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Abstract
The aim of this work is to obtain quantum estimates for q-Hardy type integral
inequalities on quantum calculus. For this, we establish new identities including
quantum derivatives and quantum numbers. After that, we prove a generalized
q-Minkowski integral inequality. Finally, with the help of the obtained equalities and
the generalized q-Minkowski integral inequality, we obtain the results we want. The
outcomes presented in this paper are q-extensions and q-generalizations of the
comparable results in the literature on inequalities. Additionally, by taking the limit
q → 1–, our results give classical results on the Hardy inequality.
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1 Introduction
Hardy’s integral inequality, proved by G.H. Hardy in 1920 [4] is

∫ ∞

0

(
1
x

∫ x

0
f (t) dt

)p

dx ≤
(

p
p – 1

)p ∫ ∞

0
f p(t) dt, (1.1)

where p > 1, x > 0, f is a nonnegative measurable function on (0,∞) and
∫ ∞

0 f p(t) dt is
convergent. Also the constant ( p

p–1 )p is the best possible.
Hardy’s type inequalities have been studied by a large number of authors during the 20th

century and has motivated some important lines of study which are currently active. Over
the last 20 years a large number of papers have appeared in the literature which deal with
the simple proofs, various generalizations and discrete analogues of Hardy’s inequality and
its generalizations; see [5, 8, 11, 12, 15, 17–19].

The inequalities have become an important cornerstone in mathematical analysis and
optimization and many uses of these inequalities have been discovered in a variety of
settings. Recently, the Hermite–Hadamard type inequality has become the subject of in-
tensive research. For recent results, refinements, counterparts, generalizations and new
Hadamard’s-type inequalities, see [1, 7, 10, 14, 16, 20].

On the other hand, the study of calculus without limits is known as quantum calculus or
q-calculus. The famous mathematician Euler initiated the study q-calculus in the 18th cen-
tury by introducing the parameter q in Newton’s work of infinite series. In the early 20th
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century, Jackson [6] has started a symmetric study of q-calculus and introduced q-definite
integrals. The subject of quantum calculus has numerous applications in various areas of
mathematics and physics, such as number theory, combinatorics, orthogonal polynomi-
als, basic hyper-geometric functions, quantum theory, mechanics and in theory of rela-
tivity. This subject has received outstanding attention by many researchers and hence it
is considered as an in-corporative subject between mathematics and physics. The reader
is referred to [2, 3, 9] for some current advances in the theory of quantum calculus and
theory of inequalities in quantum calculus.

The purpose of this work is to establish quantum estimates for q-Hardy type integral
inequalities on quantum calculus. For this, we establish new identities including quan-
tum derivatives and quantum numbers. After that, we prove a generalized q-Minkowski
integral inequality. Finally, with the help of the obtained equalities and the generalized
q-Minkowski integral inequality, we obtain the results we want. The outcomes presented
in this paper are q-extensions and q-generalizations of the comparable results in the lit-
erature on inequalities. In addition, by taking the limit q → 1–, our results give classical
results on the Hardy inequality.

2 Preliminaries and definitions of q-calculus
Throughout this paper, let a < b and 0 < q < 1 be a constant. The following definitions,
notations and theorems for q-derivative and q-integral of a function f on [a, b] are given
in [2, 3, 9].

The notation [z]q is defined by

[z]q =
1 – qn

1 – q
(
z ∈C; q ∈C\{1}; qz �= 1

)
. (2.1)

A special case of (2.1) when z ∈N is

[n]q =
1 – qn

1 – q
= 1 + q + q2 + · · · + qn–1 (n ∈N).

Also

[–n]q = –
1
qn [n]q (n ∈N). (2.2)

Definition 1 Let f : [a, b] →R be a continuous function, then q-derivative of f at x ∈ [a, b]
is characterized by the expression

Dqf (x) =
f (x) – f (qx)

(1 – q)x
, x �= 0. (2.3)

Since f : [a, b] → R is a continuous function, thus we have Dqf (a) = lim
x→a

Dqf (x) The
function f is said to be q- differentiable on [a, b] if Dqf (t) exists for all x ∈ [a, b]. Also
lim

q→1–
Dqf (x) = f ′(x) is classic derivative.

Theorem 1 Assume that f , g : I ⊂R →R are continuous functions, then we have the prop-
erties of the q-derivative:

(I) Dq
(
af (x) ± bg(x)

)
= aDqf (x) ± bDqg(x).
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(II) Dq
(
f (x)g(x)

)
= f (qx)Dqg(x) + g(x)Dqf (x).

(III) Dq

(
f (x)
g(x)

)
=

f (qx)Dqg(x) + g(x)Dqf (x)
g(x)g(qx)

.

Definition 2 Suppose 0 < a < b. The definite q-integral is defined as

∫ b

0
f (t) dqt = (1 – q)b

∞∑
n=0

qnf
(
qnb

)
(2.4)

and

∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt –

∫ a

0
f (t) dqt,

where
∑∞

n=0 qnf (qnb) and
∑∞

n=0 qnf (qna) are convergent.

Definition 3 ([9]) The improper q-integral of f (t) on [0,∞) is defined by

∫ ∞

0
f (t) dqt =

∞∑
n=–∞

∫ qn

qn+1
f (t) dqt = (1 – q)

∞∑
n=–∞

qnf
(
qn) (0 < q < 1)

and

∫ ∞

0
f (t) dqt =

∞∑
n=–∞

∫ qn+1

qn
f (t) dqt =

q – 1
q

∞∑
n=–∞

qnf
(
qn) (1 < q),

where
∑∞

n=–∞ qnf (qn) is convergent.

We have the following properties of the q-integral of (2.4):

(I) Dq

∫ x

a
f (t) dqt = f (x).

(II)
∫ x

a
Dqf (t) dqt = f (x) – f (a).

(III)
∫ x

a

[
f (t) ± g(t)

]
dqt =

∫ x

a
f (t) dqt ±

∫ x

a
g(t) dqt.

(IV)
∫ x

0
tα dqt =

xα+1

[α + 1]q
, for α ∈R\{–1}.

(V) The integration by parts rule of the q-integral:
∫ x

c
f (t)Dqg(t) dqt = f (t)g(t)|xc –

∫ x

c
g(qt)Dqf (t) dqt. (2.5)

Theorem 2 (q-Hölder inequality) Let f , g be q-integrable on [a, b] and 0 < q < 1 and 1
s + 1

r =
1 with s > 1. Then we have

∫ b

a

∣∣f (t)g(t)
∣∣dqt ≤

(∫ b

a

∣∣f (t)
∣∣s dqt

) 1
s
(∫ b

a

∣∣f (t)g(t)
∣∣r dqt

) 1
r
.
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3 Auxiliary results
The following results which will be used. There is no general change of variables property
for the q-integral. However, the variable can be changed as follows.

Lemma 1 (q-Change of variables property) Let f : I →R be a function and 0 < q < 1. Then
we have

∫ 1

0
f (sb) dqs =

1
b

∫ b

0
f (t) dqt, (3.1)

where b �= 0 and
∫ b

0 f (t) dqt is convergent.

Proof From the definition of the q-integral, we have

∫ 1

0
f (sb) dqs

= (1 – q)(1 – 0)
∞∑

n=0

qnf
([

qn1 +
(
1 – qn)0

]
b
)

=
1
b

∫ b

0
f (t) dqt

as desired. �

A general chain rule for q-derivative does not exist. However, a chain rule of (h(t))p and
(h(t))

1
p can be calculated as follows.

Lemma 2 Let h : I ⊂R →R be a function p ∈ Z and 0 < q < 1. Then we have

Dq
(
h(t)

)p =

( p–1∑
i=0

[
h(t)

]p–1–i[h(qt)
]i
)

Dqh(t). (3.2)

In (3.2) if we choose q → 1– we have the classical derivative of (h(t))p,

lim
q→1–

Dq
(
h(t)

)p = p
(
h(t)

)p–1h′(t) =
[(

h(t)
)p]′.

Proof By the definition of the q-derivative we have

Dq
(
h(t)

)p

=
[h(t)]p – [h(qt)]p

(1 – q)t

=
(h(t) – h(qt))

(1 – q)t

p–1∑
i=0

[
h(t)

]p–1–i[h(qt)
]i

=

( p–1∑
i=0

[
h(t)

]p–1–i[h(qt)
]i
)

Dqh(t)

as desired. �
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Lemma 3 Let h : I ⊂R →R be a function p ∈ Z and 0 < q < 1. Then we have

Dq
(
h(t)

) 1
p =

Dqh(t)
∑p–1

i=0 (h(t))
p–1–i

p (h(qt))
i
p

. (3.3)

In (3.3) if we choose q → 1– we have the classical derivative of (h(t))
1
p ,

lim
q→1–

Dq
(
h(t)

) 1
p =

h′(t)

p(h(t))
p–1

p
=

[(
h(t)

) 1
p
]′.

Proof We consider

y(t) =
(
h(t)

) 1
p ,

(
y(t)

)p =
(
h(t)

)
,

such that

Dq
(
y(t)

)p = Dq
(
h(t)

)
, (3.4)

and from (3.2) we know

Dq
(
y(t)

)p =

( p–1∑
i=0

[
y(t)

]p–1–i[y(qt)
]i
)

Dqy(t) = Dq
(
h(t)

)
. (3.5)

Thus, we get

Dqy(t) =
Dqh(t)

∑p–1
i=0 (h(t))

p–1–i
p (h(qt))

i
p

as desired. �

Similarly, we have more general result as follows.

Lemma 4 Let h : I ⊂R →R be a function n
m ∈Q and 0 < q < 1. Then we have

Dq
(
h(t)

) n
m =

∑n–1
i=0 (h(t))n–1–i(h(qt))i

∑m–1
i=0 (h(t))

n(m–1–i)
m (h(qt)) ni

m
Dqh(t). (3.6)

In (3.6) if we choose q → 1– we have the classical derivative of (h(t)) n
m ,

lim
q→1–

Dq
(
h(t)

) n
m =

n
m

(
h(t)

) n
m –1h′(t) =

[(
h(t)

) n
m
]′.

Proof We consider

y(t) =
(
h(t)

) n
m ,

(
y(t)

)m =
(
h(t)

)n,
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such that

Dq
(
y(t)

)m = Dq
(
h(t)

)n,

and from (3.2) we have

(m–1∑
i=0

[
y(t)

]m–1–i[y(qt)
]i
)

Dqy(t)

=

( n–1∑
i=0

[
h(t)

]n–1–i[h(qt)
]i
)

Dq
(
h(t)

)
.

Thus, we get

Dqy(t) =
∑n–1

i=0 [h(t)]n–1–i[h(qt)]i
∑m–1

i=0 [y(t)]m–1–i[y(qt)]i
Dqh(t)

=
∑n–1

i=0 (h(t))n–1–i(h(qt))i

∑m–1
i=0 (h(t))

n(m–1–i)
m (h(qt)) ni

m
Dqh(t)

as desired. �

4 Main results
Firstly, we will prove the generalized q-Minkokski type integral inequality which will be
used in the next theorem.

Theorem 3 (Generalized q-Minkowski integral inequality) Let α ∈ (0, 1], 1 ≤ p ≤ ∞, f :
[a, b] × [c, d] →R be a q-integrable function. Then the following inequality holds:

(∫ b

a

∣∣∣∣
∫ d

c
f (x, y) dqy

∣∣∣∣
p

dqx
) 1

p
≤

∫ d

c

(∫ b

a

∣∣f (x, y)
∣∣p dqx

) 1
p

dqy, (4.1)

where q ∈ (0, 1).

Proof The case p = 1 corresponds to Fubini’s theorem. For the case p = ∞ we just notice
that

(∫ b

a

∣∣∣∣
(∫ d

c
f (x, y) dqy

)
q

∣∣∣∣
p

dqx
) 1

p
≤

∫ d

c
ess sup

x∈Rn

∣∣f (x, y)
∣∣dqy.

Now assume that 1 < p < ∞ and we can write

∫ b

a

∣∣∣∣
∫ d

c
f (x, y) dqy

∣∣∣∣
p

dqx

=
∫ b

a

∣∣∣∣
∫ d

c
f (x, y) dqy

∣∣∣∣
p–1∣∣∣∣

∫ d

c
f (x, y) dqy

∣∣∣∣dqx

≤
∫ b

a

∣∣∣∣
∫ d

c
f (x, t) dqt

∣∣∣∣
p–1(∫ d

c

∣∣f (x, y)
∣∣dqy

)
dqx
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=
∫ b

a

(∫ d

c

∣∣∣∣
∫ d

c
f (x, t) dqt

∣∣∣∣
p–1∣∣f (x, y)

∣∣dqy
)

dqx

=
∫ d

c

(∫ b

a

∣∣∣∣
∫ d

c
f (x, t) dqt

∣∣∣∣
p–1∣∣f (x, y)

∣∣dqx
)

dqy

the last step coming from Fubini’s theorem. By applying the q-Hölder inequality to the
inner integral with respect to x, we have

∫ b

a

∣∣∣∣
∫ d

c
f (x, y) dqy

∣∣∣∣
p

dqx

≤
∫ d

c

{(∫ b

a

(∣∣∣∣
∫ d

c
f (x, t) dqt

∣∣∣∣
r(p–1)

dqx
) 1

r
(∫ b

a

∣∣f (x, y)
∣∣p dqx

) 1
p
)}

dqy

=
∫ d

c

{(∫ b

a

(∣∣∣∣
∫ d

c
f (x, t) dqt

∣∣∣∣
p

dqx
) 1

r
(∫ b

a

∣∣f (x, y)
∣∣p dqx

) 1
p
)}

dqy

=
(∫ b

a

∣∣∣∣
∫ d

c
f (x, t) dqt

∣∣∣∣
p

dqx
) 1

r
∫ d

c

(∫ b

a

∣∣f (x, y)
∣∣p dqx

) 1
p

dqy.

Finally dividing both sides by
∫ b

a (| ∫ d
c f (x, t) dqt|p dqx) 1

r we have

(∫ b

a

∣∣∣∣
∫ d

c
f (x, y) dqy

∣∣∣∣
p

dqx
)1– 1

r
≤

∫ d

c

(∫ b

a

∣∣f (x, y)
∣∣p dqx

) 1
p

dqy

i.e.

(∫ b

a

∣∣∣∣
∫ d

c
f (x, y) dqy

∣∣∣∣
p

dqx
) 1

p
≤

∫ d

c

(∫ b

a

∣∣f (x, y)
∣∣p dqx

) 1
p

dqy,

which gives the required inequality. �

Theorem 4 (q-Hardy inequality) If f is a nonnegative function on (0,∞), p > 1 and∫ ∞
0 f p(t) dqt is convergent, then the following inequality holds:

(∫ ∞

0

(
1
x

∫ x

0
f (t) dqt

)p

dqx
) 1

p
≤ 1

[ p–1
p ]q

(∫ ∞

0
f p(t) dqt

) 1
p

, (4.2)

where q ∈ (0, 1).

Proof From (3.1) by the q-changing variables t = xs it follows that

1
x

∫ x

0
f (t) dqt =

∫ 1

0
f (sx) dqs.

Thus, we write

(∫ ∞

0

(
1
x

∫ x

0
f (t) dqt

)p

dqx
) 1

p
=

(∫ ∞

0

(∫ 1

0
f (xs) dqs

)p

dqx
) 1

p
. (4.3)
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From the generalized q-Minkowski integral inequality and by using the q-changing vari-
ables xs = t, we have

(∫ ∞

0

(∫ 1

0
f (xs) dqs

)p

dqx
) 1

p
(4.4)

≤
∫ 1

0

(∫ ∞

0
f p(xs) dqx

) 1
p

dqs =
∫ 1

0

(∫ ∞

0

1
s

f p(t) dqt
) 1

p
dqs

=
(∫ 1

0
s– 1

p dqs
)(∫ ∞

0
f p(t) dqt

) 1
p

=
1

[1 – 1
p ]q

(∫ ∞

0
f p(t) dqt

) 1
p

from (4.3) and (4.4)

(∫ ∞

0

(
1
x

∫ x

0
f (t) dqt

)p

dqx
) 1

p
≤ 1

[ p–1
p ]q

(∫ ∞

0
f p(t) dqt

) 1
p

and the proof is completed. �

Remark 1 In (4.2) if we choose q → 1– we recapture the classical Hardy inequality.

The following theorem generalizes the q-Hardy type integral inequality by introducing
power weights xr .

Theorem 5 If f is a nonnegative function on (0,∞), p ≥ 1, r < p – 1 and
∫ ∞

0 trf p(t) dqt is
convergent, then the following inequality holds:

∫ ∞

0

(
1
x

∫ x

0
f (t) dqt

)p

xr dqx ≤ 1
[ p–r–1

p ]p
q

∫ ∞

0
trf p(t) dqt,

where q ∈ (0, 1).

Proof By the q-changing variables t = xs we get

(∫ ∞

0

(
1
x

∫ x

0
f (t) dqt

)p

xr dqx
) 1

p
=

(∫ ∞

0

(∫ 1

0
f (xs)x

r
P dqs

)p

dqx
) 1

p
.

So, from Minkowski q-integral inequality and by the changing variables xs = u the proof
is completed as follows:

(∫ ∞

0

(∫ 1

0
f (xs)x

r
P dqs

)p

dqx
) 1

p

≤
∫ 1

0

(∫ ∞

0
xrf p(xs) dqx

) 1
p

dqs =
∫ 1

0

(∫ ∞

0

ur

sr+1 f p(u) dqu
) 1

p
dqs

=
(∫ 1

0
s

–r–1
p dqs

)(∫ ∞

0
urf p(u) dqu

) 1
p

=
1

[ p–r–1
p ]q

(∫ ∞

0
urf p(u) dqu

) 1
p

. �
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Remark 2 In Theorem 5 if we put r = 0 we obtain the inequality (4.2).

Definition 4 For a given weight r, we define the modified q-Hardy operator as

Hq,rf (x) =
1

xr(x)

∫ x

0
r(t)f (t) dqt.

The following theorem will be proved using the q-Hardy operator.

Theorem 6 Assume f is a nonnegative function on (0,∞), r being an absolutely continuous
function on (0,∞), and p > 1. Also assume

∫ ∞
0 f p(x) dqx is convergent, and

[p – 1]q

p
+

x
p

Dqr(x)
r(qx)

p–1∑
i=0

[
hr,af (qx)
hr,af (x)

]i

≥ 1
λ

, (4.5)

for almost every x > 0 and for some λ > 0. Then we have the following inequality:

∫ ∞

0

(
Hrf (x)

)p dqx ≤ λpβp
∫ ∞

0
f p(x) dqx,

where

Hq,rf (x) =
1

xr(x)

∫ x

0
r(t)f (t) dqt.

Proof We assume 0 < a < b < ∞ and

hq,r,af (x) =
1

r(x)

∫ x

a
r(t)f (t) dqt.

Then, defining Hr,af (x) = 1
x hr,af (x), and integrating by parts from (2.5) with w = (hr,af (x))p

and Dqg(x) = x–p noting that g(x) = x1–p

[1–p]q
, we get

∫ b

a

(
Hq,r,af (x)

)p dqx

=
∫ b

a

(
hq,r,af (x)

)px–p dqx

=
∫ b

0

(
hq,r,af (x)

)px–p dqx –
∫ a

0

(
hq,r,af (x)

)px–p dqx

=
∫ b

0

(
hq,r,af (x)

)pDq
x1–p

[1 – p]q
dqx –

∫ a

0

(
hq,r,af (x)

)pDq
x1–p

[1 – p]q
dqx

=
(
hq,r,af (x)

)p x1–p

[1 – p]q

∣∣∣∣
b

0
–

∫ b

0

(qx)1–p

[1 – p]q
Dq

(
hq,r,af (x)

)p dqx

–
(
hq,r,af (x)

)p x1–p

[1 – p]q

∣∣∣∣
a

0
+

∫ a

0

(qx)1–p

[1 – p]q
Dq

(
hq,r,af (x)

)p dqx

=
(
hq,r,af (b)

)p b1–p

[1 – p]q



Alp and Sarikaya Advances in Difference Equations        (2021) 2021:355 Page 10 of 15

–
q1–p

[1 – p]q

∫ b

0
x1–pDqhq,r,af (x)

( p–1∑
i=0

[
hq,r,af (x)

]p–1–i[hq,r,af (qx)
]i
)

dqx

+
q1–p

[1 – p]q

∫ a

0
x1–pDqhq,r,af (x)

( p–1∑
i=0

[
hq,r,af (x)

]p–1–i[hq,r,af (qx)
]i
)

dqx

=
(
hq,r,af (b)

)p b1–p

[1 – p]q

–
q1–p

[1 – p]q

∫ b

a
x1–pDqhq,r,af (x)

( p–1∑
i=0

[
hq,r,af (x)

]p–1–i[hq,r,af (qx)
]i
)

dqx.

We notice that from (2.2)

(
hq,r,af (b)

)p b1–p

[1 – p]q
= –qp–1(hq,r,af (b)

)p b1–p

[p – 1]q

is negative since p – 1 ∈ N, p – 1 > 0 and hq,r,af (b) > 0 with b > 0. Also, from the definition
of hq,r,af (x) we have

Dqhq,r,af (x)

= Dq

(
1

r(x)

∫ x

a
r(t)f (t) dqt

)

= Dq

(
1

r(x)

∫ x

0
r(t)f (t) dqt

)
– Dq

(
1

r(x)

∫ a

0
r(t)f (t) dqt

)

=
1

r(qx)
Dq

(∫ x

0
r(t)f (t) dqt

)
+

(∫ x

0
r(t)f (t) dqt

)
Dq

1
r(x)

–
(∫ a

0
r(t)f (t) dqt

)
Dq

1
r(x)

=
1

r(qx)
Dq

(∫ x

0
r(t)f (t) dqt

)
+

(∫ x

a
r(t)f (t) dqt

)
Dq

1
r(x)

=
r(x)

r(qx)
f (x) +

(∫ x

a
r(t)f (t) dqt

)
Dq

1
r(x)

=
r(x)

r(qx)
f (x) – hq,r,af (x)

Dqr(x)
r(qx)

.

Hence, by [1 – p]q = – 1
q(p–1) [(p – 1)]q

[p – 1]q

∫ b

a

(
Hq,r,af (x)

)p dqx

≤
∫ b

a
x1–p

(
r(x)

r(qx)
f (x) – hr,af (x)

Dqr(x)
r(qx)

)( p–1∑
i=0

[
hq,r,af (x)

]p–1–i[hq,r,af (qx)
]i
)

dqx

=
∫ b

a
x1–p r(x)

r(qx)
f (x)

[
hq,r,af (x)

]p–1
( p–1∑

i=0

[
hq,r,af (qx)
hq,r,af (x)

]i
)

dqx

–
∫ b

a
x1–p[hq,r,af (x)

]p Dqr(x)
r(qx)

( p–1∑
i=0

[
hq,r,af (qx)
hq,r,af (x)

]i
)

dqx,
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or equivalently

∫ b

a

[
[p – 1]q + x

Dqr(x)
r(qx)

( p–1∑
i=0

[
hq,r,af (qx)
hq,r,af (x)

]i
)](

Hq,r,af (x)
)p dqx

≤
∫ b

a

(
r(x)

r(qx)

p–1∑
i=0

[
hq,r,af (qx)
hq,r,af (x)

]i
)

f (x)
(
Hq,r,af (x)

)p–1 dqx.

Now, using (4.5) and the q-Hölder inequality, we have

p
λ

∫ b

a

(
Hq,r,af (x)

)p dqx

≤
(∫ b

a

(
r(x)

r(qx)

p–1∑
i=0

[
hq,r,af (qx)
hq,r,af (x)

]i
)p

f p(x) dqx

) 1
p (∫ b

a

[
Hq,r,af (x)

](p–1)p′
dqx

) 1
p′

,

where 1
p + 1

p′ = 1, that is,

∫ b

a

(
Hq,r,af (x)

)p dqx ≤ λp

pp

∫ ∞

0

(
r(x)

r(qx)

p–1∑
i=0

[
hq,r,af (qx)
hq,r,af (x)

]i
)p

f p(x) dqx.

If we take c > a, then

∫ b

c

(
Hq,r,af (x)

)p dqx ≤
∫ b

a

(
Hq,r,af (x)

)p dqx

≤ λp

pp

∫ ∞

0

(
r(x)

r(qx)

p–1∑
i=0

[
hq,r,af (qx)
hq,r,af (x)

]i
)p

f p(x) dqx.

Invoking the dominated convergence theorem, taking a → ∞, we get

∫ b

c

(
Hq,rf (x)

)p dqx ≤ λp

pp

∫ ∞

0

(
r(x)

r(qx)

p–1∑
i=0

[
hq,r,af (qx)
hq,r,af (x)

]i
)p

f p(x) dqx

for all c, b > 0. Finally, letting b → ∞ and c → 0,

∫ ∞

0

(
Hq,rf (x)

)p dqx ≤ λp

pp

∫ ∞

0

(
r(x)

r(qx)

p–1∑
i=0

[
hq,r,af (qx)
hq,r,af (x)

]i
)p

f p(x) dqx. �

In Theorem 6 if we take the limit q → 1– we obtain the following theorem, proved by
N. Levinson in 1964 (cf. [13, Theorem 4]).

Remark 3 Let f be a nonnegative function on (0,∞), r being absolutely continuous func-
tion on (0,∞) and p > 1. Also assume

∫ ∞
0 (f (x))p dx is convergent, and

p – 1
p

+ x
r′

r
≥ 1

λ
,
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for almost every x > 0 and for some λ > 0. Then we have the following inequality:

∫ ∞

0

(
Hrf (x)

)p dx ≤ λp
∫ ∞

0
f p(x) dx,

where

Hrf (x) =
1

xr(x)

∫ x

0
r(t)f (t) dt.

Theorem 7 Assume f is a nonnegative function on (0,∞), u is absolutely continuous func-
tion on (0,∞) and p > 1. Also assume

∫ b
a (f (x))p dqx is convergent, and

[p – 1]q

p
–

x
p

Dqu(x)
u(x)

p–1∑
i=0

(
u(qx)
u(x)

) i
p p–1∑

i=0

[
hq,r,ag(qx)
hq,r,ag(x)

]i

≥ 1
λ

, (4.6)

for almost every x > 0 and for some λ > 0. Then we have the following inequality:

∫ ∞

0

(
Hqf (x)

)pu(x) dqx ≤ λp

pp

∫ ∞

0

( p–1∑
i=0

[
hq,r,ag(qx)
hq,r,ag(x)

]i
)p

f p(x)u(qx) dqx, (4.7)

where

Hqf (x) =
1
x

∫ x

0
f (t) dqt.

Proof If we consider r(x) = ( 1
u(x) )

1
p , then

f (x) = r(x)g(x) =
(

1
u(x)

) 1
p

g(x)

and we apply Theorem 6 to g , we assume 0 < a < b < ∞ and

hq,r,ag(x) =
1

r(x)

∫ x

a
r(t)g(t) dqt =

(
u(x)

) 1
p

∫ x

a
f (t) dqt.

Then, defining Hq,r,ag(x) = 1
x hq,r,ag(x), and integrating by parts from (2.5) with w =

(hq,r,ag(x))p and Dqv(x) = x–p noting that v(x) = x1–p

[1–p]q
we get

∫ b

a

(
Hq,r,ag(x)

)p dqx

=
(
hq,r,ag(b)

)p b1–p

[1 – p]q

–
q1–p

[1 – p]q

∫ b

0
x1–pDqhq,r,ag(x)

( p–1∑
i=0

[
hq,r,ag(x)

]p–1–i[hq,r,ag(qx)
]i
)

dqx

+
q1–p

[1 – p]q

∫ a

0
x1–pDqhq,r,ag(x)

( p–1∑
i=0

[
hq,r,ag(x)

]p–1–i[hq,r,ag(qx)
]i
)

dqx
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=
(
hq,r,ag(b)

)p b1–p

[1 – p]q

–
q1–p

[1 – p]q

∫ b

a
x1–pDqhq,r,ag(x)

( p–1∑
i=0

[
hq,r,ag(x)

]p–1–i[hq,r,ag(qx)
]i
)

dqx.

We notice that from (2.2)

(
hq,r,ag(b)

)p b1–p

[1 – p]q
= –qp–1(hq,r,ag(b)

)p b1–p

[p – 1]q

is negative since p – 1 ∈ N, p – 1 > 0 and hq,r,ag(b) > 0 with b > 0. Also, from the definition
of hq,r,ag(x) we have

Dqhq,r,ag(x)

= Dq

((
u(x)

) 1
p

∫ x

a
f (t) dqt

)

= Dq

((
u(x)

) 1
p

∫ x

0
f (t) dqt

)
– Dq

((
u(x)

) 1
p

∫ a

0
f (t) dqt

)

=
(
u(qx)

) 1
p Dq

(∫ x

0
f (t) dqt

)
+

(∫ x

0
f (t) dqt

)
Dq

(
u(x)

) 1
p –

(∫ a

0
f (t) dqt

)
Dq

(
u(x)

) 1
p

=
(
u(qx)

) 1
p Dq

(∫ x

0
f (t) dqt

)
+

(∫ x

a
f (t) dqt

)
Dq

(
u(x)

) 1
p

=
(
u(qx)

) 1
p f (x) +

hq,r,ag(x)

(u(x))
1
p

Dqu(x)
∑p–1

i=0 (u(x))
p–1–i

p (u(qx))
i
p

=
(
u(qx)

) 1
p f (x) +

hq,r,ag(x)
u(x)

Dqu(x)
p–1∑
i=0

(
u(qx)
u(x)

) i
p

.

Hence, by [1 – p]q = – 1
q(p–1) [(p – 1)]q

[p – 1]q

∫ b

a

(
Hq,r,ag(x)

)p dqx

≤
∫ b

a
x1–p(u(qx)

) 1
p f (x)

[
hq,r,ag(x)

]p–1
p–1∑
i=0

[
hq,r,ag(qx)
hq,r,ag(x)

]i

dqx

+
∫ b

a
x1–p (hq,r,ag(x))p

u(x)
Dqu(x)

p–1∑
i=0

(
u(qx)
u(x)

) i
p p–1∑

i=0

[
hq,r,ag(qx)
hq,r,ag(x)

]i

dqx

or equivalently

∫ b

a

[
[p – 1]q – x

Dqu(x)
u(x)

p–1∑
i=0

(
u(qx)
u(x)

) i
p p–1∑

i=0

(
hq,r,ag(qx)
hq,r,ag(x)

)i
](

Hq,r,ag(x)
)p dqx

≤
∫ b

a

(
u(qx)

) 1
p

p–1∑
i=0

[
hq,r,ag(qx)
hq,r,ag(x)

]i

f (x)
[
Hq,r,ag(x)

]p–1 dqx.
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Finally, by using (4.6) and the q-Hölder inequality, we have

∫ ∞

0

(
Hq,rf (x)

)p dqx ≤ λp

pp

∫ ∞

0

( p–1∑
i=0

[
hq,r,ag(qx)
hq,r,ag(x)

]i
)p

f p(x)u(qx) dqx

and

∫ ∞

0

(
Hqf (x)

)pu(x) dqx ≤ λp

pp

∫ ∞

0

( p–1∑
i=0

[
hq,r,ag(qx)
hq,r,ag(x)

]i
)p

f p(x)u(qx) dqx,

and this completes the proof. �

In Theorem 7 if we take the limit q → 1– we obtain the following result, proved by
N. Levinson in 1964 [13] on continuous analysis.

Remark 4 Assume that f is a nonnegative function on (0,∞), u is absolutely continuous
function on (0,∞), and p > 1. Also assume

∫ b
a (f (x))p dx is convergent, and

p – 1
p

– px
u′

u
≥ 1

λ
,

for almost every x > 0 and for some λ > 0. Then we have the following inequality:

∫ ∞

0

(
Hf (x)

)pu(x) dx ≤ λp
∫ ∞

0
f p(x)u(x) dx,

where

Hf (x) =
1
x

∫ x

0
f (t) dt.
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