x0)) + (1 – ν)d(x,φ(x)), d(x,φ(x0))+d(x0,φ(x))
2

}

= max

{
�,νd

(
x,φ(x)

)
, (1 – ν)d

(
x,φ(x)

)
,
� + �

2

}
.

Now, we have three cases:
(1) max{�,νd(x,φ(x)), (1 – ν)d(x,φ(x)), �+�

2 } = νd(x,φ(x)), then we have two possibilities:
ν = 0 or ν ∈ (0, 1). If ν = 0, then from (3.3) we have

L
(
d
(
x,φ(x)

)) ≤ ω
(
L(0)

)
< L(0),

which contradicts the definition of L. Suppose that ν ∈ (0, 1). Hence, from (3.3) and the
monotony of L, we get

L
(
d
(
x,φ(x)

)) ≤ ω
(
L
(
νd

(
x,φ(x)

)))
< L

(
νd

(
x,φ(x)

))

≤ L
(
d
(
x,φ(x)

))
.

It is a contradiction.
(2) max{�,νd(x,φ(x)), (1 – ν)d(x,φ(x)), �+�

2 } = (1 – ν)d(x,φ(x)), then from (3.3) and the
monotony of L, we get

L
(
d
(
x,φ(x)

)) ≤ ω
(
L
(
(1 – ν)d

(
x,φ(x)

)))

≤ ω
(
L
(
d
(
x,φ(x)

)))
< L

(
d
(
x,φ(x)

))
,

which is a contradiction.
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(3) max{�,νd(x,φ(x)), (1 – ν)d(x,φ(x)), �+�

2 } = �+�

2 , then from (3.3), the definition of �,
and the monotony of L, we get

L(�) ≤ L
(
d
(
x,φ(x)

)) ≤ ω

(
L
(

� + �

2

))

≤ ω
(
L(�)

)
< L(�).

It is a contradiction. Therefore, φ(x) = x for all x ∈ D(x0,�). Thus, φ fixes the disc D(x0,�). �

Corollary 3.8 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
φ is an L(ω,C)-contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ C(x0,�) (resp. D(x0,�)), then φ

fixes the circle C(x0,�) (resp. the disc D(x0,�)).

Corollary 3.9 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
φ is a Ćirić type L(ω,C)-contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ C(x0,�)(resp. the
disc D(x0,�)), then φ fixes the circle C(x0,�) (resp. the disc D(x0,�)).

Example 3.10 Let χ = [–3,∞) be a metric space endowed with the usual metric d. Define
φ: χ → χ by

φ(x) =

⎧
⎨

⎩
x if – 3 ≤ x < 3,

x + 2 x ≥ 3.

Then φ is an L(ω,C)-contraction. In fact, let L(t) = tet , x0 = 0, and ω(t) = t
2 . For all x ∈ χ

such that x ≥ 3, we have d(x,φ(x)) = 2 > 0 and

L
(
d
(
x,φ(x)

))
= 2e2 ≤ 1

2
d(x, x0)ed(x,x0) = ω

(
L
(
d(x, x0)

))
.

The mapping φ is an L(ω,C)-weak contraction. To show this, let L(t) = tet , x0 = 0, ν = 1
2 , and

ω = t
2 . For all x ∈ χ such that x ≥ 3, we have d(x,φ(x)) = 2 > 0 and

Mc(x, x0) = max

{
d(x, x0),νd(x,φ(x)) + (1 – ν)d(x0,φ(x0)),

νd(x0,φ(x0)) + (1 – ν)d(x,φ(x)), d(x,φ(x0))+d(x0,φ(x))
2

}

= max

{
d(x, x0), 1

2 d(x,φ(x)),
1
2 d(x,φ(x)), d(x,φ(x0))+d(x0,φ(x))

2

}

= max

{
d(x, x0),

1
2

d
(
x,φ(x)

)
,

d(x,φ(x0)) + d(x0,φ(x))
2

}

= max

{
|x|, 1,

|x| + |x + 2|
2

}
=

|x| + |x + 2|
2

.

Also,

L
(
d
(
x,φ(x)

))
= 2e2 ≤ 1

4
(|x| + |x + 2|)e

|x|+|x+2|
2

=
1
2

Mc(x, x0)eMc(x,x0) = ω
(
L
(
Mc(x, x0)

))
.
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We also have � = inf{d(x,φ(x)) : x �= φ(x)} = 2. Therefore, all the conditions of Theorem
3.6 and Theorem 3.7 (and also Corollary 3.8) are satisfied. Observe that φ fixes the circle
C0,2 = {–2, 2} and the disc D0,2 = [–2, 2].

Next, we introduce the concepts of Reich type L(ω,C)-contractions, Chatterjea type L(ω,C)-
contractions, and Hardy–Rogers type L(ω,C)-contractions.

Definition 3.11 The mapping φ : χ → χ is said to be a Reich type L(ω,C)-contraction if
there exist ω ∈ �∗, L ∈ �, and x0 ∈ χ so that, for all x ∈ χ ,

d
(
x,φ(x)

)
> 0 ⇒ L

(
d
(
x,φ(x)

)) ≤ ω

(

L

(
a1d(x, x0), a2d(x,φ(x))

+ a3d(x0,φ(x0))

))

,

where a1, a2, a3 ≥ 0 and a1 + a2 + a3 < 1.

Definition 3.12 The mapping φ : χ → χ is said to be a Chatterjea type L(ω,C)-contraction
if there exist ω ∈ �∗, L ∈ �, and x0 ∈ χ such that, for all x ∈ χ ,

d
(
x,φ(x)

)
> 0 ⇒ L

(
d
(
x,φ(x)

)) ≤ ω
(
L
(
b
[
d
(
x,φ(x0)

)
+ d

(
x0,φ(x)

)]))
,

where b∈ (0, 1
2 ).

Definition 3.13 The mapping φ : χ → χ is said to be a Hardy–Rogers type L(ω,C)-
contraction if there exist ω ∈ �∗, L ∈ �, and x0 ∈ χ such that, for all x ∈ χ ,

d
(
x,φ(x)

)
> 0 ⇒

L
(
d
(
x,φ(x)

)) ≤ ω

(

L

(
a1d(x, x0), a2d(x,φ(x))

+ a3d(x0,φ(x0)) + a4d(x,φ(x0)) + a5d(x0,φ(x))

))

,
(3.4)

where a1, a2, a3, a4, a3 ≥ 0 and a1 + a2 + a3 + a4 + a5 < 1.

Proposition 3.14 Let (χ , d) be a metric space and φ : χ → χ be a Hardy–Rogers type
	(ϒ ,C)- contraction with x0 ∈ χ , then x0 = φ(x0).

Proof Suppose that x0 �= φ(x0). By Definition 3.13, one gets

L
(
d
(
x0,φ(x0)

)) ≤ ω

(

L

(
a1d(x0, x0) + a1d(x0,φ(x0)),

a3d(x0,φ(x0)) + a4d(x0,φ(x0)) + a5d(x0,φ(x0))

))

.

It implies that

L
(
d
(
x0,φ(x0)

)) ≤ ω
(
L
(
(a1 + a2 + a3 + a4 + a5)d

(
x0,φ(x0)

)))

< L
(
d
(
x0,φ(x0)

))
.

It is a contradiction. Therefore, x0 = φ(x0). �

Now, we introduce our result on fixed circles.
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Theorem 3.15 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
φ is a Hardy–Rogers type L(ω,C)-contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ C(x0,�),
then φ fixes the circle C(x0,�).

Proof Let x ∈ C(x0,�). Suppose that x ∈ C(x0,�), x �= φ(x). By definition of �, we have
d(x,φ(x)) ≥ �. From Proposition 3.14 and (3.4), we get

L
(
d
(
x,φ(x)

)) ≤ ω

(

L

(
a1d(x, x0) + a2d(x,φ(x))

+ a3d(x0,φ(x0)) + a4d(x,φ(x0)) + a5d(x0,φ(x))

))

= ω

(

L

(
a1� + a2d(x,φ(x))
+ a3� + a4� + a5�

))

≤ ω
(
L
(
(a1 + a2 + a3 + a4 + a5)d

(
x,φ(x)

)))
ω

(
L
(
d
(
x,φ(x)

)))

< L
(
d
(
x,φ(x)

))
.

It is a contradiction. Therefore, φ(x) = x for all x ∈ C(x0,�). Thus, φ fixes the circle
C(x0,�). �

Theorem 3.16 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
φ is a Hardy–Rogers type L(ω,C)-contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ D(x0,�),
then φ fixes the disc D(x0,�).

Proof The mapping φ fixes the circle C(x0,�) (from Theorem 3.15). Now, to show that D(x0,�)

is a fixed disc of φ, it is sufficient to prove that φ fixes any circle C(x0,�) with � < �. Let
x ∈ C(x0,�). Suppose that x ∈ C(x0,�), x �= φ(x). From Proposition 3.14 and (3.4), we get

L
(
d
(
x,φ(x)

)) ≤ ω

(

L

(
a1d(x, x0) + a2d(x,φ(x))

+ a3d(x0,φ(x0)) + a4d(x,φ(x0)) + a5d(x0,φ(x))

))

= ω

(

L

(
a1� + a2d(x,φ(x))
+ a3� + a4� + a5�

))

≤ ω
(
L
(
(a1 + a2 + a3 + a4 + a5)d

(
x,φ(x)

)))
ω

(
L
(
d
(
x,φ(x)

)))

< L
(
d
(
x,φ(x)

))
.

It is a contradiction. Therefore, φ(x) = x. Thus, φ fixes the circle D(x0,�). �

Example 3.17 Let χ = {2, 3, ln(2e), ln(2), ln( 2
e )} be endowed with the usual metric d. Define

φ : χ → χ as

φ(x) =

⎧
⎨

⎩
3, if x = 2,

x, otherwise.

Let L(t) = tet , x0 = ln(2), ω(t) = 9t
10 , a1 = a2 = a3 = a4 = 1

5 , and a5 = 0. Then φ is a Hardy–
Rogers type L(ω,C)-contraction. Indeed, for x = 2,

d
(
x,φ(x)

)
= d

(
2,φ(2)

)
= 1 > 0,
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L
(
d
(
x,φ(x)

))
= L

(
d(2, 3)

)
= e1,

and

ω

(

L

(
a1d(x, x0) + a2d(x,φ(x)) + a3d(x0,φ(x0))

+ a4d(x,φ(x0)) + a5d(x0,φ(x))

))

= ω

(

L

(
1
5 d(x, x0) + 1

5 d(x,φ(x))+
+ 1

5 d(x,φ(x0))

))

= ω

(
L
(

2
5

+
1
5

+
1
5
|2 – ln 2|

))

= ω

(
L
(

1
5
(
3 + |2 – ln 2|)

))
9

50
(
3 + |2 – ln 2|)e

1
5 (3+|2–ln 2|).

Thus,

L
(
d
(
x,φ(x)

)) ≤ ω

(

L

(
a1d(x, x0) + a2d(x,φ(x)) + a3d(x0,φ(x0))

+ a4d(x,φ(x0)) + a5d(x0,φ(x))

))

.

We also have

� = inf
{

d
(
x,φ(x)

)
) : x �= φ(x)

}
=

{
d(2, 3))

}
= 1.

Hence, all the conditions of Theorem 3.15 and Theorem 3.16 are satisfied. Observe that φ

fixes the circle Cln(2),1 = {ln(2e), ln( 2
e )} and the disc Dln(2),1 = {ln(2e), ln 2, ln( 2

e )}.

Corollary 3.18 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}.
If φ is a Reich type L(ω,C)-contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ C(x0,�)(resp.
x ∈ D(x0,�)), then φ fixes the circle C(x0,�) (resp. the disc D(x0,�)).

Corollary 3.19 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
φ is a Chatterjea type L(ω,C)-contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ C(x0,�)(resp.
x ∈ D(x0,�)), then φ fixes the circle C(x0,�) (resp. the disc D(x0,�)).

4 Some consequences
Next corollaries are generalizations of fixed point results of Jleli and Samet [33] and War-
dowski [15].

Corollary 4.1 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
there exist F ∈F1, τ > 0, and x0 ∈ χ such that, for all x ∈ χ ,

d
(
x,φ(x)

)
> 0 ⇒ τ + F

(
d
(
x,φ(x)

)) ≤ F
(
Mc(x, x0)

)
,

where

Mc(x, x0) = max

{
d(x, x0), d(x,φ(x)),

d(x0,φ(x0)), d(x,φ(x0))+d(x0,φ(x))
2

}

and d(x0,φ(x)) = � for all x ∈ C(x0,�), then φ fixes the circle C(x0,�).
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Proof Take ω(t) = e–τ t, L(t) = eF(t), and ν = 0 in Theorem 3.6. �

Corollary 4.2 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
there exist θ∈ � , k ∈ (0, 1), and x0 ∈ χ so that, for all x ∈χ ,

d
(
x,φ(x)

)
> 0 ⇒ θ

(
d
(
x,φ(x)

)) ≤ [
θ
(
Mc(x, x0)

)]k ,

where

Mc(x, x0) = max

{
d(x, x0), d(x,φ(x)),

d(x0,φ(x0)), d(x,φ(x0))+d(x0,φ(x))
2

}

and d(x0,φ(x)) = � for all x ∈ C(x0,�), then φ fixes the circle C(x0,�).

Proof Set ω(t) := kt and L(t) = ln(θ (t)) in Theorem 3.6. �

Denote by 	 the family of functions β : [0,∞) → [0,∞) so that lim
r→t+

β(r) < 1 for every
t ∈ (0,∞)

Corollary 4.3 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. Let
there exist a function β ∈ 	 and x0 ∈ χ so that, for all x ∈ χ ,

d
(
x,φ(x)

) ≤ β
(
Mc(x, x0)

)
.Mc(x, x0),

where

Mc(x, x0) = max

{
d(x, x0), d(x,φ(x)),

d(x0,φ(x0)), d(x,φ(x0))+d(x0,φ(x))
2

}

.

and d(x0,φ(x)) = � for all x ∈ C(x0,�). Then φ fixes the circle C(x0,�).

Proof Take ψ(t) := β(t)t and φ(t) = t in Theorem 3.6. �

5 Results on fixed circles and discs for integral type L(ω,C)-contractions
In this section, we discuss some results on fixed circles and discs for integral type L(ω,C)-
contractions. Let � : [0,∞) → [0,∞) be a locally integrable function such that, for every
t > 0,

∫ t

0
�(u) du > 0.

Definition 5.1 The mapping φ : χ → χ is said to be an integral type L(ω,C)-contraction if
there exist ω ∈ �∗, L ∈ �, and x0 ∈ χ so that, for all x ∈ χ ,

d
(
x,φ(x)

)
> 0 ⇒

∫ L(d(x,φ(x)))

0
�(t) dt ≤

∫ ω(L(d(x,x0)))

0
�(t) dt. (5.1)

.
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Proposition 5.2 Let (χ , d) be a metric space and φ : χ → χ be an integral type 	(ϒ ,C)-
contraction with x0 ∈ χ , then x0 = φ(x0).

Proof Suppose that x0 �= φ(x0). By Definition 5.1, one gets

∫ L(d(x0,φ(x0)))

0
�(t) dt ≤

∫ ω(L(d(x0,x0)))

0
�(t) dt.

It contradicts d(x0, x0) = 0 and the definition of ω and L. Thus, x0 = φ(x0). �

Now, we introduce our result on fixed circles.

Theorem 5.3 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. If
φ is an integral type L(ω,C)-contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ C(x0,�), then φ

fixes the circle C(x0,�).

Proof Let x ∈ C(x0,�). Suppose that x ∈ C(x0,�), x �= φ(x). By definition of �, we have
d(x,φ(x)) ≥ �. Using the monotony of L, we get

L(�) ≤ L
(
d
(
x,φ(x)

))
, (5.1)

hence
∫ L(�)

0
�(t) dt ≤

∫ L(d(x,φ(x)))

0
�(t) dt.

From (5.1), one gets

∫ L(�)

0
�(t) dt ≤

∫ L(d(x,φ(x)))

0
�(t) dt ≤

∫ ω(L(d(x,x0)))

0
�(t) dt

<
∫ L(d(x,x0))

0
�(t) dt =

∫ L(�)

0
�(t) dt.

It is a contradiction. Therefore, φ(x) = x for all x ∈ C(x0,�). Thus, φ fixed the circle C(x0,�). �

The following theorem describes a result on fixed discs.

Theorem 5.4 Let (χ , d) be a metric space, φ : χ → χ , and � = inf{d(x,φ(x)) : x �= φ(x)}. Let
φ be an integral type L(ω,C)- contraction, x0 ∈ χ , and d(x0,φ(x)) = � for all x ∈ D(x0,�), then
φ fixes the disc D(x0,�).

Proof φ fixes the disc C(x0,�) (from Theorem 5.3). Now, we show that D(x0,�) is a fixed disc
of φ, it is sufficient to prove that φ fixes any circle C(x0,�) with � < �. Let x ∈ C(x0,�). Suppose
that x ∈ C(x0,�), x �= φ(x). From the definition of � and the monotony of L, we get

L(�) < L(�) ≤ L
(
d
(
x,φ(x)

))
(5.2)

and
∫ L(�)

0
�(t) dt ≤

∫ L(d(x,φ(x)))

0
�(t) dt. (5.3)
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From (5.3), one gets

∫ L(�)

0
�(t) dt ≤

∫ L(d(x,φ(x)))

0
�(t) dt ≤

∫ ω(L(d(x,x0)))

0
�(t) dt

<
∫ L(d(x,x0))

0
�(t) dt =

∫ L(�)

0
�(t) dt.

It is a contradiction. Therefore, φ(x) = x for all x ∈ D(x0,�). Thus, φ fixes the disc D(x0,�). �

6 Applications to discontinuous functions
In this section, we give some examples of discontinuous functions and obtain a disconti-
nuity result related to fixed circles.

Example 6.1 Let � = {1, 2, e4 – 1, e4, e4 + 1}be the metric space with the usual metric. Let
us define the self-mapping φ : � → � by

φ(u) =

⎧
⎨

⎩
3, if u < e4 – 1,

u, if u ≥ e4 – 1

for all u ∈ �. As in Example 3.10, it is easily verified that the self-mapping φ is a Ćirić L(ω,C)-
contractive self-mapping and Ce4,1 = {e4 – 1, e4 + 1}is a fixed circle of φ. We note that the
self-mapping φ is continuous at the point e4 + 1, while the self-mapping φ is discontinuous
at the point e4 – 1.

Example 6.2 Let � = {1, 2, e4 – 1, e4, e4 + 1}be the metric space with the usual metric. Let
us define the self-mapping φ : � → � by

φ(u) =

⎧
⎪⎪⎨

⎪⎪⎩

3, if u < e4 – 1,

e3 – 1 if e4 – 1 ≤ u < e4,

u if e4 ≤ u ≤ e4 + 1,

for all u ∈ �. It is easily verified that the self-mapping φ is an L(ω,C)-weak contractive self-
mapping and Ce4,1 = {e4 – 1, e4 + 1} is a fixed circle of φ. We note that the self-mapping φis
discontinuous at the center e4 and on the circle Ce4,1. We note that the self-mapping φ is
continuous at the point e4 + 1, while the self-mapping φ is discontinuous at the point e4 – 1
and on the circle Ce4,1

From the above examples, we give the following theorem.

Theorem 6.3 Let φ be an L(ω,C)-weak contraction with u0 ∈ �and ι be defined as in The-
orem 3.7. If d(u0,φ(u)) = ι for all u ∈ Cu0,ι, then Cu0,ι is a fixed circle of φ. Also, φ is discon-
tinuous at u ∈ Cu0,ι if and only if lim

υ→u
Mc(u, v) �= 0.

Proof From Theorem 3.7, we see that Cu0,ι is a fixed circle of φ. Using the idea given in
Theorem 2.1 in [46] (see also [47]), we see that φ is discontinuous at u ∈ Cu0,ι if and only
if lim

υ→u
Mc(u, v) �= 0. �
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7 Conclusion
We have introduced new generalized results on fixed circles and discs for L(ω, C)-
contractive mappings, Ćirić type L(ω,C)-contractive mappings, and L(ω,C)-weak contractive
mappings on metric spaces. We provided some results on fixed circles (discs) of integral
type contractive single-valued maps. Furthermore, we applied our main results to discon-
tinuous self-mappings that have a fixed circle. The obtained results are generalizations of
variant corresponding results in literature and are applicable to be used in other research
areas.
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