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1 Introduction and preliminaries

We start with some background and notations from the Jacobi—Dunkl function theory,
supplementing the material in the Introduction. We recapitulate some results related to
the harmonic analysis associated with the Jacobi—-Dunkl differential-difference operator
Ay, p and the Jacobi—Dunkl kernel function \I/f”s . We denote by C,R, and N the sets of
complex numbers, real numbers, and positive integers, respectively. For o, € R,a > § >
—%, and o # —%, we denote by A, g the Jacobi—Dunkl differential-difference operator de-
fined by [1]

(1)

AP (£) = Y/(2) + (2 + 1) coth ¢ + (28 + 1) tanh ¢) <M)

2

For A2 = %2+ p,a e C,¢ €R,and p = a + B + 1, we denote by \Df’ﬂ the Jacobi—Dunkl
kernel function [1]

o a ; A ; a+l,B+
WP () = 9P () et D sinh¢ cosh £ o271 (2). (2)
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Then the Jacobi—Dunkl kernel function \D;"ﬁ is the C*-solution of the differential-

difference equation

Agp¥i? = a0 WP, peC,
w0 =1,
where (pﬁ'ﬂ is the Jacobi function defined by

wz’ﬂ(c):F<p”’”‘,p"’“,wl,—(sinhg)z), ®)

2 2

F being a Gauss hypergeometric function. For o > g > —% and A € C, the function \Il;”ﬂ
is an eigenfunction of the differential-difference operator A, g that satisfies the product
formula [1, (2.10)]

WO 0) - [ W wantw),

—00

where
I(a,ﬁ(;’y’ M)Xa,ﬂ (u) du, ¢y #0,
AR W y=0,
5y, =0,
and

Kap(¢,9,4) = Mo, (sinh |¢ | sinh [y] sinh [z]) 1, ()

X / (¢, y,u)g(Z,y, u, Z)(;_ﬁ_1 sin?? zdz,
0

1;,, being the indicator of I, = [~[¢| = |y, =[I¢| = WIUINE T = IyIL 1S T+ IyIT] v2(8, 9, u) =
1- af’y'u + o,fyﬂ + G;,{,y’ and

—coshucosh¢—cosh ¢ coshy
z sinh ¢ sinhy ? ;y # 0,

0, ¢ty =0,

M, p being the classical function given by [1, (1.15)]. We denote by D the set of C*-
functions whose supports over R are bounded. By L;,ﬂ (R, Xq,(¢)d¢), or Lé’ﬂ, we denote
the measurable space of functions over R that satisfies the norms [2]

19 lap = / (0| X p0) i < 00, @)

{o.¢]

where

Xap(£) = 2% (sinh|£])* " (cosh )1, p=cr+f+1. )
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The convolution product of the arbitrary functions v; and v, is defined by [1, Def. (3.1)]

oo

Wrap ¥20) = [T )0 X )y (6)

—00

where Tfl’ﬂ,;‘ € R, is the transformation operator defined by [1, Def. (2.8)]

75 n0) = i) - | ndiit), )

However, the product *,,p of the suitable functions v, and 1, satisfies several results as
follows [1, p. 375].

Proposition 1 Let ¥y, vyn, Y3 € Li,ﬁ(R,Xa,ﬁ (£)dc). Then the undermentioned relations

hold true.

(1) V1 *a,p Y2 = V2 *ap V1,
(1) (Y1 *a,p V2) *a,p Y3 = U1 *a,p (V2 *a,8 V3).

Consequently, for p =g =r =1, [1, Prop. (3.2)] leads to the following fruitful result.

Proposition 2 Let {5, € L;’ﬂ (R, Xo,5(2)dt). Then the following hold:
(i) Tygis defined a.e. on R. Moreover, it is a member ofL;M3 (R, Xo,5(2)dt) and

175 5914 5 < 411 e
(i) Y1 *ap € Lé,ﬁ(R,Xa,ﬂ(C)dé“), and
V1 %08 V2llap < 4l V1 llapll2llap-
The Jacobi—Dunkl operator for a suitable function v/ is defined over R by [1, Def. 3.3]
2y = [ : Y1 (O (€)X p(0) d. ®)
Moreover, for ¥, Y € Léyﬂ(R,Xa,ﬂ(g)dg“) and A € R, Prop. (3.6) of [1, p. 376] reveals

JE 4 (0 a8 ¥2)(A) = T4 s (1) Q)L 5 (W) (). 9)

The Plancherel formula for the ]O”f, 8 transform is defined as

| @l Xap@rde = [ s drtapti

where

|n|dA

dllyg(A) =
g 87/A2 — p|c /22 — P2

1R(-pp) (1)
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is the Plancherel measure [1, p. 376]. For more illustrations about this theory, readers are
referred to [1-4, 41, 43] and [5-20] and the references cited therein. However, this re-
search is organized in the following format. In Sect. 1, we present some definitions and
results associated with the Jacobi—Dunkl function theory. In Sect. 2, we establish the gen-
eralized spaces B(L,, 4, D, %4, A) and B(Zé’ﬂ,l_), x,A). In Sect. 3, we extend the Jacobi—
Dunkl function theory to the generalized spaces of generalized functions.

2 The spaces B(L}, 4, D, %o, A) and B(L}, ;. D, x, A)

The concepts of the Boehmian spaces are obtained by following an algebraic approach
that hires convolutions and delta sequences, which are approximating identities. When
the structure is allowed to be a function space and the space multiplication is interpreted
as a convolution product, the new structure yields a space of Boehmians (see, e.g., [2, 21—
35, 44] and [1, 8, 11, 33, 36—40, 42]). Let A be the set of all sequences (§,) in D such that
the following properties hold:

/ 5.(0)Xap (0)dE = 1, (10)
/ 18,(0) [ Xup (C)dE <M, MER, (11)
supp(8,) C (0,a,), a,— Oasn— oo. (12)

The following result shows that A is a set of delta sequences.
Lemma 3 Let (8,) and (0,) be in A. Then (8, *q,p 0,) is in A.

Proof Let (8,) and (6,) bein A. Then, to prove this lemma, we have to prove that Egs. (10)—
(12) hold for (8, *q,5 6,). By [1, Eq. (2.2)] we infer that l/ff’ﬁ(g) =1 for A = 0. Therefore, we
obtain

T4, (0n)(0) = / (WP ()X (0 di = / Y1 (0 X () 2.
Hence, by the convolution theorem, Eq. (9) and Eq. (10) give

JE (8 %a,p 0)(0) = J4 4(8,)(0)]& 4(6,1)(0)

_ / 5.(0)Xep (¢) dC f 60X 50) dy

o0

=1

This proves that Eq. (10) holds for (8, *q, 6,). To show that Eq. (11) holds for (8, *q,p 6,),
we use Proposition 2 to obtain

184 *a,p Onllop < 418 llap 16nllarp < 4M>.

Finally, the proof of the fact that (8, %4, 0,) satisfies Eq. (12) is straightforward. The proof
is therefore completed.
Hence, the necessary axioms for establishing the Boehmians space B(L}, 5Dy *a,p, A):
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() V1 ko, Yo = Vo *a,p Y1, Y1 € Li,,g and ¥, € D;
(ii) Y1 *ap (V2 %08 ¥3) = (Y1 %ap V2) *ap Y3, Y1 € L}, g and ¥y, 13 € D;
(iii) Y1 *a,p Yo € Lé,,g, Y € Lé,,g, Y €D,
are justified by Propositions 1 and 2. Hence, we omit the details. d

Theorem 4 Let 3, Y, ¥, € L;’ﬁ and Yy € D. Then the undermentioned relations hold.
(1) wn *a,ﬂ va - WI *a,ﬂ ¢2 asn— oo as wn - w1~

(1) (Y1 +V3) *a,8 Yo = V1 *a,p Yo + Y3 ke p V.

Proof of this lemma can be easily obtained from using Eq. (6). Hence, the details are
deleted.
To complete the process of establishing the space B(Lé‘ ﬁ,D, *q,8, A), we derive the fol-

lowing relation.
Lemma 5 Let (8,) € A and € Lé'ﬁ. Then we have 4,5 8, — W as n — o0o.

Proof It has already been verified that v/, %4 8, € L, s~ Therefore, from definitions we get

10 %ap = Wl = / |0 g = V() X p (£) 2.

Thus, by employing Eq. (10), we obtain

1V a8 60— Vllap < / 18,0)|| T g ¥ (=) = ¥ (£)|Xaop(0) dE X ) dly. (13)

Again by Part (i) of Proposition 2, Eq. (13) gives

IV #0580 = Wllap < (41 llap = 1V lla,p) / |8,(7) X6 () |-
—00
Since (8,) is of compact support, we by Eq. (12) get

1V %a,8 60 = Vllap < 3V llapAd, — 0

as n — OQ.

This ends the proof of the lemma. O

Therefore the Boehmian space B(L;, 5 Ds %o, A) is obtained. The sum of the Boehmians
[(g—Z] and [f—:] is given in B(Li’ﬂ,D, S pr A) as

ﬂ ¥ ﬂ _ Dn *a,8 Bn + Wrt *a,8 8;1
Sn En Sy *a,8 En ’

whereas the multiplication of a Boehmian ?—: or sometimes [‘;—;’] in B(Li, g Ds*a,p,A) by a

complex number y is defined as y[(g—Z] = [VT‘Z”]. On the other hand, the extension of x, g
and D* to B(Li,ﬂ,D, *q,p, AA) is introduced as

DO(
$n B Vir | _ | @nbap Y and D[ 2] - Pn , aeR
3;1 En 8;1 *o,8 En 8;4 8;4
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Moreover, an extension of 4 to B(Léyﬂ,D, ka5 ) %, L;'ﬁ(RZ), where (¢,/8,) is in
B(L}, 4, D, %45, A) and @ in L}, , is given as

ﬁ* wl= Pn *a,p W
5, 5, I

If B,,B € B(Lé,ﬁ,D, *q,8A), n=1,2,3,..., then {B,} converges in § type to 8, namely § —

limy,_, o0 By = B(Bx Y B), provided there can be found a delta sequence {3,} such that

(@) (Bu *a,p 8&) and (B a5 8k) € L}, g for all n,k € N,

(b) 1m0 Bu *a,p 8k = B *a,p 8 in L}, 4 for every k € N.

Or, equivalently, § — lim,_, 8, = B if and only if there are ¢, ¢x € Lé,ﬁ and {§;} € A
such that

(i) Bu = oui/dk: B = P!k
(ii) im0 Pui = @k € Ly, 4 to every k € N.
If B, B € B(Lé,ﬂ,D, *q,8, A) for n=1,2,3,..., then the sequence {8,} converges in A type
to B, namely A-lim,_~ B, = B(Bx =Y B), provided there can be found a delta sequence
{5,} such that

() (Bu = B) s 8 € LL 5 (Y €N)

(i) 1imy, o0 (Bn = B) %ap 8n = 0in L} 4.

We turn to the construction of the ultraspace B(Z;Y ﬂ,D, x, A) of Boehmians. Let D, Z;Y 5
be the spaces of all Jacobi—Dunkl transforms of the spaces D and Lj 4, respectively, and
A be the set of the Jacobi—Dunkl transforms of the set A. Define a product formula x, g
between D and L, , by

F xap G= (I 4¥1) UL sv2), whereyy e Dand Y €L} 4. (14)

With the product x, g, the space B(l_,i,ﬂ,l_), X, A) can be easily verified as a Boehmian
space by virtue of the following result.

Theorem 6 Let Fi,F; € ié‘ﬁ, G1,G € D. Then the undermentioned relations hold.
(i) (F1+F) Xap G=F1 Xap G+ F) XqgG.
(ii) Fi X8 G=G XqpF.
(iii) A(Fy Xap G) = (AF) Xop Gy €C.
(iv) Fy Xap G —> Fi xqp G forevery F, € Zi’ﬂ.
(v) F,—> Frasn— o0 in Zéyﬁ.
(Vi) Fi Xa,8 (G Xg,8 G1) = (F1 Xa,p G) Xq,8 G1.

Proof We prove (ii) as the proofs of (i), (iii), (iv), and (v) are similar to those given in liter-
ature or are straightforward results from simple integration. Let ¥, € L;, s and ¥, € D be
such that ]gf,ﬂ Y, = F; and ]5,/3 ¥, = G. Then, by Eq. (9), we write
_d d _d
Fi o8 G =] sV Xap Ty sV =Jo g (Y1 %ap ).
Hence, since ¥/; *q,g V2 = ¥ *q,p Y1, we have

Fy % G =Jg 5(¥2 % Y1) = G Xap Fr.

This ends the proof of the theorem. d
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Theorem 7 Let (5,),(0,) € A. Then §, Xa,p 6, € A forallneN.
Proof Let (8,), (6,) be in A such that 5, :]g,ﬁ&q and 6, :]g'ﬂén. Then, by Eq. (9), we have
gn Xa,B én zjg,ﬂ(an*a,ﬁren)'

It is perspicuous that 8, X4, 0, € A as (8,%4,4,6,) € A by Lemma 3. This completes the
proof of the theorem. O

Similarly, we proceed to establishing the following theorem.
Theorem 8 Let (8,) € A and F € Zéﬁ. Then we have
Fxo,,ﬁg,,—ﬂ-" as n— oo.

The space B(ié, ﬁ,l_), X g, A) is an ultra-Boehmian space. For addition, multiplication by
a scalar, §-convergence, and A-convergence in the space B(Zé’ﬂ,l_), X85 A), see [2, 21-32]
and B(L;,ﬁ,D, *q,8, A) for similar definitions, replacing x, g with x,.

3 The generalized Jacobi-Dunkl transform

In this section, we aim to introduce the generalized definition of the Jacobi—Dunkl integral
operator. Let [‘g—:] € B(L(lx,ﬁ,D, ¢, A), then the generalized Jacobi—Dunkl transform of
[f—:] is a Boehmian in B(i}x,ﬁ,ﬁ, X5, A) defined by

T er _ ]3,/31/["
F“’ﬂ[ﬂ - [fg,{ﬂsn ] (1

Theorem 9 The estimated generalized Jacobi—Dunkl operator F, g is well defined and lin-

ear from the space B(Lé’ﬂ,D, *q,p, A) into the space B(Z;,ﬁ,l_), X6, A).
Proof Let [§] = [‘é’—:] € B(L}, 3, D, %q 5, A). Then we have
©On *a,8 €Em = W *a,8 6y = W *a,p 0, forallmmeN.
Applying F, 4 to both sides in the preceding equation and making use of Eq. (9) reveal that
]g,,sfﬂn Xa,B ];1,;;8,” =]j,ﬁ1ﬁn Xa,8 ]o‘iﬁ(Sm for all m,n € N. (16)
In view of the concept of quotients of the sequences of B(]:;, ﬂ,l_), Xa,p, A), Eq. (16) gives
Jesou [V s¥n
sl
To show that the transform F,g : B(LY 3, Dy %a,p, A) — B(I:é,ﬂ,l_), Xa,p,A) is linear, let

(£, [f—:] € B(L, 4, D, %q,p,A). Then, by the idea of the addition of B(L} 4, D,%as, A),
Eq. (15), Eq. (9), and the idea of the addition ofB(]:(}[,ﬂ,l_), Xa,B5 A), we can announce that

= n n = n o n n o 81’1
ol [52] o [2]) Rl [P
n n n *a, €n
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B i g,lg(‘ﬂn *o,B €n) +]g,5(1/fn *a,8 5n)i|
L ]gﬁ(sn Xa,B ]g,ﬁgn

3 -Jiﬂﬁl)n Xa,B ](f,i,ﬂsn +]g,,3wn Xa,p ]g,ﬂsn}
L ]f,ﬂl”n Xa,p ]g,ﬁen

_/5,,3% /f,;;%
"L 1T L e |
L/ o,p%n a,pEn

Hence, Eq. (15) leads to

(22

Also, we have

|
m
=
| — |
=2
SN
| I
+
&
=
| — |
S
| I

= [on Ja Jap(e
aFyg |:(p—i| = oc|: d’ﬁ%] = |: "i( <ﬂn):| fora € C. (17)
8n ]a,ﬁsn ]a,ﬁgn
Hence,
= ©On = ©n
Fup| — | = F,4 —1). 18
AR CE) a
Equations (17) and (18) end the proof of this theorem. O

Theorem 10 The mapping Fyp : B(L, 4,D,%ap, A) — B(L, 4, D, X o5, A) is an isomor-
phism.

]g Pn ];l Yn = = n .
Proof Let [%] = [‘f;n] € B(L}, 4, D, X, ). Then, by using Eq. (9), we get
]j,ﬁ(pn X,p ]jﬁsm =]j,ﬁ1pm X a8 ]j,ﬁén forall m,n e N.
Once again, (14) reveals to have

]jﬁ(% *o,8 Em) =]gf'ﬁ(wm *q,80,) forallm,meN.

We, thus, obtain ¢, 4 g £, = ¥ *a,p 8, for all m, n € N. Hence, by the concept of quotients
of B(L;, 4, D, %q,p, A), we have

Pn v
[g] = |:_n:| GB(L;[J},D, *a,ﬁ,A).

En

This confirms the injectivity of the mapping. The surjectivity part of F, s is very clear as,

le B(Zéﬁ,l_), X 4,8, A), there can be found [(g—Z] € B(I:é,ﬂ,l_), X, A) such

]d
for every [}‘;"3
a,

Bon

$n
8
that
][5
Fop| -2 |=| 221
6u ] L7 46,

The proof of the theorem is ended. g

Page 8 of 13



Al-Omari et al. Advances in Difference Equations (2021) 2021:357 Page9of 13

Definition 11 Let [ b Z"] € B(Zé'ﬂ,l_), X, A). Then we define the transform inversion
Dt ﬁ n
formula of F, 4 as
i, Je
(Fap)™" [lﬁﬁ(g"} = [?} for each {8,} € A. (19)
a,pn n

Theorem 12 Let [ o n] be in B(Laﬂ,D Xa,p, D) for some [£- "] in B(L}, 4, D, %a,p, A). Then,
for ¢ € D(R) and w € D we have

- ]g (2 n
b (] ) [z

- @n J¢ 50
Fual [ 52 s v) =[5 [ v
n a,ﬂ n

for some 6 € D.

Proof Let | O"5%] eB(L aﬁ,D, X85 A) and ¢ € D(R) be such that ¢ = ]dﬂe for some 6 € D.
Then, by Eq (9) we write

_ ]d (% - ]d ©On Xaﬂ¢
ror (] o) -oor (5522%)
(Fep) ([J:j,ﬁsn}x’”b (Fep) T4 5
:[ ) Ui pton xa,ﬁlg’,ﬂe)}
Uf,ﬂ)’l(]ﬁf,ﬁ%)

_ ]d (‘pn *a,B 0)
_ (74 1 7a,B
- o) [ Jé 5 ]

Pn
ap 0.
(5]

To prove the second identity of this theorem, we make use of Eq. (9) to obtain

r n Fa ]g n
(i) o) [

This ends the proof of the theorem. d

Th_eore_m 13 T_he mappings F, g : B(Ly 3, Dy ¥ap, A) = B(L} ﬁ,D Xap, A) and (Fyp)™'
B(Léyﬂ,D, Xapr A) — B(L;,ﬁ,D, *q,8,A) are continuous with respect to § and A-

convergerce.

Proof We show that F, s and (F,,5)"" are continuous with respect to the convergence of
3 type. For this aim, we assume S, 2 B in B(L;ﬁ,D %48, A) as m — oo and verify that
aﬂﬂ,, — Faﬂﬂ as n — 0o. Let ¥, and ¢ be mL of such that

Wnk wk
n = — nd
P [ bk :| P= [¢k]
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and ¥, x — Yrasn — oo forallk e N. Then]g'ﬂwn,k — ]iﬂwk as n — oo in the space ié,ﬁ.

Therefore,
d d
[]af Wn,k:| . |:]0;,3 Wk:| o
]oz,ﬂ ¢k ]oz,ﬁ ¢k

as 1 — 00 in B(ii,ﬁ,l_), X5, A).
To prove the second part, let g, BN gin B(Zé,ﬁ,l_), Xa,p,A) as n — o0o. Then, let g, =

J4 s, J4 v
(267K and g = [~
]u_ﬁﬁbk ]a,ﬂ¢k

B(L}, 4, D, %q,8, A) as n — 00. Hence, [

] and ]g,ﬁlﬁ,,,k — ]O‘fﬁlﬁk as n — 00. Therefore, ¥, x — VY in

l//n,k
Pk

] — [z—f] as n — 00. Using Eq. (15) reveals

- ]d wnk = ]d I//k
el 2] e
(Fap) ]gf,ﬂfﬁk — (Fu) ]f;’,ﬁd)k asn— 00

To establish continuity with respect to the convergence of A type, we assume S, 4 B in
B(L} 4, D, %q,p, A) as n — oc. Then there exist ¥, € L, ; and (¢,) € A such that (8, — ) %4,

O = [W*(;;]’f‘ﬁk] and ¥, — 0 as n — 0o. Employing (15) gives

M] (22)

Eys((By—B) %05 &,) =
(B = B) *a,p &) |: 17 b

Hence, we derive

ffyﬂiﬁn Xa,B ]f,ﬁ¢k

:]fj ' — 0
]g,ﬁ(f’k ] ’Bf ”

Fa,ﬂ ((lgn - /3) *a,B ¢n) = |:

asn— ooin Ll s Therefore, from Eq. (22) we get
ﬁa,ﬂ((ﬁn - ﬁ) *ot,ﬂ ¢n) = (ﬁa,ﬁﬁn _Pa,ﬂﬂ) on,ﬁ ¢n — 0 asn— oo.

Hence, Fa,ﬂﬂn —A> l:",,,,ﬁﬂ as n — o0.
Finally, let g, A gin B(Z;'ﬂ,b, Xg,B A) as n — 00. Then we find ]5,;3 Vi € Z;,ﬁ such that
[J,f,ﬁwk Xa,ﬁ¢k]
[

(@1 —8) Xa,p Pic = "
using Definition 11, we obtain

and];l,ﬁ Y — 0as n — oo for some ¢y =]g,ﬁ9k:9k € A.Now,

(23)

F U2 5k Xap T2 460)

(Fep) ™ (@0 = &) Xap H6) = [(/ff,ﬁ) = kd _— }
T2 0k

That is,

Vi *a,8 Ok

(Fa,ﬁ)_l((gn —g) Xap ¢k) = |: 64

] =Yy —0 ask— ooinLé‘ﬂ.
Thus, Eq. (23) gives

(Fap) ™ (g1 = &) Xap Dx) = (Farp) g1 — (Fuop)'€) *ap Ok > 0 asm— oo.
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Due to the above equation, we infer that (?a,ﬁ)‘l & 4 (l_-"()(,ﬂ)‘1 g for large values of # in
B(L} 4, D, %a,p, A).
This ends the proof of the theorem. O

Theorem 14 The extended F, s transform and the classical ]o‘f‘ g transform are consistent.

Proof For every ¢ € L;, > assume that 8 is its representative in B(L;, 5 Ds*a,p) A). This in-
deed reveals that 8 = [1//*(;_;;55”]’ where (8,) € A, n € N. It is obvious that the delta sequence
(8,,) is independent from the representative for all # € N. Consequently,

- = 4 *a,8 Sn :I) I:]g,ﬁ(w *a.p 8"):| []g:ﬁw Xap ]g’ﬂ8”:|
F, =F, — | )= = ’
’ﬁ('B) # <|: 3,, 13,55;1 ]g,ﬂsn

which is the representative of J¢ sV in L 5
Hence, the proof of the theorem is ended. O

Theorem 15 Let [f—:] € B(ié,ﬁ,l_), X, A). Then the condition for ['é’—:], which is necessary
and sufficient, to be in the range of E, g is that , is in the range of]g,ﬂfor every n € N.

Proof 1f [‘é’—:] is in the range of I_Ta,,g, then indeed v, is in the range of]o‘iﬁ for all » € N. For
the converse, if 1, is in the range of ]g, g for all n € N, then we can find f, € L, g so that
Jiﬁﬁ, =, for all # € N. Since [‘é’—:] € B(Zi]ﬂ,l_), Xapr A),

Y X, 0m = Ym Xap by forallm,meN. (24)
Therefore, for some f, € L}, ; and ¢, € A, we find

]iﬂ(f,, *a,8 Pn) :]O”f,}S (fn *a,p 0u) forall m,meN.

The fact that ]gﬂ is injective, implies that f;, *4,8 ©m = fin *a,p @, m,n € N.
Thus, J;in is a quotient of the sequences in B(L;'ﬁ,D, *q,8, A). Hence,

Fup [%] = [%] for some [%] € B(Ly 4, D, %5, A).

Hence the theorem is proved. O

4 Conclusion

The classical theory of the Jacobi—Dunkl integral operator of [1] is extended to a class
of Boehmians. Every element of the classical space L, , is identified as a member of the
Boehmian space B(Lé’ﬁ,D, *q,8, A). Various embeddings and characteristics of the ex-
tended integral operator including an inversion formula are given in a generalized sense.

Convergence with respect to § and A is also discussed.
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