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Abstract
An explicit unconditionally stable scheme is proposed for solving time-dependent
partial differential equations. The application of the proposed scheme is given to
solve the COVID-19 epidemic model. This scheme is first-order accurate in time and
second-order accurate in space and provides the conditions to get a positive solution
for the considered type of epidemic model. Furthermore, the scheme’s stability for
the general type of parabolic equation with source term is proved by employing von
Neumann stability analysis. Furthermore, the consistency of the scheme is verified for
the category of susceptible individuals. In addition to this, the convergence of the
proposed scheme is discussed for the considered mathematical model.

Keywords: Proposed scheme; Conditionally positivity preserving; Diffusive
COVID-19 model; Stability; Convergence conditions

1 Introduction
Mathematical modeling of epidemic diseases is one of the branches of modeling con-
cerned with somehow estimating and predicting some insight into actual disease. In the
literature, the constructed mathematical models for epidemic diseases were the first-order
differential equations system that might have been constructed on some assumptions.
SIR models belong to the constructed mathematical models of epidemic diseases that
can describe some relationships between susceptible, infected, and recovered individu-
als in COVID-19 epidemic disease. In [1] presented the SIR model that contained health
medication factor, initial infected, transmits factor, and human contact factor. One of the
concluded results was decreasing COVID-19 spreading by choosing a low contact factor
and high medication factor. Reference [2] has consisted of the SEIR model of COVID-19
that contained isolation factors and vaccination as model parameters. The basic repro-
duction number is found by using the generation matrix method, and the global stability
of the given model has also been discussed. The modification of the classical SIR model
has been shown in [2] by proposing a susceptible-infected-removed-sick (SIRSi) computa-
tional model. The proposed model in [2] considered the level of immunity within the pop-
ulation and asymptomatic cases. The SEIR epidemic model given in [3] used a convex in-
cidence rate. The simulations were obtained by applying the nonstandard finite difference
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method. An SL1L2I1I2A1A2R epidemic model has been formulated in [4] for spreading an
epidemic within the population. The model used an Erlang distribution of time of sojourn
in considered compartments. In [5], a simple compartmental Kermack-McKendrick-type
epidemic model was introduced with homogeneous and heterogeneously mixed popula-
tions. For the dynamics of COVID-19, a primer for analyzing, formulating, and simulating
mathematical models were also given.

Some existing models can be used for the COVID-19 epidemic to see some insight into
the epidemic disease. The mathematical model considered in [6] has consisted of suscep-
tible, exposed, asymptomatic, infected, and recovered individuals. Exposed were those in-
dividuals that had pathogen but cannot transmit it to other individuals. At the same time,
asymptomatic individuals could transmit the pathogen. However, they do not know about
it and are infected. They knew that they had the disease and can transmit it since quaran-
tine is another category of individuals considered in COID-19 epidemic disease. However,
in the present modeling, quarantine individuals are not considered, although they can be
regarded as infected individuals. Because if someone is infected, then it means that the
individual knows about the disease. This infected individual can be considered one of the
quarantine individuals, but quarantine can be regarded as the category of infected and
under treatment people. So, for COVID-19 disease, infected and quarantine individuals
can be considered to be the same. It is also assumed that the recovered individuals are not
shifted to exposed or asymptomatic or infected individuals. The recovered individuals can
be assumed to have an ignorable chance of being infected again. For the present modeling
of COVID-19, it is also assumed that exposed people cannot be shifted into the category
of recovered people.

Some of the numerical solutions for epidemic models included the diffusion effects that
can be found in [7–9]. [10] has presented a predictor-corrector system to find a solution to
large time values for obtaining insight into an epidemic to limit behavior. Variational itera-
tion method and successive approximation methods have been applied in [11] to solve the
SIR epidemic model with a constant vaccination strategy. The existing variational iteration
method was shown to be inaccurate for the large domain. The existing variational itera-
tion method was improved and identical to the successive approximation method. The
modified method was more accurate than the existing one, given in [11]. The susceptible,
exposed, infected, diagnosed, recovered (SEIJR) epidemic model was considered in [12]
with effects of net inflow of people into a region. Different initial population distributions
were considered with the considered model, and it was solved by the numerical method
for analyzing the transmission of disease. A diffusive epidemic model [13] has been in-
vestigated for describing the transmission of influenza as an epidemic. The spread of the
disease showed that diffusion and initial population distribution played an important role.

The COVID 19 pandemic is a worldwide destructive disease that raised severe health
issues. It is considered one of the most devastating crises after World War II as it increased
the death toll by 1,458,000, which is still rampant. This pandemic surged social issues
and the economic recession and environmental disability that led to the destruction of
habits, trade, economic relations, forms of work, and political organizations. Reportedly,
this disease imparts curb on social movement more than 4 billion people.

Globally, all government and private healthcare departments were unprepared for this
trauma which was simply a matter of time that arrived now. Pathogenic disorders wreak
havoc in society in the past few months, for which mathematical modeling is the best way
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to investigate and control them once they enter the community. Nowadays, coronavirus is
an essential topic for researchers as regards finding its treatment as the effectiveness and
deaths are unbridled.

The virus was first reported in December 2019 in a Chinese city, Wuhan, as an infective
agent named coronavirus [14, 15]. The viral disease COVID-19 is primarily transferred us-
ing droplets produced by infected persons. The infection is transmitted through droplets
that are so dense than air particles and immediately fall on the ground, created due to
sneezing and coughing of the infected person. COVID-19 confirmed cases reached 4 mil-
lion earlier in more than 180 countries, and approximately 1,458,000 people have become
victims of this dreadful virus [16].

A retrofitted state SIR system to task the overall number of sick circumstances and the
specialized obligations on hemodialysis units and hospitals are presented [17]. Nesteruk
observed the coronavirus epidemic trying to spread numbers based on assumptions
throughout mainland China regrettably. The majority of casualties of COVID are pre-
dicted to become much higher than that forecast on February 2020; two days later, 12289
confirmed cases were added. Additional research focuses on updating predictions using
up-to-date data and applying more convoluted mathematical representations. There does
not exist any approved vaccine or diagnostic drugs for the avoidance and cure of coron-
avirus. However, research studies on potential antiviral drugs and vaccine candidates are
under way in several countries. Vaccine evaluations, growth, and allocation are usually a
big task than clinical trials. It is unlikely that the COVID-19 flu shot will be mentally pre-
pared by 2021 within the shortest time possible. The dreadful germ can spread quickly in
closely packed locations. Social detachment or low contact rate refers to increasing the
disk environment among both people to delay infection spread [18–21]. They have stud-
ied the SIR model to guesstimate the adult location of the coronavirus infectious disease
[22].

2 Diffusive epidemic models
In the literature, some diffusive epidemic models have existed. From these, [23] investi-
gated a diffusive model for the transmission of influenza as an epidemic. The equations
have been tackled with the splitting method using different initial conditions of population
density. Another diffusive epidemic model of H1N1 has been formulated [24] for gaining a
basic understanding of virus behavior. It was assumed that all newborns were susceptible,
and also, it was assumed that the mortality rate of individuals is greater than the natu-
ral mortality rate. Among the diffusive epidemic models, a vaccinated diffusive epidemic
model has also been developed [25] for exploring the impact of diffusion and vaccination
on the transmission of dynamics of influenza. In this work [25], a basic reproduction num-
ber was found for both vaccinated and non-vaccinated cases. Based on parameters in the
system, sensitivity analysis of the reproduction number has been investigated. HIV/AIDS
is incurable for human beings mentioned in [26], and a diffusive compartmental model
of HIV/AIDS has been proposed with a delay process. The proposed scheme had the ad-
vantage of producing a positive solution. The stability and consistency have been given.
A nonlinear model for Immunodeficiency Virus (HIV ) has been proposed in [27]. For
boundedness and wellposedness, theorems and propositions have been constructed, and
the model was solved by employing the evolutionary Padé-approximation technique. This
is some literature given on diffusive epidemic models. The reader can find more work on
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Table 1 Table of the physical meanings of the parameters used in the Diffusive COVID-19 Epidemic
model investigated in this work

Symbols for
variables

Description Symbols for
parameters

Description

S Fraction of Susceptible α infecting rate of asymptomatic individuals
E Fraction of Exposed β infecting rate of infectious individuals
A Fraction of Asymptomatic γ a conversion rate of exposed individuals to

become asymptomatic
I Fraction of Infective σ rate of those fraction of infectious hosts which

have symptoms
R Fraction of Recovered μ the healing rate of asymptomatic and

infectious individuals
d′
i s 1≤ i ≤ 5 Diffusion coefficients

diffusive epidemic models by referring to [23–27]. In [28] an SEIR epidemic model for
COVID-19 is constructed using several common control strategies, including hospital-
ization, quarantine, and external input. The particle swarm optimization (PSO) algorithm
is used to estimate the system’s parameters using data from Hubei province.

In this contribution, a numerical scheme is proposed to solve the COVID-19 epidemic
model with diffusion. The scheme is shown to be unconditionally stable for the consid-
ered type of epidemic models. The scheme is first-order accurate because it is constructed
to provide the first-order accuracy in time and second-order accuracy in space for diffu-
sion contained epidemic models. The scheme provides a conditionally positive solution.
The conditions of finding positive solutions are found in the construction of the proposed
scheme. The scheme is constructed on three-time levels, and it is an explicit scheme. The
convergence of the modified epidemic model’s scheme is also discussed by applying the
condition of convergence of infinite geometric series. Since the scheme is constructed on
three-time levels, so it requires another scheme to be implemented at the first time level.
The proposed scheme can be useful in those mathematical models where the positive solu-
tion is required to be found. Other than epidemic models, it can also be applied to solving
any time-dependent partial differential equations which contain a diffusion term.

The model given in [6] is modified with diffusion effects, and the modified diffusive
COVID-19 model is expressed as

∂S
∂t

= d1
∂2S
∂x2 – αAS – βIS, (1)

∂E
∂t

= d2
∂2E
∂x2 + αAS + βIS – γ E, (2)

∂A
∂t

= d3
∂2A
∂x2 + γ E – σA – μA, (3)

∂I
∂t

= d4
∂2I
∂x2 + σA – μI, (4)

∂R
∂t

= d5
∂2R
∂x2 + μA + μI. (5)

The boundary conditions corresponding to Eq. (1)–(5) are expressed as:

∂S
∂x

= 0,
∂E
∂x

= 0,
∂A
∂x

= 0,
∂I
∂x

= 0,
∂R
∂x

= 0 at x = 0, L (6)
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and the initial conditions are expressed as

S(x, 0) = f1(x), E(x, 0) = f2(x), A(x, 0) = f3(x),

I(x, 0) = f4(x), R(x, 0) = f5(x).
(7)

Moreover, Table 1 provides a summary of the physical meaning of the parameters used in
this model. For d1 = d2 = d3 = d4 = d5 = 0, Eqs. (1)–(5) become ordinary differential equa-
tions, and linear stability of the system is determined by the Jacobean at the equilibrium
point (1, 0, 0, 0, 0) given in [1] as

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 –α –β 0
0 –γ α β 0
0 γ –β – μ 0 0
0 0 σ –μ 0
0 0 μ μ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

In [1], two eigenvalues of the Jacobean (8) are zero, and the remaining eigenvalues can
be found from the following polynomial:

R(λ) = βγσ – (μ + λ)
[
(λ + μ)(σ + μ + λ) + αγ

]
.

Using the Routh Hurwitz criteria for linear stability of the system (1)–(5), real parts of the
eigenvalues must be negative, and this gives the condition for stability [1].

μ(μ + σ ) > αμ + βγ . (9)

3 Numerical scheme
The proposed numerical scheme can solve systems of Eqs. (1)–(5). At this stage, the con-
struction of the numerical scheme is given. The scheme is constructed for Eq. (1) and
the remaining Eqs. (2)–(5) will be discretized later on. Consider the following difference
equation with unknown parameter a:

Sn+1
i – Sn–1

i
�t

= a
{

d1
Sn

i+1 – 2Sn+1
i + Sn

i–1
(�x)2 – αAn

i Sn+1
i – βIn

i Sn+1
i

}
. (10)

We expand Sn+1
i and Sn–1

i using Taylor series, as follows:

Sn+1
i = Sn

i + �t
(

∂S
∂t

)n

i
+ O

(
(�t)2), (11)

Sn–1
i = Sn

i – �t
(

∂S
∂t

)n

i
+ O

(
(�t)2). (12)

Substituting the Taylor series expansions (11) and (12) into Eq. (10) yields

Sn
i + �t

(
∂S
∂t

)n

i
+ O

(
(�t)2)

= Sn
i – �t

(
∂S
∂t

)n

i
+ O

(
(�t)2) + a�t

{
d1

Sn
i+1 – 2Sn+1

i + Sn
i–1

(�x)2 –
2�t

(�x)2

(
∂S
∂t

)n

i
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– αAn
i Sn

i – �tαAn
i

(
∂S
∂t

)n

i
– βIn

i Sn
i – �tβIn

i

(
∂S
∂t

)n

i
+ O

(
(�t)2)

}
. (13)

Equation (13) is further simplified as

2�t
(

∂S
∂t

)n

i
+ O

(
(�t)2) = a�t

{(
∂S
∂t

)n

i
–

2�t
(�x)2

(
∂S
∂t

)n

i

– �tαAn
i

(
∂S
∂t

)n

i
– �tβIn

i

(
∂S
∂t

)n

i
+ O

(
(�t)2)

}
. (14)

Comparing coefficients of �t( ∂S
∂t )n

i on both sides of Eq. (14) gives

2 = a
(

1 –
2�t

(�x)2 – �tαAn
i – �tβIn

i

)
. (15)

Solving Eq. (15) gives the expression for a,

a =
2

1 – 2�t
(�x)2 – �t(αAn

i – βIn
i )

. (16)

Thus Eqs. (1)–(5) are discretized as

Sn+1
i = Sn–1

i + �ta1

{
d1

Sn
i+1 – 2Sn+1

i + Sn
i–1

(�x)2 – αAn
i Sn+1

i – βIn
i Sn+1

i

}
, (17)

En+1
i = En–1

i + �ta2

{
d2

En
i+1 – 2En+1

i + En
i–1

(�x)2 + αAn
i Sn

i + βIn
i Sn

i – γ En+1
i

}
, (18)

An+1
i = An–1

i + �ta3

{
d3

An
i+1 – 2An+1

i + An
i–1

(�x)2 + γ En
i – σAn+1

i – μAn+1
i

}
, (19)

In+1
i = In–1

i + �ta4

{
d4

In
i+1 – 2In+1

i + In
i–1

(�x)2 + σAn
i – μIn+1

i

}
, (20)

Rn+1
i = Rn–1

i + �ta5

{
d4

Rn
i+1 – 2Rn+1

i + Rn
i–1

(�x)2 + μAn
i + μIn

i

}
. (21)

The expressions for a1, a2, a3, a4 and a5 are

a1 = a1, a2 =
2

1 – 2 �t
(�x)2 – �tγ

, a3 =
2

1 – 2 �t
(�x)2 – �t(σ + μ)

,

a4 =
2

1 – 2 �t
(�x)2 – �tμ

, a5 =
2

1 – 2 �t
(�x)2

.
(22)

Equations (17)–(21) are discretized equations, and the discretization is performed by em-
ploying the proposed scheme on Eqs. (1)–(5) and the unknowns ai i = 1, 2, 3, 4, 5 can be
found from Eq. (22).

Theorem The scheme produces a conditionally positive solution provided that positive
initial conditions are chosen, and the solution is positive at the first time level.
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Proof Suppose a = a1, a2, a3, a4, a5 ≥ 0. Then Eqs. (17)–(21) can be expressed as

Sn+1
i =

Sn–1
i + �ta1{d1

Sn
i+1+Sn

i–1
(�x)2 }

1 + 2dd1a1 + α�ta1An
i + β�ta1In

i
≥ 0, (22a)

En+1
i =

En–1
i + �ta2{d2

En
i+1+En

i–1
(�x)2 + αAn

i Sn
i + βIn

i Sn
i }

1 + 2dd2a2 + γ�ta2
≥ 0, (22b)

An+1
i =

An–1
i + �ta3{d3

An
i+1+An

i–1
(�x)2 + γ En

i }
1 + 2dd3a3 + �ta3(σ + μ)

≥ 0, (22c)

In+1
i =

In–1
i + �ta4{d4

In
i+1+In

i–1
(�x)2 + σAn

i }
1 + 2dd4a4 + �tμa4

≥ 0, (22d)

Rn+1
i =

Rn–1
i + �ta5{d4

Rn
i+1+Rn

i–1
(�x)2 + μAn

i + μIn
i }

1 + 2dd5a5
≥ 0. (22e)

So, the explicit relationships (22a)–(22e) show that the scheme will produce a positive
solution at each time level with the first-order accuracy in time and second-order accuracy
in space. The two positive initial conditions can be provided to apply the proposed scheme
instead of employing any other scheme on the first time level, which will be constructed
on two time levels. �

4 Stability analysis
The stability of the proposed scheme is checked by employing the von Neumann stabil-
ity criteria. Before starting the procedure of von Neumann stability criteria, consider the
general form of the epidemic model given by

∂u
∂t

= α1
∂2u
∂x2 – β1u, (23)

where u can be considered as one of the susceptible, exposed, infectious, asymptomatic,
or recovered individuals and α1, β1 are some rates.

Employing the proposed scheme in Eq. (23) yields

un+1
i – = a

(
α1

un
i+1 – 2un+1

i + un
i–1

(�x)2 – β1un+1
i

)
, (24)

where a = 2
1–2d–�tβ1

.
By following the von Neumann stability criteria, the dependent components in the

scheme (24) are expressed as

un
i±1 = Une(i±1)Iθ , un±1

i = Un±1eiIθ , (25)

where I =
√

–1. Applying transformation (25) to Eq. (24), one obtains

Un+1eiIθ – Un–1eiIθ = �ta
(

α1

(
e(i+1)Iθ + e(i–1)Iθ

(�x)2

)
Un

–
2α1

(�x)2 eiIθ Un+1 – β1Un+1eiIθ
)

. (26)
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Simplification of (26) leads to

Un+1 – Un–1 = a
(
dα1(2 cos θ )Un – 2α1dUn+1 – β1�tUn+1), (27)

where d = �t
(�x)2 . Equation (27) can be expressed as

Un+1 = b1Un + b2Un–1, (28)

where b1 = 2adα1 cos θ

1+(2α1d+β1�t)a , b2 = 1
1+a(2α1d+β1�t) .

Consider one more equation of the form

Un = Un + OUn–1. (29)

The matrix-vector equation can be constructed as

[
Un+1

Un

]
=

[
b1 b2

1 0

][
Un

Un–1

]
. (30)

For this case, the amplification factor is a matrix, and the condition of stability can be
imposed on the eigenvalues of this matrix, which are expressed as

|λ1| ≤ 1 and |λ2| ≤ 1, (31)

where λ1 = b1
2 – 1

2

√
b2

1 + 4b2, λ2 = b1
2 + 1

2

√
b2

1 + 4b2.
Let d = α1d and β = β1�t, then b1 and b2 can be expressed as

b1 =
4d cos θ

1 + β + 2d
, b2 = –

–1 + β + 2d
1 + β + 2d

. (32)

Since the eigenvalues λ1 and λ2 contain a fractional power, before finding stability condi-
tions, one can first find the region that corresponds to real eigenvalues. For this reason,
the expression b2

1 + 4b2 should be non-negative. So,

b2
1 + 4b2 ≥ 0. (33)

For cos θ = 0

–
4(–1 + β + 2d)

1 + β + 2d
≥ 0.

This implies –1 + β + 2d ≤ 0.
This implies

d ≤ 1 – β

2
. (34)

So real eigenvalues correspond to the region d ≤ 1–β

2 so in this region condition on the
eigenvalue λ1 can be expressed as

–1 ≤ λ1 ≤ 1.
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Therefore,

–1 ≤ 4d cos θ

2(1 + β + 2d)
–

1
2

√(
4d cos θ

1 + β + 2d

)2

–
4(–1 + β + 2d)

1 + β + 2d
. (35)

Since | cos θ | ≤ 1, consider first cos θ = –1 so inequality (35) can be expressed as

0 ≤ 8β2 + 8β + 16βd

which holds for every value of β and d.
Consider the second case when cos θ = 1 and inequality –1 ≤ λ1 yields

–1 ≤ 4d
2(1 + β + 2d)

–
1
2

√(
4d

1 + β + 2d

)2

–
4(–1 + β + 2d)

1 + β + 2d
.

This implies

0 ≤ 4(β + 4d)2 + 4β2 + 16d

which is also true for every value of β and d.
Consider the case now when λ1 ≤ 1 and cos θ = –1,

–4d
2(1 + β + 2d)

–
1
2

√(
4d

1 + β + 2d

)2

–
4(–1 + β + 2d)

1 + β + 2d
≤ 1,

and hence –2 – 2β – 8d ≤√
–4β2 – 16d + 4.

This is also true because the negative number is always less than the positive number
for d ≤ 1–β

2 .
The fourth case, when λ1 ≤ 1 and cos θ = 1, yields

–2 – 2β ≤√
–4β2 – 16d + 4,

This is also true for every β and d.
Therefore four cases for eigenvalues λ1 have been discussed, and inequality |λ1| ≤ 1

holds for every value of β and α when d ≤ 1–β

2 .
Four cases for the second eigenvalue |λ2| ≤ 1 can be discussed at extreme values of cos θ ,

so four cases are given as when –1 ≤ λ2 and cos θ = –1, and the following inequality can
be obtained:

–2 – 2β ≤
√

–4β2 – 16d + 4

when –1 ≤ λ2 and cos θ = 1, the inequality can be obtained in the form

–2 – 2β – 8d ≤
√

–4β2 – 16d + 4

when λ2 ≤ 1 and cos θ = –1, an inequality can be expressed in the form of

0 ≤ 4β2 + 16βd + (2β + 8d)2 + 4(2β + 8d)
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and, in the last case when λ2 ≤ 1 and cos θ = 1, an inequality can be obtained in the form

0 ≤ 2β2 + 2β + 4d2.

So all inequalities for –1 ≤ λ2 and λ2 ≤ 1 are satisfied with the extreme value of cos θ . Thus
|λ1| ≤ 1 and |λ2| ≤ 1 are true for every β and d when d ≤ 1–β

2 .
The complex eigenvalues are obtained for the region d ≥ 1–β

2 . For this case, the stability
conditions |λ1| ≤ 1 and |λ2| ≤ 1 are expressed as

∣∣∣∣
b1

2
–

I
2

√
–b2

1 – 4b2

∣∣∣∣
2

≤ 1 and
∣∣∣∣
b1

2
+

I
2

√
–b2

1 – 4b2

∣∣∣∣
2

≤ 1,

b2
1

4
+

1
4
(
–b2

1 – 4b2
)≤ 1.

Hence, –b2 ≤ 1 and so

–1 + β + 2d
1 + β + 2d

≤ 1,

which is valid for every value of β and d. Thus the proposed scheme is unconditionally
stable for Eq. (23), which is considered for the general type of epidemic disease model or
parabolic partial differential equations having some source term(s).

5 Consistency of scheme
Taylor series expansions prove the consistency of Eq. (1). For this reason, consider the
Taylor series expansions for Sn+1

i and Sn–1
i given in (11) and (12) and the following Taylor

series expansions:

Sn
i+1 = Sn

i + �x
(

∂S
∂x

)n

i
+

(�x)2

2

(
∂2S
∂x2

)n

i
+ O

(
(�x)3), (36)

Sn
i–1 = Sn

i – �x
(

∂S
∂x

)n

i
+

(�x)2

2

(
∂2S
∂x2

)n

i
+ O

(
(�x)3). (37)

So, using expansions (36)–(37), the following equation can be obtained:

Sn
i+1 – 2Sn+1

i + Sn
i–1 = (�x)6

(
∂2S
∂x2

)n

i
– 2�t

(
∂S
∂x

)n

i
+ O

(
(�t)2, (�x)4). (38)

Substituting (11), (12), and (38) into the discretized form (10) yields

Sn
i + �t

(
∂S
∂t

)n

i
+ O

(
(�t)2)

= Sn
i – �t

(
∂S
∂t

)n

i
+ O

(
(�t)2) + �ta

{
d1

(
∂2S
∂x2

)n

i
– 2d1

�t
(�x)2

(
∂S
∂t

)n

i

– αAn
i Sn

i – αAn
i (�t)

(
∂S
∂t

)n

i
– βIn

i Sn
i – βIn

i (�t)
(

∂S
∂t

)n

i
+ O

(
(�t)2, (�x)2)

}
. (39)
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Combining the first derivative in the time terms and simplified Eq. (39) gives

(
1 – 2dd1 – �t

(
αAn

i + βIn
i
))(∂S

∂t

)n

i
(40)

= d1

(
∂2S
∂x2

)n

i
– αAn

i Sn
i – βIn

i Sn
i +

(
–2dd1 – α�tAn

i – β�tIn
i
)(∂S

∂t

)n

i

+ O
(
(�t)2, (�x)2). (41)

Canceling the same terms on both sides of Eq. (41) yields

(
∂S
∂t

)n

i
= d1

(
∂2S
∂x2

)n

i
– αAn

i Sn
i – βIn

i Sn
i + O

(
(�t)2, (�x)2). (42)

By incorporating consistency conditions �t → 0, �x → 0 in (42) yields the original Eq. (1)
evaluated at the ith grid point and at time level n.

6 Convergence of scheme
The stability has been proved for the linear differential equation representing any suscep-
tible, exposed, asymptomatic, infectious, and recovered individuals. The convergence is
given for the first two Eqs. (1) and (2), which are merged and form a single linear equation
expressed as

∂E
∂t

= d2
∂2E
∂x2 –

∂S
∂t

+ d1
∂2S
∂x2 – γ E. (43)

Discretize Eq. (43) using a proposed scheme with unknown parameter in the following
manner:

En+1
i – En–1

i
2�t

= ǎ
(

d2
En

i+1 – 2En+1
i + En

i–1
(�x)2 –

Sn+1
i – Sn–1

i
2�t

+ d1
Sn

i+1 – 2Sn+1
i + Sn

i–1
(�x)2 – γ En+1

i

)
. (44)

Taylor series expansion for En+1
i and En–1

i can be incorporated to Eq. (44) giving

En
i + �t

(
∂E
∂t

)n

i
= En

i – �t
(

∂E
∂t

)n

i
+ 2�tǎ

(
( ∂E

∂t )n
i – 2 �t

(�x)2 ( ∂E
∂t )n

i –
(�t)γ ( ∂E

∂t )n
i + O((�t)2, (�x)2)

)
,

1 = ǎ
(
1 – 2d – (�t)γ

)
.

(45)

This implies the expression for the unknown parameter

ǎ =
1

(1 – 2d – (�t)γ )
. (46)

Thus Eq. (44) is expressed in the form of

En+1
i = En–1

i + 2�tǎ
{

d2
En

i+1 – 2En+1
i + En

i–1
(�x)2

– (1 + 2dd1)
Sn+1

i – Sn–1
i

2�t
+ d1

Sn
i+1 – 2Sn+1

i + Sn
i–1

(�x)2 – γ En+1
i

}
. (47)
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Let en+1
2,i and en+1

1,i be the difference between the exact solution and numerical solution for
exposed and susceptible individuals computed at grid point i and at time level n. Thus the
corresponding error equation for Eq. (47) is expressed as

en+1
2,i = en–1

2,i + 2�tǎ

⎧⎨
⎩

d2
en

2,i+1–2en+1
2,i +en

2,i–1
(�x)2 – (1 + 2dd1) en+1

1,i –en–1
1,i

2�t

+d1
en

1,i+1–2en+1
1,i +en

1,i–1
(�x)2 – γ en+1

2,i

⎫⎬
⎭ , (48)

where ǎ is given in Eq. (46).
Combining en+1

2,i on the left side of Eq. (48) gives

(1 + 4dd2ǎ + 2�tǎγ )en+1
2,i = en–1

2,i + 2�tǎ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2
en

2,i+1+en
2,i–1

(�x)2 –

(1 + 2dd1) en+1
1,i –en–1

1,i
2�t +

d1
en

1,i+1–2en+1
1,i +en

1,i–1
(�x)2 – γ en+1

2,i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (49)

Applying absolute values on both sides of Eq. (49) yields

|1 + 4dd2ǎ + 2�tǎγ |∣∣en+1
2,i
∣∣

=
∣∣en–1

2,i
∣∣ + 2�t|ǎ|

{
d2

|en
2,i+1| + |en

2,i–1|
(�x)2 – |1 + 2dd1| |e

n+1
1,i | – |en–1

1,i |
2�t

+ |d1| |e
n
1,i+1| – 2|en+1

1,i | + |en
1,i–1|

(�x)2

}
. (50)

Let en = max{|en
1,i|, |en

2,i|}, then the inequality (50) can be expressed as

|1 + 4dd2ǎ + 2�tǎγ | – 2�t|ǎ|
( |1 + 2dd1|

2�t
+

2|d1|
(�x)2

)
en+1

≤ en–1 + 2�t|ǎ|
{
|d2| en

(�x)2 + |1 + 2dd1| en–1

2�t
+ |d1| 2en

(�x)2

}
. (51)

Equation (51) can be expressed as

δen+1 ≤ δ1en–1 + δ2en + CO
(
(�t)2, (�x)2), (52)

where δ = |1 + 4dd2ǎ + 2�tǎγ | – 2 |ǎ|( |1+2dd1|d
2 + 2d|d1|

(�x)2 ), δ1 = 1 + |ǎ||1 + 2dd1| and δ2 =
2|ǎ||d2|d + 4|ǎ||d1|d.

Let δ > 0, then inequality (52) yields

en+1 ≤ δ1

δ
en–1 +

δ2

δ
en +

1
δ

CO
(
(�t)2, (�x)2). (53)

Let en–1 = max(en–1, en) and δ1+δ2
δ

= δ3, then Eq. (53) is given by

en+1 ≤ δ3en–1 + C1O
(
(�t)2, (�x)2), (54)

where C1 is the coefficient of the leading remainder term.
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For n = 1 in Eq. (54)

e2 ≤ δ3e0 + C1O
(
(�t)2, (�x)2). (55)

Since e0 = 0 due to the initial condition, Eq. (55) can be expressed as

e2 ≤ C1O
(
(�t)2, (�x)2). (56)

For n = 2 in Eq. (54)

e3 ≤ δ3e1 + C1O
(
(�t)2, (�x)2). (57)

Let the error at the first time obtained be e1 ≤ M then (57) is expressed as

e3 ≤ δ3M + C1O
(
(�t)2, (�x)2). (58)

For n = 3 in Eq. (54)

e4 ≤ δ3e2 + C1O
(
(�t)2, (�x)2)≤ (δ3 + 1)C1O

(
(�t)2, (�x)2). (59)

For n = 4 in Eq. (54)

e5 ≤ δ3e3 + C1O
(
(�t)2, (�x)2)≤ δ2

3M + δ3C1O
(
(�t)2, (�x)2). (60)

For n = 5 in Eq. (54)

e6 ≤ δ3e4 + C1O
(
(�t)2, (�x)2)≤ (

δ2
3 + δ3 + 1

)
+ C1O

(
(�t)2, (�x)2). (61)

For n = 6 in Eq. (54)

e7 ≤ δ3e5 + C1O
(
(�t)2, (�x)2)≤ δ3

3M +
(
δ2

3 + δ3 + 1
)

+ C1O
(
(�t)2, (�x)2). (62)

If this is continued for a finite number of n then for even n

e2n ≤ δn
3 M + (δn–1

3 +
(
δn–2

3 + · · · + 1
)

+ C1O
(
(�t)2, (�x)2)

= δn
3 M +

1(1 – δn
3 )

1 – δ3
+ C1O

(
(�t)2, (�x)2). (63)

Equation (63) is obtained by considering even exponent terms.
For odd n

e2n–1 ≤ (
δn–1

3 + · · · + 1
)

+ C1O
(
(�t)2, (�x)2) =

(1 – δn
3 )

1 – δ3
+ C1O

(
(�t)2, (�x)2). (64)

For large n the series 1 + δ3 + · · · + δn–1
3 will converge if |δ3| ≤ 1.

Similarly, convergence can be found for the cases when max(en–1, en) = en.
This gives convergence of the proposed scheme for the first two Eqs. (1) and (2). Simi-

larly, convergence can be found for the remaining Eqs. (3)–(5).
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7 Application
The proposed numerical scheme has been constructed and employed for solving the diffu-
sive epidemic model. Initially, the model comprised ordinary differential equations con-
structed in [6], but it is modified with diffusion effects in this contribution. Due to the
fact that diffusion is dependent on a spatial variable, it also makes use of information to
transmit individuals from one location to another. The ODEs model [6] only uses the in-
formation in time variable, but here time and space both have been utilized, and a diffusive
epidemic model has been presented. The main concern is the numerical scheme. Among
existing numerical schemes, the present attempt is made to construct a numerical scheme
that provides an approximately unconditionally stable solution and explicit in nature. In
the literature Du- Fort Frankel’s method exists, which is first-order accurate, explicit, and
unconditionally stable but it does not provide conditions to get positive solutions of epi-
demic models, but the present approach gives the positivity conditions, the conditions on
which one can obtain the positive solution. Although the conditions may depend upon
the individuals of other categories, it can give some estimate to get a positive solution.
The other advantage of this scheme is first-order accuracy for solving partial differential
equations. Nonstandard finite difference method is not even first-order accurate, so it may
produce some doubt full results but present strategy of constructing scheme is based on
applying Taylor series, so theoretically it is first-order accurate which has the advantage
for consumption of less time than one of the nonstandard schemes and this can be seen
by drawing the graphs on the spatial variable when solving partial differential equations.

Since the von Neumann type boundary conditions are employed on the boundary, it
makes the proposed explicit scheme implicit. An additional iterative approach of the
Gauss-Seidel iterative method is also employed to solve the resulting difference equa-
tions. The iterative approach tackles the von Neumann type boundary condition on the
left boundary. The von Neumann type boundary condition can be incorporated explicitly
if it is employed on the last grid point. In this case, the backward difference formula can be
considered to find each dependent variable’s value on the last grid point. But, for the first
gird point, the first-order forward difference formula using Gauss-Seidel iterative method
and this can be expressed in the following manner:

Sn+1,k
i+1 – Sn+1,k+1

i
�t

= 0, (65)

which implies

Sn+1,k+1
i = Sn+1,k

i+1 . (66)

Similarly, this formula can be employed on all boundary conditions imposed on exposed,
asymptomatic, infected and recovered individuals at the left endpoint. The boundary con-
dition on the right endpoint can be tackled explicitly. Using the Gauss-Seidel iterative
method, it reads

Sn+1,k+1
i = Sn+1,k+1

i–1 . (67)
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Figure 1 Susceptible and exposed individuals with the variation of conversion rate γ

Figure 2 Asymptomatic and infected individuals with the variation of conversion rate γ

When the Gauss-Seidel iterative is employed on the difference equations obtained by dis-
cretizing Eq. (1) using the proposed scheme, it reads

Sn+1,k+1
i = Sn–1,k+1

i + �ta1

{
d1

Sn,k+1
i+1 –2Sn+1,k+1

i +Sn,k+1
i–1

(�x)2

–αAn,k+1
i Sn+1,k+1

i – βIn,k+1
i Sn+1,k+1

i

}
, (68)

where a1 = a is given in (16).
Figure 1 shows the behaviors of susceptible and exposed individuals over time when the

rate γ varies. Figure 1 also indicates that both susceptible and exposed individuals are de-
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Figure 3 Asymptomatic and infected individuals with the variation of growth rate parameter σ

Figure 4 Susceptible and exposed individuals with the variation of μ

creasing with an increase in the conversion rate γ . The exposed people will decrease due
to their transmission from the exposed category to the asymptomatic category, and since
both asymptomatic and infected individuals have to increase. Decreasing behaviors so
susceptible people decrease mostly, but these people also have increasing behavior which
is very small and can only be seen on a very small scale. Figure 2 shows the asymptomatic
and infected individuals over time. Both categories have increasing and decreasing behav-
ior due to the increase in conversion rate γ . Figure 3 presents asymptomatic and infected
individuals over time. Figure 3 clearly shows the enhancement and decay of infected and
asymptomatic people by enhancing the growth rate σ because asymptomatic people will
shift the category of asymptomatic individuals to infected individuals. Figure 4 shows the
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Figure 5 Asymptomatic and infected individuals with the variation of recovery rate parameter μ

Figure 6 Two dimensional phase portrait of susceptible and exposed individuals

behavior of susceptible and exposed individuals. Figure 4 shows that susceptible people
are increasing and exposed people are decreasing by enhancing the recovery rate param-
eter μ. Figure 5 shows the behavior of asymptomatic and infected individuals over time.
It is seen clearly from Fig. 5 that both categories of individuals decrease by increasing the
recovery rate parameter μ. Figures 6-11 show the phase portraits in two and three dimen-
sions. These phase portraits show the relationships between different individuals in the
modified diffusive COVID-19 epidemic model. The set of initial conditions to draw these
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Figure 7 Two dimensional phase portrait of asymptomatic and exposed individuals

Figure 8 Two dimensional phase portrait of infected and asymptomatic individuals

figures are given as

aε{4, 8, 12, 16}, bε{4, 7, 10}, cε{5, 9, 13} and c1ε{5, 10, 15},

where a = S(0, x), b = E(0, x), c = A(0, x) and c1 = I(0, x). The values of the parameters are
given as

α = 0.1, β = 0.3, γ = 0.4, σ = 0.1, μ = 0.4,

d1 = d2 = d3 = d4 = d5 = 0.9, Nx = 40, Nt = 190.
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Figure 9 Three dimensional phase portrait of susceptible, exposed and asymptomatic individuals

Figure 10 Three dimensional phase portrait of exposed, asymptomatic and infected individuals

Figures 12-14 are drawn to elucidate the comparison of three schemes. The solution
obtained by the proposed scheme and the nonstandard finite difference method has been
displayed in Figs. 13 and 14, respectively. The values on the y-axis can be seen for clear
comparison between three scheme. The proposed scheme produced the solution near to
first-order method but nonstandard finite difference method produced the solution a little
away from the solution obtained by first-order method (forward Euler method). These
figures show the advantage of using proposed scheme. Since the Euler method does not
converge on those time levels which are used by proposed scheme so larger number of
time levels (Nt) are used to get converged solution. Figures 15 and 16 are surface plots for
exposed and infective individuals. These figures are three dimensional views of exposed
and infective individuals over t and x-axis. From Figs. 15 and 16, it can be observed how
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Figure 11 Three dimensional phase portrait of susceptible, asymptomatic and infected individuals

Figure 12 Solution obtained by Euler method using t = 10, Nx = 40, Nt = 190, α = 0.1, β = 0.3, γ = 0.4,
σ = 0.1, μ = 0.4, d1 = d2 = d3 = d3 = d5 = 0.9

plotted individuals behave on t- and x-axis. In the captions of these figures Nx and Nt

denote the number of grid points and number of time levels, respectively. The parameter
a and b are used for choosing a particular scheme.

8 Conclusion
A first-order in time and second-order in explicit space scheme has been proposed. The
scheme is unconditionally stable according to von Neumann’s stability criteria. The pro-
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Figure 13 Solution obtained by proposed scheme t = 10, Nx = 40, Nt = 290, α = 0.1, β = 0.3, γ = 0.4, σ = 0.1,
μ = 0.4, d1 = d2 = d3 = d3 = d5 = 0.9, a = –0.3, b = 1.3

Figure 14 Solution obtained by proposed scheme t = 10, Nx = 40, Nt = 190, α = 0.1, β = 0.3, γ = 0.4, σ = 0.1,
μ = 0.4, d1 = d2 = d3 = d3 = d5 = 0.9
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Figure 15 Surface plot for exposed individuals t = 9, Nx = 40, Nt = 190, α = 0.1, β = 0.3, γ = 0.4, σ = 0.1,
μ = 0.4, d1 = d2 = d3 = d3 = d5 = 0.9, a = –0.3, b = 1.3

Figure 16 Surface plot for infective individuals t = 9, Nx = 40, Nt = 190, α = 0.1, β = 0.3, γ = 0.4, σ = 0.1,
μ = 0.4, d1 = d2 = d3 = d3 = d5 = 0.9, a = –0.3, b = 1.3

posed scheme provided conditions to obtain a positive solution. The solution’s positivity
was dependent upon the step sizes in time and space and the chosen values of the pa-
rameters contained in the considered diffusive COVID-19 model. The consistency of the
scheme has been proved, and convergence conditions have also been found. The scheme
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can be considered to solve related epidemic models and other parabolic partial differential
equations.
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