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Abstract
In this paper we investigate certain integral operator involving Jacobi–Dunkl
functions in a class of generalized functions. We utilize convolution products,
approximating identities, and several axioms to allocate the desired spaces of
generalized functions. The existing theory of the Jacobi–Dunkl integral operator
(Ben Salem and Ahmed Salem in Ramanujan J. 12(3):359–378, 2006) is extended and
applied to a new addressed set of Boehmians. Various embeddings and
characteristics of the extended Jacobi–Dunkl operator are discussed. An inversion
formula and certain convergence with respect to δ and � convergences are also
introduced.
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1 Introduction and preliminaries
We start with some background and notations from the Jacobi–Dunkl function theory,
supplementing the material in the Introduction. We recapitulate some results related to
the harmonic analysis associated with the Jacobi–Dunkl differential-difference operator
�α,β and the Jacobi–Dunkl kernel function �

α,β
λ . We denote by C,R, and N the sets of

complex numbers, real numbers, and positive integers, respectively. For α,β ∈R,α ≥ β ≥
– 1

2 , and α �= – 1
2 , we denote by �α,β the Jacobi–Dunkl differential-difference operator de-

fined by [1]

�α,βψ(ζ ) = ψ́(ζ ) +
(
(2α + 1) coth ζ + (2β + 1) tanh ζ

)
(

ψ(ζ ) – ψ(–ζ )
2

)
. (1)

For λ2 = μ2 + ρ2,λ ∈ C, ζ ∈ R, and ρ = α + β + 1, we denote by �
α,β
λ the Jacobi–Dunkl

kernel function [1]

�
α,β
λ (ζ ) = ϕα,β

μ (ζ ) + i
λ

2(α + 1)
sinh ζ cosh ζϕα+1,β+1

μ (ζ ). (2)
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Then the Jacobi–Dunkl kernel function �
α,β
λ is the C∞-solution of the differential-

difference equation

�α,β�
α,β
λ = iλ�

α,β
λ , λ ∈C,

�
α,β
λ (0) = 1,

}

where ϕα,β
μ is the Jacobi function defined by

ϕα,β
μ (ζ ) = F

(
ρ + iμ

2
,
ρ – iμ

2
,α + 1, –(sinh ζ )2

)
, (3)

F being a Gauss hypergeometric function. For α ≥ β ≥ – 1
2 and λ ∈ C, the function �

α,β
λ

is an eigenfunction of the differential-difference operator �α,β that satisfies the product
formula [1, (2.10)]

�
α,β
λ (ζ )�α,β

λ (y) =
∫ ∞

–∞
�

α,β
λ (u) dμ

α,β
ζ ,y (u),

where

dμ
α,β
ζ ,y (u)

⎧
⎪⎪⎨

⎪⎪⎩

Kα,β (ζ , y, u)Xα,β (u) du, ζy �= 0,

δx, y = 0,

δy, ζ = 0,

and

Kα,β (ζ , y, u) = Mα,β
(
sinh |ζ | sinh |y| sinh |u|)–2α1Iζ ,y (u)

×
∫ π

0
γ z(ζ , y, u)g(ζ , y, u, z)α–β–1

ζ sin2β z dz,

1Iζ ,y being the indicator of Iζ ,y = [–|ζ | – |y|, –||ζ | – |y||U[||ζ | – |y||, |ζ | + |y|]], γ z(ζ , y, u) =
1 – σ z

ζ ,y,u + σ z
u,y,ζ + σ z

u,ζ ,y, and

σ z
ζ ,y,u =

⎧
⎨

⎩

– cosh u cosh ζ–cosh ζ cosh y
sinh ζ sinh y , ζy �= 0,

0, ζy = 0,

Mα,β being the classical function given by [1, (1.15)]. We denote by D the set of C∞-
functions whose supports over R are bounded. By L1

α,β (R, Xα,β(ζ ) dζ ), or L1
α,β , we denote

the measurable space of functions over R that satisfies the norms [2]

‖ψ‖α,β =
∫ ∞

–∞

∣∣ψ(ζ )
∣∣Xα,β(ζ ) dζ < ∞, (4)

where

Xα,β (ζ ) = 22ρ
(
sinh |ζ |)2α+1(cosh ζ )2β+1, ρ = α + β + 1. (5)
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The convolution product of the arbitrary functions ψ1 and ψ2 is defined by [1, Def. (3.1)]

ψ1 ∗α,β ψ2(ζ ) =
∫ ∞

–∞
Tζ

α,β (ψ1)(–y)ψ2(y)Xα,β (y) dy, (6)

where Tζ
α,β , ζ ∈R, is the transformation operator defined by [1, Def. (2.8)]

Tζ
α,βψ1(y) = μ

α,β
ζ (y)(ψ1) =

∫ ∞

–∞
ψ1 dμ

α,β
ζ (y). (7)

However, the product ∗α,β of the suitable functions ψ1 and ψ2 satisfies several results as
follows [1, p. 375].

Proposition 1 Let ψ1,ψ2,ψ3 ∈ L1
α,β(R, Xα,β (ζ ) dζ ). Then the undermentioned relations

hold true.
(i) ψ1 ∗α,β ψ2 = ψ2 ∗α,β ψ1,

(ii) (ψ1 ∗α,β ψ2) ∗α,β ψ3 = ψ1 ∗α,β (ψ2 ∗α,β ψ3).

Consequently, for p = q = r = 1, [1, Prop. (3.2)] leads to the following fruitful result.

Proposition 2 Let ψ2,ψ1 ∈ L1
α,β (R, Xα,β (ζ ) dζ ). Then the following hold:

(i) Tx
α,β is defined a.e. on R. Moreover, it is a member of L1

α,β (R, Xα,β (ζ ) dζ ) and

∥
∥Tζ

α,βψ1
∥
∥

α,β ≤ 4‖ψ1‖α,β .

(ii) ψ1 ∗α,β ψ2 ∈ L1
α,β(R, Xα,β (ζ ) dζ ), and

‖ψ1 ∗α,β ψ2‖α,β ≤ 4‖ψ1‖α,β‖ψ2‖α,β .

The Jacobi–Dunkl operator for a suitable function ψ1 is defined over R by [1, Def. 3.3]

Jd
α,β (ψ1)(λ) =

∫ ∞

–∞
ψ1(ζ )�α,β

–λ (ζ )Xα,β(ζ ) dζ . (8)

Moreover, for ψ2,ψ1 ∈ L1
α,β (R, Xα,β (ζ ) dζ ) and λ ∈R, Prop. (3.6) of [1, p. 376] reveals

Jd
α,β (ψ1 ∗α,β ψ2)(λ) = Jd

α,β (ψ1)(λ)Jd
α,β(ψ2)(λ). (9)

The Plancherel formula for the Jd
α,β transform is defined as

∫ ∞

–∞

∣
∣ψ1(ζ )

∣
∣2Xα,β(ζ ) dζ =

∫ ∞

–∞

∣
∣Jd

α,β (ψ1)(λ)
∣
∣2 d�α,β (λ),

where

d�α,β (λ) =
|λ|dλ

8π
√

λ2 – p2|cα,β
√

λ2 – p2|1R(–p,p)(λ)
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is the Plancherel measure [1, p. 376]. For more illustrations about this theory, readers are
referred to [1–4, 41, 43] and [5–20] and the references cited therein. However, this re-
search is organized in the following format. In Sect. 1, we present some definitions and
results associated with the Jacobi–Dunkl function theory. In Sect. 2, we establish the gen-
eralized spaces B(L1

α,β , D,∗α,β ,�) and B(L̄1
α,β , D̄,×, �̄). In Sect. 3, we extend the Jacobi–

Dunkl function theory to the generalized spaces of generalized functions.

2 The spaces B(L1
α,β , D, ∗α,β ,�) and B(L̄1

α,β , D̄, ×, �̄)
The concepts of the Boehmian spaces are obtained by following an algebraic approach
that hires convolutions and delta sequences, which are approximating identities. When
the structure is allowed to be a function space and the space multiplication is interpreted
as a convolution product, the new structure yields a space of Boehmians (see, e.g., [2, 21–
35, 44] and [1, 8, 11, 33, 36–40, 42]). Let � be the set of all sequences (δn) in D such that
the following properties hold:

∫ ∞

–∞
δn(ζ )Xα,β(ζ ) dζ = 1, (10)

∫ ∞

–∞

∣∣δn(ζ )
∣∣Xα,β(ζ ) dζ < M, M ∈R, (11)

supp(δn) ⊂ (0, an), an → 0 as n → ∞. (12)

The following result shows that � is a set of delta sequences.

Lemma 3 Let (δn) and (θn) be in �. Then (δn ∗α,β θn) is in �.

Proof Let (δn) and (θn) be in �. Then, to prove this lemma, we have to prove that Eqs. (10)–
(12) hold for (δn ∗α,β θn). By [1, Eq. (2.2)] we infer that ψ

α,β
λ (ζ ) = 1 for λ = 0. Therefore, we

obtain

Jd
α,β (ψ1)(0) =

∫ ∞

–∞
ψ1(ζ )�α,β

0 (ζ )Xα,β(ζ ) dζ =
∫ ∞

–∞
ψ1(ζ )Xα,β(ζ ) dζ .

Hence, by the convolution theorem, Eq. (9) and Eq. (10) give

Jd
α,β (δn ∗α,β θn)(0) = Jd

α,β (δn)(0)Jd
α,β (θn)(0)

=
∫ ∞

–∞
δn(ζ )Xα,β(ζ ) dζ

∫ ∞

–∞
θn(y)Xα,β (y) dy

= 1.

This proves that Eq. (10) holds for (δn ∗α,β θn). To show that Eq. (11) holds for (δn ∗α,β θn),
we use Proposition 2 to obtain

‖δn ∗α,β θn‖α,β ≤ 4‖δn‖α,β‖θn‖α,β ≤ 4M2.

Finally, the proof of the fact that (δn ∗α,β θn) satisfies Eq. (12) is straightforward. The proof
is therefore completed.

Hence, the necessary axioms for establishing the Boehmians space B(L1
α,β , D,∗α,β ,�):
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(i) ψ1 ∗α,β ψ2 = ψ2 ∗α,β ψ1, ψ1 ∈ L1
α,β and ψ2 ∈ D;

(ii) ψ1 ∗α,β (ψ2 ∗α,β ψ3) = (ψ1 ∗α,β ψ2) ∗α,β ψ3, ψ1 ∈ L1
α,β and ψ2,ψ3 ∈ D;

(iii) ψ1 ∗α,β ψ2 ∈ L1
α,β , ψ1 ∈ L1

α,β , ψ2 ∈ D,
are justified by Propositions 1 and 2. Hence, we omit the details. �

Theorem 4 Let ψ3,ψ1,ψn ∈ L1
α,β and ψ2 ∈ D. Then the undermentioned relations hold.

(i) ψn ∗α,β ψ2 → ψ1 ∗α,β ψ2 as n → ∞ as ψn → ψ1.
(ii) (ψ1 + ψ3) ∗α,β ψ2 = ψ1 ∗α,β ψ2 + ψ3 ∗α,β ψ2.

Proof of this lemma can be easily obtained from using Eq. (6). Hence, the details are
deleted.

To complete the process of establishing the space B(L1
α,β , D,∗α,β ,�), we derive the fol-

lowing relation.

Lemma 5 Let (δn) ∈ � and ψ ∈ L1
α,β . Then we have ψ ∗α,β δn → ψ as n → ∞.

Proof It has already been verified that ψ1 ∗α,β δn ∈ L1
α,β . Therefore, from definitions we get

‖ψ ∗α,β δn – ψ‖α,β =
∫ ∞

–∞

∣∣(ψ ∗α,β δn – ψ)(ζ )
∣∣Xα,β (ζ ) dζ .

Thus, by employing Eq. (10), we obtain

‖ψ ∗α,β δn – ψ‖α,β ≤
∫ ∞

–∞

∣
∣δn(y)

∣
∣
∣
∣Tζ

α,βψ(–y) – ψ(ζ )
∣
∣Xα,β (ζ ) dζXα,β(y) dy. (13)

Again by Part (i) of Proposition 2, Eq. (13) gives

‖ψ ∗α,β δn – ψ‖α,β ≤ (
4‖ψ‖α,β – ‖ψ‖α,β

)∫ ∞

–∞

∣∣δn(y)Xα,β(y) dy
∣∣.

Since (δn) is of compact support, we by Eq. (12) get

‖ψ ∗α,β δn – ψ‖α,β ≤ 3‖ψ‖α,βAan → 0

as n → ∞.
This ends the proof of the lemma. �

Therefore the Boehmian space B(L1
α,β , D,∗α,β ,�) is obtained. The sum of the Boehmians

[ ϕn
δn

] and [ ψn
εn

] is given in B(L1
α,β , D,∗α,β ,�) as

[
ϕn

δn

]
+

[
ψn

εn

]
=

[
ϕn ∗α,β δn + ψn ∗α,β δn

δn ∗α,β εn

]
,

whereas the multiplication of a Boehmian ϕn
δn

or sometimes [ ϕn
δn

] in B(L1
α,β , D,∗α,β ,�) by a

complex number γ is defined as γ [ ϕn
δn

] = [ γ ϕn
δn

]. On the other hand, the extension of ∗α,β

and Dα to B(L1
α,β , D,∗α,β ,�) is introduced as

[
ϕn

δn
∗α,β

ψn

εn

]
=

[
ϕn ∗α,β ψn

δn ∗α,β εn

]
and Dα

[
ϕn

δn

]
=

[
Dαϕn

δn

]
, α ∈R.
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Moreover, an extension of ∗α,β to B(L1
α,β , D,∗α,β ,�) ∗α,β L1

α,β (R2), where (ϕn/δn) is in
B(L1

α,β , D,∗α,β ,�) and ω in L1
α,β , is given as

[
ϕn

δn
∗α,β ω

]
=

[
ϕn ∗α,β ω

δn

]
.

If βn,β ∈ B(L1
α,β , D,∗α,β ,�), n = 1, 2, 3, . . . , then {βn} converges in δ type to β , namely δ –

limn→∞ βn = β(βn
δ→ β), provided there can be found a delta sequence {δn} such that

(a) (βn ∗α,β δk) and (β ∗α,β δk) ∈ L1
α,β for all n, k ∈N,

(b) limn→∞ βn ∗α,β δk = β ∗α,β δk in L1
α,β for every k ∈N.

Or, equivalently, δ – limn→∞ βn = β if and only if there are ϕn,k , ϕk ∈ L1
α,β and {δk} ∈ �

such that
(i) βn = ϕn,k/δk , β = ϕk/δk

(ii) limn→∞ ϕn,k = ϕk ∈ L1
α,β to every k ∈N.

If βn,β ∈ B(L1
α,β , D,∗α,β ,�) for n = 1, 2, 3, . . . , then the sequence {βn} converges in � type

to β , namely �-limn→∞ βn = β(βn
�→ β), provided there can be found a delta sequence

{δn} such that
(i) (βn – β) ∗α,β δn ∈ L1

α,β (∀n ∈ N)
(ii) limn→∞(βn – β) ∗α,β δn = 0 in L1

α,β .
We turn to the construction of the ultraspace B(L̄1

α,β , D̄,×, �̄) of Boehmians. Let D̄, L̄1
α,β

be the spaces of all Jacobi–Dunkl transforms of the spaces D and L1
α,β , respectively, and

�̄ be the set of the Jacobi–Dunkl transforms of the set �. Define a product formula ×α,β

between D̄ and L̄1
α,β by

F ×α,β G =
(
Jd
α,βψ1

)(
Jd
α,βψ2

)
, where ψ1 ∈ D and ψ2 ∈ L1

α,β . (14)

With the product ×α,β , the space B(L̄1
α,β , D̄,×α,β , �̄) can be easily verified as a Boehmian

space by virtue of the following result.

Theorem 6 Let F1, F2 ∈ L̄1
α,β , G1, G ∈ D̄. Then the undermentioned relations hold.

(i) (F1 + F2) ×α,β G = F1 ×α,β G + F2 ×α,β G.
(ii) F1 ×α,β G = G ×α,β F1.

(iii) λ(F1 ×α,β G) = (λF1) ×α,β G,λ ∈C.
(iv) Fn ×α,β G → F1 ×α,β G for every Fn ∈ L̄1

α,β .
(v) Fn → F1 as n → ∞ in L̄1

α,β .
(vi) F1 ×α,β (G ×α,β G1) = (F1 ×α,β G) ×α,β G1.

Proof We prove (ii) as the proofs of (i), (iii), (iv), and (v) are similar to those given in liter-
ature or are straightforward results from simple integration. Let ψ1 ∈ L1

α,β and ψ2 ∈ D be
such that Jd

α,βψ1 = F1 and Jd
α,βψ2 = G. Then, by Eq. (9), we write

F1 ×α,β G = Jd
α,βψ1 ×α,β Jd

α,βψ2 = Jd
α,β (ψ1 ∗α,β ψ2).

Hence, since ψ1 ∗α,β ψ2 = ψ2 ∗α,β ψ1, we have

F1 × G = Jd
α,β (ψ2 ∗α,β ψ1) = G ×α,β F1.

This ends the proof of the theorem. �
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Theorem 7 Let (δ̄n), (θ̄n) ∈ �̄. Then δ̄n ×α,β θ̄n ∈ �̄ for all n ∈ N.

Proof Let (δn), (θn) be in � such that δ̄n = Jd
α,βδn and θ̄n = Jd

α,βθn. Then, by Eq. (9), we have

δ̄n ×α,β θ̄n = Jd
α,β (δn∗α,β , θn).

It is perspicuous that δ̄n ×α,β θ̄n ∈ �̄ as (δn∗α,β , θn) ∈ � by Lemma 3. This completes the
proof of the theorem. �

Similarly, we proceed to establishing the following theorem.

Theorem 8 Let (δ̄n) ∈ �̄ and F ∈ L̄1
α,β . Then we have

F ×α,β δ̄n → F as n → ∞.

The space B(L̄1
α,β , D̄,×α,β , �̄) is an ultra-Boehmian space. For addition, multiplication by

a scalar, δ-convergence, and �-convergence in the space B(L̄1
α,β , D̄,×α,β , �̄), see [2, 21–32]

and B(L1
α,β , D,∗α,β ,�) for similar definitions, replacing ∗α,β with ×α,β .

3 The generalized Jacobi–Dunkl transform
In this section, we aim to introduce the generalized definition of the Jacobi–Dunkl integral
operator. Let [ ψn

δn
] ∈ B(L1

α,β , D,∗α,β ,�), then the generalized Jacobi–Dunkl transform of
[ ψn

δn
] is a Boehmian in B(L̄1

α,β , D̄,×α,β , �̄) defined by

F̄α,β

[
ψn

δn

]
=

[ Jd
α,βψn

Jd
α,β δ̄n

]
. (15)

Theorem 9 The estimated generalized Jacobi–Dunkl operator F̄α,β is well defined and lin-
ear from the space B(L1

α,β , D,∗α,β ,�) into the space B(L̄1
α,β , D̄,×α,β , �̄).

Proof Let [ ϕn
δn

] = [ ψn
εn

] ∈ B(L1
α,β , D,∗α,β ,�). Then we have

ϕn ∗α,β εm = ψm ∗α,β δn = ψn ∗α,β δm for all m, n ∈N.

Applying F̄α,β to both sides in the preceding equation and making use of Eq. (9) reveal that

Jd
α,βϕn ×α,β Jd

α,βεm = Jd
α,βψn ×α,β Jd

α,βδm for all m, n ∈N. (16)

In view of the concept of quotients of the sequences of B(L̄1
α,β , D̄,×α,β , �̄), Eq. (16) gives

[ Jd
α,βϕn

Jd
α,βδn

]
=

[ Jd
α,βψn

Jd
α,βεn

]
.

To show that the transform F̄α,β : B(L1
α,β , D,∗α,β ,�) → B(L̄1

α,β , D̄,×α,β , �̄) is linear, let
[ ϕn

δn
], [ ψn

εn
] ∈ B(L1

α,β , D,∗α,β ,�). Then, by the idea of the addition of B(L1
α,β , D,∗α,β ,�),

Eq. (15), Eq. (9), and the idea of the addition of B(L̄1
α,β , D̄,×α,β , �̄), we can announce that

F̄α,β

([
ϕn

δn

]
+

[
ψn

εn

])
= F̄α,β

([
ϕn ∗α,β εn + ψn ∗α,β δn

δn ∗α,β εn

])
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=
[ Jd

α,β (ϕn ∗α,β εn) + Jd
α,β (ψn ∗α,β δn)

Jd
α,βδn ×α,β Jd

α,βεn

]

=
[ Jd

α,βϕn ×α,β Jd
α,βεn + Jd

α,βψn ×α,β Jd
α,βδn

Jd
α,βrn ×α,β Jd

α,βεn

]

=
[ Jd

α,βϕn

Jd
α,βδn

]
+

[ Jd
α,βψn

Jd
α,βεn

]
.

Hence, Eq. (15) leads to

F̄α,β

([
ϕn

δn

]
+

[
ψn

εn

])
= F̄α,β

[
ϕn

δn

]
+ F̄α,β

[
ψn

εn

]
.

Also, we have

αF̄α,β

[
ϕn

δn

]
= α

[ Jd
α,βϕn

Jd
α,βδn

]
=

[ Jd
α,β (αϕn)
Jd
α,βδn

]
for α ∈C. (17)

Hence,

αF̄α,β

[
ϕn

δn

]
= F̄α,β

(
α

[
ϕn

δn

])
. (18)

Equations (17) and (18) end the proof of this theorem. �

Theorem 10 The mapping F̄α,β : B(L1
α,β , D,∗α,β ,�) → B(L̄1

α,β , D̄,×α,β , �̄) is an isomor-
phism.

Proof Let [
Jd
α,βϕn
δn

] = [
Jd
α,βψn
εn

] ∈ B(L̄1
α,β , D̄,×α,β , �̄). Then, by using Eq. (9), we get

Jd
α,βϕn ×α,β Jd

α,βεm = Jd
α,βψm ×α,β Jd

α,βδn for all m, n ∈N.

Once again, (14) reveals to have

Jd
α,β (ϕn ∗α,β εm) = Jd

α,β (ψm ∗α,β δn) for all m, n ∈N.

We, thus, obtain ϕn ∗α,β εm = ψm ∗α,β δn for all m, n ∈N. Hence, by the concept of quotients
of B(L1

α,β , D,∗α,β ,�), we have

[
ϕn

δn

]
=

[
ψn

εn

]
∈ B

(
L1

α,β , D,∗α,β ,�
)
.

This confirms the injectivity of the mapping. The surjectivity part of F̄α,β is very clear as,

for every [
Jd
α,βϕn

Jd
α,βδn

] ∈ B(L̄1
α,β , D̄,×α,β , �̄), there can be found [ ϕn

δn
] ∈ B(L̄1

α,β , D̄,×α,β , �̄) such

that

F̄α,β

[
ϕn

δn

]
=

[ Jd
α,βϕn

Jd
α,βδn

]
.

The proof of the theorem is ended. �
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Definition 11 Let [
Jd
α,βϕn

Jd
α,βδn

] ∈ B(L̄1
α,β , D̄,×α,β , �̄). Then we define the transform inversion

formula of F̄α,β as

(F̄α,β)–1
[ Jd

α,βϕn

Jd
α,βδn

]
=

[
ϕn

δn

]
for each {δn} ∈ �. (19)

Theorem 12 Let [
Jd
α,βϕn

Jd
α,βδn

] be in B(L̄1
α,β , D̄,×α,β , �̄) for some [ ϕn

δn
] in B(L1

α,β , D,∗α,β ,�). Then,

for φ ∈ D̄(R) and ψ ∈ D, we have

(F̄α,β)–1
([ Jd

α,βϕn

Jd
α,βδn

]
×α,β φ

)
=

[
ϕn

δn

]
∗α,β θ and

F̄α,β

([
ϕn

δn

]
∗α,β ψ

)
=

[ Jd
α,βϕn

Jd
α,βδn

]
×α,β ψ

for some θ ∈ D.

Proof Let [
Jd
α,βϕn

Jd
α,βδn

] ∈ B(L̄1
α,β , D̄,×α,β , �̄) and φ ∈ D̄(R) be such that φ = Jd

α,βθ for some θ ∈ D.

Then, by Eq. (9), we write

(F̄α,β)–1
([ Jd

α,βϕn

Jd
α,βδn

]
×α,β φ

)
= (F̄α,β)–1

([ Jd
α,βϕn ×α,β φ

Jd
α,βδn

])

=
[ (Jd

α,β )–1(Jd
α,βϕn ×α,β Jd

α,βθ )
(Jd

α,β )–1(Jd
α,βδn)

]

=
(
Jd
α,β

)–1
[ Jd

α,β (ϕn ∗α,β θ )
Jd
α,βδn

]

=
[

ϕn

δn

]
∗α,β θ .

To prove the second identity of this theorem, we make use of Eq. (9) to obtain

F̄α,β

([
ϕn

δn

]
∗α,β ψ

)
= F̄α,β

([
ϕn ∗α,β ψ

δn

])
=

[ Jd
α,βϕn

Jd
α,βδn

]
×α,β ψ . (20)

This ends the proof of the theorem. �

Theorem 13 The mappings F̄α,β : B(L1
α,β , D,∗α,β ,�) → B(L̄1

α,β , D̄,×α,β , �̄) and (F̄α,β)–1 :
B(L̄1

α,β , D̄,×α,β , �̄) → B(L1
α,β , D,∗α,β ,�) are continuous with respect to δ and �-

convergence.

Proof We show that F̄α,β and (F̄α,β )–1 are continuous with respect to the convergence of
δ type. For this aim, we assume βn

δ→ β in B(L1
α,β , D,∗α,β ,�) as n → ∞ and verify that

F̄α,ββn → F̄α,ββ as n → ∞. Let ψn,k and ψk be in L1
α,β such that

βn =
[

ψn,k

φk

]
and β =

[
ψk

φk

]
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and ψn,k → ψk as n → ∞ for all k ∈N. Then Jd
α,βψn,k → Jd

α,βψk as n → ∞ in the space L̄1
α,β .

Therefore,

[ Jd
α,βψn,k

Jd
α,βφk

]
→

[ Jd
α,βψk

Jd
α,βφk

]
(21)

as n → ∞ in B(L̄1
α,β , D̄,×α,β , �̄).

To prove the second part, let gn
δ→ g in B(L̄1

α,β , D̄,×α,β , �̄) as n → ∞. Then, let gn =

[
Jd
α,βψn,k

Jd
α,βφk

] and g = [
Jd
α,βψk

Jd
α,βφk

] and Jd
α,βψn,k → Jd

α,βψk as n → ∞. Therefore, ψn,k → ψk in

B(L1
α,β , D,∗α,β ,�) as n → ∞. Hence, [ ψn,k

φk
] → [ ψk

φk
] as n → ∞. Using Eq. (15) reveals

(F̄α,β)–1
[ Jd

α,βψn,k

Jd
α,βφk

]
→ (F̄α,β )–1

[ Jd
α,βψk

Jd
α,βφk

]
as n → ∞.

To establish continuity with respect to the convergence of � type, we assume βn
�→ β in

B(L1
α,β , D,∗α,β ,�) as n → ∞. Then there exist ψn ∈ L1

α,β and (φn) ∈ � such that (βn –β)∗α,β

φn = [ ψn∗α,βφk
φk

] and ψn → 0 as n → ∞. Employing (15) gives

F̄α,β
(
(βn – β) ∗α,β φn

)
=

[ Jd
α,β (ψn ∗α,β φk)

Jd
α,βφk

]
. (22)

Hence, we derive

F̄α,β
(
(βn – β) ∗α,β φn

)
=

[ Jd
α,βψn ×α,β Jd

α,βφk

Jd
α,βφk

]
� Jd

α,β fn → 0

as n → ∞ in L̄1
α,β . Therefore, from Eq. (22) we get

F̄α,β
(
(βn – β) ∗α,β φn

)
= (F̄α,ββn – F̄α,ββ) ×α,β φn → 0 as n → ∞.

Hence, F̄α,ββn
�→ F̄α,ββ as n → ∞.

Finally, let gn
�→ g in B(L̄1

α,β , D̄,×α,β , �̄) as n → ∞. Then we find Jd
α,βψk ∈ L̄1

α,β such that

(gn – g)×α,β φk = [
Jd
α,βψk×α,βφk

φk
] and Jd

α,βψk → 0 as n → ∞ for some φk = Jd
α,βθk , θk ∈ �. Now,

using Definition 11, we obtain

(F̄α,β)–1((gn – g) ×α,β φk
)

=
[(

Jd
α,β

)–1 (Jd
α,βψk ×α,β Jd

α,βθk)
Jd
α,βθk

]
. (23)

That is,

(F̄α,β)–1((gn – g) ×α,β φk
)

=
[

ψk ∗α,β θk

θk

]
= ψk → 0 as k → ∞ in L1

α,β .

Thus, Eq. (23) gives

(F̄α,β)–1((gn – g) ×α,β φk
)

=
(
(F̄α,β )–1gn – (F̄α,β)–1g

) ∗α,β θk → 0 as n → ∞.
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Due to the above equation, we infer that (F̄α,β )–1gn
�→ (F̄α,β )–1g for large values of n in

B(L1
α,β , D,∗α,β ,�).

This ends the proof of the theorem. �

Theorem 14 The extended F̄α,β transform and the classical Jd
α,β transform are consistent.

Proof For every ψ ∈ L1
α,β , assume that β is its representative in B(L1

α,β , D,∗α,β ,�). This in-
deed reveals that β = [ ψ∗α,βδn

δn
], where (δn) ∈ �, n ∈N. It is obvious that the delta sequence

(δn) is independent from the representative for all n ∈N. Consequently,

F̄α,β (β) = F̄α,β

([
ψ ∗α,β δn

δn

])
=

[ Jd
α,β (ψ ∗α,β δn)

Jd
α,βδn

]
=

[ Jd
α,βψ ×α,β Jd

α,βδn

Jd
α,βδn

]
,

which is the representative of Jd
α,βψ in L̄1

α,β .
Hence, the proof of the theorem is ended. �

Theorem 15 Let [ ψn
δn

] ∈ B(L̄1
α,β , D̄,×α,β , �̄). Then the condition for [ ψn

δn
], which is necessary

and sufficient, to be in the range of F̄α,β is that ψn is in the range of Jd
α,β for every n ∈N.

Proof If [ ψn
δn

] is in the range of F̄α,β , then indeed ψn is in the range of Jd
α,β for all n ∈ N. For

the converse, if ψn is in the range of Jd
α,β for all n ∈ N, then we can find fn ∈ L1

α,β so that
Jd
α,β fn = ψn for all n ∈N. Since [ ψn

δn
] ∈ B(L̄1

α,β , D̄,×α,β , �̄),

ψn ×α,β δm = ψm ×α,β δn for all m, n ∈N. (24)

Therefore, for some fn ∈ L1
α,β and ϕn ∈ �, we find

Jd
α,β (fn ∗α,β ϕn) = Jd

α,β (fm ∗α,β ϕn) for all m, n ∈N.

The fact that Jd
α,β is injective, implies that fn ∗α,β ϕm = fm ∗α,β ϕn, m, n ∈N.

Thus, fn
ϕn

is a quotient of the sequences in B(L1
α,β , D,∗α,β ,�). Hence,

F̄α,β

[
fn

ϕn

]
=

[
ψn

ψn

]
for some

[
fn

ϕn

]
∈ B

(
L1

α,β , D,∗α,β ,�
)
.

Hence the theorem is proved. �

4 Conclusion
The classical theory of the Jacobi–Dunkl integral operator of [1] is extended to a class
of Boehmians. Every element of the classical space L1

α,β is identified as a member of the
Boehmian space B(L1

α,β , D,∗α,β ,�). Various embeddings and characteristics of the ex-
tended integral operator including an inversion formula are given in a generalized sense.
Convergence with respect to δ and � is also discussed.
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