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Abstract
In this study, we discuss the existence of positive periodic solutions of a class of
discrete density-dependent mortal Nicholson’s dual system with harvesting terms. By
means of the continuation coincidence degree theorem, a set of sufficient conditions,
which ensure that there exists at least one positive periodic solution, are established.
A numerical example with graphical simulation of the model is provided to examine
the validity of the main results.
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1 Introduction
Global stability means that the attracting basin of trajectories of a dynamical system is
either the state space or a certain region in the state space, which is the defining region
of the state variables of the system. In other words, global stability means that any trajec-
tories finally tend to the attractor of the system, regardless of initial conditions. For most
of biological systems, population dynamics, e.g., gene regulatory systems, are needed to
be globally stable [1–4]. In addition, the global asymptotical stability of the positive equi-
librium of a dynamical system is one of the research foci in theoretical studies of both
continuous and discrete bio-mathematical models [5–11].

Long investigated a patch structure Nicholson’s blowflies model involving multiple pairs
of different time-varying delays

k′
i(t) = –αiiki(t) +

n∑

j=1,j �=i

αijkj(t) +
n∑

j=1

βij(t)ki
(
t – fij(t)

)
e–γij(t)ki(t–gij(t))

for t ≥ t0, i = 1, 2, . . . , n [11]. The author established three novel criteria to check the global
convergence, generalized exponential convergence, and asymptotical stability on the zero
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equilibrium point of the addressed model, without assuming the uniform positiveness of
the death rate and the boundedness of coefficients, respectively (see [11]). Zhang et al.
established the existence and global exponential stability of positive almost periodic so-
lutions for Nicholson’s blowflies systems involving patch structure and nonlinear density-
dependent mortality terms by applying differential inequality techniques and the fluctu-
ation lemma which guarantees the existence of positive asymptotically almost periodic
solutions for the addressed system [12]. Qian et al., under some assumptions, developed a
novel approach to demonstrate the global stability of positive asymptotically almost peri-
odic solutions for the nonlinear density-dependent mortality Nicholson’s blowflies system

k′
i(t) = –aii(t) + bii(t)e–ki(t) +

n∑

j=1,j �=i

(
aij(t) – bij(t)e–kj(t))

+
n∑

j=1

βij(t)ki
(
t – fij(t)

)
e–γij(t)ki(t–fij(t))

for i = 1, 2, . . . , n [13]. Sweilam et al. considered variable-order fractional coupled nonlin-
ear Burger’s equations under proportional delay a, b, and c in two dimensions (2-D) with
the Atangana–Baleanu–Caputo (ABC) derivatives as follows:

ABCDα(x,y,t)
t ut(x, y, t) + λ1u(ax, by, ct)ux(x, y, ct) + β1v(x, y, t)uy(x, y, t)

= ρ
(
uxx(x, y, t) + uyy(x, y, t)

)
,

ABCDα(x,y,t)
t vt(x, y, t) + λ2u(ax, by, ct)vx(x, y, ct) + β2v(x, y, t)vy(x, y, t)

= ρ
(
vxx(x, y, t) + vyy(x, y, t)

)
,

with the initial conditions u(x, y, t0) = g1(x, y), v(x, y, t0) = g2(x, y), x, y ∈ [L0, L], and some
boundary conditions where 0 < αx, y, t) ≤ 1 and u(x, y, t) and v(x, y, t) are velocity compo-
nents, ρ is a diffusion coefficient, λ1, λ2, β1, and β2 are constants, g1(x, y), g2(x, y), f1(x, y, t),
and f2(x, y, t) are all known functions, t0 is the initial time, a, b, c ∈ (0, 1) [3]. Also, Sweilam
et al. in [7] investigated the effect of the optimal control of the variable order for HIV/AIDS
and malaria mathematical models with multi-time delay and developed an efficient nu-
merical algorithm to approximate the solutions of the proposed model with three control
variables to reduce the number of the infected individuals of malaria and HIV/AIDS, and
presented the numerical simulations for the obtained variable-order fractional system.
Jaradat et al. considered the effect of inherited memory time and delay time in the formu-
lation of a mathematical population growth model

Dα
t P(x, t) – Dxx

(
P2(x, t)

)
– aP(x, τ t) + bP2(x, τ t) = 0

for t > 0, where α ∈ (0, 1] is the Caputo derivative, and introduced two different numerical
schemes to study analytically the propagation of population growth [6].

In 1986, Freedman et al. introduced criteria, such as population dynamics that has al-
ways been a core topic in theoretical ecology, which are established for three classes of
models of single-species dynamics with a single discrete delay to have a globally asymptot-
ically stable positive equilibrium independent of the length of delay [5]. In fact, asymptotic
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mean square stability of the linear part of the considered equation is used to verify stabil-
ity in probability of nonlinear origin equation. In biological applications, a recruitment-
delayed model

dk
dt

= B
(
k(t – t1)

)
– D

(
k(t)

)

is frequently used, where k(t) is a population size, the birth functionB involves maturation
delay t1, and the death rate D depends on the current population level only. In order to
characterize the population of the Australian sheep blowflies and to coincide well with
the experimental result, Nicholson [14] and Gurney [15] introduced Nicholson’s blowflies
model

k′(t) = –ak(t) + bk(t – t1) exp
(
–ck(t – t1)

)
,

where k(t) denotes the population size at time t, a is the per capita daily adult death rate,
b denotes the maximum per capita daily egg production, 1

c is the size at which the blowfly
population reproduces at its maximum rate, and t1 is delay of the generation time. In 2015,
Deng et al. solved an open problem on the global attractivity of the following diffusive
Nicholson’s blowflies equation with distributed delay:

yt – d�y = –λy(x, t) + ατ

(∫ t

–∞
w(t – ξ )y(x, ξ )dξ

)

× exp

(
–
∫ t

–∞
w(t – ξ )y(x, ξ )dξ

)

for (x, t) ∈ ϒ × (0,∞), where ϒ is a bounded domain in R
N with smooth boundary

∂ϒ , the parameters α, λ are positive constants, and nonnegative kernel function w sat-
isfies

∫∞
0 w(ξ )dξ = 1 [16]. In 2019, Gao et al. studied the conformable (2 + 1)-dimensional

Ablowitz–KaupNewell–Segur equation in order to show the existence of complex com-
bined dark-bright soliton solutions [12]. To this purpose, an effective method, i.e., the sine-
Gordon expansion method, was used [12]. The 2D and 3D surfaces under some suitable
values of parameters were also plotted [12].

Recently, many researchers have worked on a numerical technique to solve some types of
equations such as Burgers’ equations with proportional delay, mathematical models with
multi-time delay, an SEIR epidemic model for COVID-19 transmission, and biomathemat-
ics model inherited with memory time and delay time [3, 6, 7, 17]. In 2020, Yel al. employed
the sine-Gordon expansion method to shallow water wave models which are Kadomtsev–
Petviashvili–Benjamin–Bona–Mahony and the Benney–Luke equations [18]. They con-
structed many new complex combined dark-bright soliton, anti-kink soliton solutions for
the governing models, and the 2D, 3D, and contour plots were given under the suitable
coefficients [18]. Also, García Guirao et al. applied the sine-Gordon expansion method
to the extended nonlinear (2 + 1)-dimensional Boussinesq equation [10]. Many new dark,
complex, and mixed dark-bright soliton solutions of the governing model have been de-
rived [10]. Moreover, for better understanding of the results, 2D, 3D, and contour graphs
under the strain conditions and the suitable values of parameters were also plotted [10].



Eswari et al. Advances in Difference Equations        (2021) 2021:360 Page 4 of 19

In 2018, the authors considered a discrete Nicholson’s blowflies model

�k(n) = –α(n)k(n) + b(n) + β(n) ln k
(
n – τ (n)

)
.

k(n)
kγ (n)(n – τ (n))

,

where n ∈ Z and α, b,β ,γ , τ : Z → [0,∞) are almost periodic sequences, which involve
a nonlinear density-dependent mortality term, and by using a fixed point theorem and
Lyapunov functional method, obtained the existence and locally exponential stability of
pseudo almost periodic solutions for the addressed Nicholson’s blowflies model [19].

In [20], Berezansky et al. focused on a linear model of density-dependent mortality
terms

P′(t) = aP(t – t1) exp
(
–cP(t – t1)

)
– D[P](t),

where α > 0 and the form of function D may be D[P] = mP
P+n or D[P] = m – n exp(–P), with

positive constants m > 0 and n > 0. In 2017, the authors considered the non-autonomous
almost periodic Nicholson’s blowflies model with density-dependent mortality term of the
form

k′(t) = –
a(t)k(t)

b(t) + k(t)
+ p(t)k

(
t – τ (t)

)
e–β(t)k(t–τ (t)),

where a(t), b(t), β(t), p(t), and τ (t) ∈ C(R,R+) and a(t), b(t), β(t), p(t), τ (t) are bounded al-
most periodic functions [21]. Also many authors extensively studied Nicholson’s blowflies
model with density-dependent mortality term (see for example [22–24]). Incorporating
the phenomena gives us impulsive differential systems. A lot of work has been done in this
direction to research impulsive differential equations, see a few viewpoints and the refer-
ences therein [25–37]. They explored a generalized form of delayed Nicholson’s blowflies
model with impulse

⎧
⎨

⎩
k′(t) = –ak(t) +

∑n
i=1 bik(t – t1)e–cik(t–t1), t �= ηm,

�k(ηm) = dmk(ηm), t = ηm,

to establish the existence of positive periodic solutions. In 2012, the authors considered a
discrete Nicholson’s blowflies model involving a linear harvesting term, and with appropri-
ate assumptions, sufficient conditions were established for the existence and exponential
convergence of positive almost periodic solutions of the model [38]. Many authors have
explored the discrete Nicholson’s blowflies model (for instance consider [39–42]). They
derived the exponential extinction, exponential stability, exponential convergence of al-
most periodic and multiple periodic solutions. Furthermore, more discussions about pe-
riodic solution, global stability, and exponential stability of delayed Nicholson’s blowflies
model could be found in references [43–56] by using of Schauder’s fixed point theorem,
Krasnoselskii’s fixed point theorem, and Leggett–Williams fixed point theorem.
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Here, we propose in this paper the following dual system of Nicholson’s blowflies model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1(ν + 1) = k1(ν) exp(– a11(ν)
b11(ν)+k1(ν) + a12(ν)

b12(ν)+k2(ν) · k2(ν)
k1(ν)

+ c1(ν)k1(ν–τ1(ν))
k1(ν) exp(–δ1(ν)k1(ν – τ1(ν)))

– H1(ν) k1(ν–τ1(ν))
k1(ν) ),

k2(ν + 1) = k2(ν) exp(– a22(ν)
b22(ν)+k2(ν) + a21(ν)

b21(ν)+k1(ν) · k1(ν)
k2(ν)

+ c2(ν)k2(ν–τ2(ν))
k2(ν) exp(–δ2(ν)k2(ν – τ2(ν)))

– H2(ν) k2(ν–τ2(ν))
k2(ν) ),

(1)

where aij, bij, ci, δi, Hi : R → (0,∞) for i, j = 1, 2, ki(t) (i = 1, 2) denotes the population’s
size at time t and periodic functions τ1, τ2 : R → [0,∞) are continuous with period p.
By using the technical idea of Gaines and Mawhin continuation theorem of coincidence
degree theory in [57], we derive the sufficient conditions for the new result of existence
of positive periodic solution to system (1). Finally, one numerical simulation example is
provided to verify the main results.

We arrange the rest of the paper as follows: In Sect. 2, we recall some preliminaries of the
basic tool. Section 3 is devoted to showing the main results, while an example illustrating
the obtained results and an algorithm for the system are presented in Sect. 4.

2 Preliminaries
Before exploring the existence of periodic solutions of the system, we give some denota-
tions, which will be useful to prove the main result. Let L : DomL ⊂ Y → Z and N :
Y → Z be a linear mapping and a continuous mapping, respectively, where Y and Z are
real Banach spaces. LetY andZ be Banach spaces and LB(Y ,Z) denote the set of bounded
linear operators T from Y to Z with Dom(T ) = Y . An operator L ∈ LB(Y ,Z) is called
a Fredholm mapping of index zero if dim kerL , codim ImL are finite and ImL ⊂ Z is
closed. If L is a Fredholm mapping of index zero, then there exist continuous projectors
P : Y → Y and Q : Z →Z such that

ImP = kerL , kerQ = ImL = Im(I – Q). (2)

It follows that the restriction L |P of L to

DomL ∩ kerP : (I – P)Y → ImL

is invertible. Denote the inverse of L |P by K.

Lemma 1 ([57]) Let O ⊂ Y be an open bounded set, L be a Fredholm mapping of index
zero, and N be L -compact on O. Assume

(I) L (z) �= ηN (z) for all η ∈ (0, 1), z ∈ ∂O ∩ DomL ;
(II) Q(N (z)) �= 0 for each z ∈ ∂O ∩ kerL ;

(III) deg(JQN ,O ∩ kerL , 0) �= 0.
Then L (z) = N (z) has at least one solution in O ∩ DomL .
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Lemma 2 ([58]) Suppose that k : Z →R is a p-periodic function such that k(ν + p) = k(ν).
Then, for any fixed ν1, ν2 belonging to

Ip = {0, 1, . . . , p – 1}

and any ν ∈ Z, one has

k(ν2) –
p–1∑

ν=0

∣∣k(ν + 1) – k(ν)
∣∣≤ k(ν) ≤ k(ν1) +

p–1∑

ν=0

∣∣k(ν + 1) – k(ν)
∣∣.

For convenience, we shall introduce the following notations:

g =
1
p

p–1∑

ν=0

g(ν), g∗ = max
ν∈Ip

g(ν), g∗ = min
ν∈Ip

g(ν).

3 Main results
Theorem 3 For system (1), we assume that:

(1) aij(ν), bij(ν), ci(ν), δ1(ν), and Hi(ν) are continuous positive periodic functions with
period p > 0 and τi(ν) is a nonnegative continuous function with

τi(ν) = τi(ν + p),

here i, j = 1, 2.
(2) a∗

11
b11 ∗ + H∗

1 > 0 and a∗
22

b22 ∗ + H∗
2 > 0.

(3) H1∗ > a∗
12

b12∗ and H2∗ > a∗
21

b21∗ ,
here

a∗
ij = max

ν∈Ip
aij(ν), bij∗ = min

ν∈Ip
bij(ν), (i, j = 1, 2)

and

H∗
i = max

ν∈Ip
Hi(ν), Hi∗ = min

ν∈Ip
Hi(ν). (3)

Then there exists at least one positive periodic solution of system (1).

Proof By the biological meaning, we only focus on the positive periodic solutions to sys-
tem (1). Let the transformation be k1(ν) = exp(�1(ν)) and k2(ν) = exp(�2(ν)). Then system
(1) becomes

⎧
⎨

⎩
�1(ν + 1) – �1(ν) = θ1(ν),

�2(ν + 1) – �2(ν) = θ2(ν),
(4)

where

θ1(ν) = –
a11(ν)

b11(ν) + exp(�1(ν))
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+
a12(ν)

b12(ν) + exp(�2(ν))
exp

(
�2(ν) – �1(ν)

)

– H1(ν) exp
(
�1
(
ν – τ1(ν)

)
– �1(ν)

)

+ c1(ν) exp
(
�1
(
ν – τ1(ν)

)
– �1(ν) – δ1(ν) exp

(
�1
(
ν – τ1(ν)

)))
,

θ2(ν) = –
a22(ν)

b22(ν) + exp(�2(ν))

+
a21(ν)

b21(ν) + exp(�1(ν))
exp

(
�1(ν) – �2(ν)

)

– H2(ν) exp
(
�2
(
ν – τ2(ν)

)
– �2(ν)

)

+ c2(ν) exp
(
�2
(
ν – τ2(ν)

)
– �2(ν) – δ2(ν) exp

(
�2
(
ν – τ2(ν)

)))
. (5)

Since (4) has a p-periodic solution (�1(ν),�2(ν))T , it is easy to see that

(
k1(ν), k2(ν)

)T =
(
exp

(
�1(ν)

)
, exp

(
�2(l)

))T

is a positive p-periodic solution of (1). Next, it needs to show that (4) has a p-periodic
solution. Define

j2 =
{

z =
(
z(ν)

)
: z(ν) ∈R

2,ν ∈ Z
}

.

For r = (r1, r2)T ∈ R
2, define |r| = max{|r1|, |r2|}. Let jp ⊂ j2 denote the subspace of all p-

periodic sequences equipped with the usual supremum norm ‖ · ‖, i.e.,

‖z‖ = max
ν∈Ip

∣∣z(ν)
∣∣,

for any

z =
{

z(ν) : ν ∈ Z
} ∈ jp.

It is obvious that jp is a finite dimensional Banach space. Let

jp
0 =

{
z =

(
z(ν)

) ∈ jp :
p–1∑

l=0

z(ν) = 0

}

and

jp
c =

{
z =

(
z(ν)

) ∈ jp : z(ν) = h ∈R
2,ν ∈ Z

}
.

Then it follows that jp
0 and jp

c are both closed linear subspaces of jp and jp = jp
c ⊕ jp

0 , dim jp
c = 2.

We take

jp = Z =
{

z(ν) =
(
�1(ν),�2(ν)

)T ∈R
2 : �1(ν + p) = �1(ν),�2(ν + p) = �2(ν)

}

and

‖z‖ =
∥∥(�1(ν),�2(ν)

)T∥∥ = max
ν∈Ip

∣∣�1(ν)
∣∣ + max

ν∈Ip

∣∣�2(ν)
∣∣.
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Then Z is a Banach space with norm ‖ · ‖. Now, we define L : Dom(L ) ⊂Z →Z and
N : Z →Z by

L (�1,�2) =

(
�1(ν + 1) – �1(ν)
�2(ν + 1) – �2(ν)

)

and

N (�1,�2) =

(
θ1(ν)
θ2(ν)

)

for any (�1,�2)T ∈ Z and ν ∈ Z, here θ1(ν) and θ2(ν) are defined by Eq. (5). It is trivial to
get the argument L is a bounded linear operator, kerL = jp

c , ImL = jp
0, and ImL ⊂ Z

is closed. Therefore, dim kerL = codim ImL = 2. Indeed, L is a Fredholm mapping of
index zero. At present, we set the continuous projectors P : Z → Z and Q : Z → Z
defined by

P(�1,�2) = Q(�1,�2) =

(
1
p [
∑p–1

ν=0 �1(ν)]
1
p [
∑p–1

ν=0 �2(ν)]

)
,

such that Eq. (2) holds. Furthermore, K denotes the inverse of L |DomK ∩kerP ,

K(�1,�2) =

(∑p–1
ν=0 �1(ν) – 1

p [
∑p–1

ν=0(p – ν)�1(ν)]
∑p–1

ν=0 �2(ν) – 1
p [
∑p–1

ν=0(p – ν)�2(ν)]

)
,

QN : Z →Z and K(I – Q)N : Z →Z are defined by

QN (�1,�2) =

(
1
p
∑p–1

ν=0 θ1(ν)
1
p
∑p–1

ν=0 θ2(ν)

)
,

K(I – Q)N (�1,�2) =

(∑p–1
ν=0 θ1(ν)∑p–1
ν=0 θ2(ν)

)
–

(
1
p
∑p–1

ν=0(p – ν)θ1(ν)
1
p
∑p–1

ν=0(p – ν)θ2(ν)

)

–

(
( ν

p – p+1
2p )

∑p–1
ν=0 θ1(ν)

( ν
p – p+1

2p )
∑p–1

ν=0 θ2(ν)

)
.

This implies that functions QN and K(I – Q)N are all continuous. On the other hand,
Z is a finite dimensional Banach space, and so the Arzelà–Ascoli theorem implies that

K(I – Q)N (O)

is compact for any open bounded set O ⊂Z . Moreover, QN (O) is bounded. Therefore,
N is L -compact on O for any open bounded set O ⊂ Z . The isomorphism J : ImQ →
kerL is an identity mapping such that kerL = ImQ. In the following, we consider the
operator equation L � = ηN � for η ∈ (0, 1), that is,

⎧
⎨

⎩
�1(ν + 1) – �1(ν) = ηθ1(ν),

�2(ν + 1) – �2(ν) = ηθ2(ν).
(6)
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Suppose that (�1(ν),�2(ν))T ∈ Z is a solution of (6) for certain η ∈ (0, 1), and summing
from 0 to p – 1 on both sides, we get

⎧
⎨

⎩

∑p–1
ν=0 θ1(ν) = 0,

∑p–1
ν=0 θ2(ν) = 0.

(7)

Combining the first equation of system (6) and the first equation of system (7), we have

p–1∑

ν=0

∣∣�1(ν + 1) – �1(ν)
∣∣ < M1, (8)

here

M1 = 2
p–1∑

ν=0

a11(ν)
b11(ν)

.

From the second equation of system (6) and the second equation of system (7), we have

p–1∑

ν=0

∣∣�2(ν + 1) – �2(ν)
∣∣ < M2, (9)

here

M2 = 2
p–1∑

ν=0

a22(ν)
b22(ν)

.

Multiplying the first equation of system (7) by exp(�1(l)), we obtain

p–1∑

ν=0

a11(ν)
b11(ν) + exp(�1(ν))

exp
(
�1(ν)

)
+

p–1∑

ν=0

H1(ν) exp
(
�1
(
ν – τ1(ν)

))

=
p–1∑

ν=0

a12(ν)
b12(ν) + exp(�2(ν))

exp
(
�2(ν)

)

+
p–1∑

ν=0

c1(ν) exp
(
�1
(
ν – τ1(ν)

)
– δ1(ν)e�1(ν–τ1(ν))). (10)

Notice that

p–1∑

ν=0

exp
(
�1
(
ν – τ1(ν)

))
=

p–1∑

ν=0

exp
(
�1(ν)

)
,

p–1∑

ν=0

exp
(
�2
(
ν – τ2(ν)

))
=

p–1∑

ν=0

exp
(
�2(ν)

)
(11)

and

sup
�≥0

� exp(–�) =
1

exp(1)
. (12)
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Since (�1(ν),�2(ν))T ∈Z , there exist αi, βi ∈ Ip such that

�i(αi) = max
ν∈Ip

�i(ν), �i(βi) = min
ν∈Ip

�i(ν), (13)

with i = 1, 2. Substituting (11), (12), and (13) in (10), we get

p–1∑

ν=0

a11(ν)
b11(ν) + exp(�1(ν))

exp
(
�1(ν)

)
+

p–1∑

ν=0

H1(ν) exp
(
�1(ν)

)

=
p–1∑

ν=0

a12(ν)
b12(ν) + exp(�2(ν))

exp
(
�2(ν)

)

+
p–1∑

ν=0

c1(ν)
δ1(ν)

δ1(ν) exp
(
�1
(
ν – τ1(ν)

)
– δ1(ν) exp

(
�1
(
ν – τ1(ν)

)))
,

[
a11

∗

b11∗
+ H1

∗
] p–1∑

ν=0

exp
(
�1(ν)

)
>

p–1∑

ν=0

c1(ν)
δ1(ν) exp(1)

,

[
a11

∗

b11∗
+ H1

∗
]

exp
(
�1(α1)

)
>

c1∗
δ∗

1 exp(1)

and

�1(α1) > log

[
c1∗b11∗

δ∗
1 exp(1)(a11∗ + b11∗H1

∗)

]
. (14)

Multiplying the second equation of system (7) by exp(�2(ν)), we obtain

p–1∑

ν=0

a22(ν)
b22(ν) + exp(�2(ν))

exp
(
�2(ν)

)
+

p–1∑

ν=0

H2(ν) exp
(
�2
(
ν – τ2(ν)

))

=
p–1∑

ν=0

a21(ν)
b21(ν) + exp(�1(ν))

exp
(
�1(ν)

)

+
p–1∑

ν=0

c2(ν) exp
(
�2
(
ν – τ2(ν)

)
– δ2(ν) exp

(
�2
(
ν – τ2(ν)

)))
. (15)

Substituting Eqs. (11), (12), and (13) in (15), we get

p–1∑

ν=0

a22(ν)
b22(ν) + exp(�2(ν))

exp
(
�2(ν)

)
+

p–1∑

ν=0

H2(ν) exp
(
�2(ν)

)

=
p–1∑

ν=0

a21(ν)
b21(ν) + exp(�1(ν))

exp
(
�1(ν)

)

+
p–1∑

ν=0

c2(ν)
δ2(ν)

δ2(ν) exp
(
�2
(
ν – τ2(ν)

)
– δ2(ν) exp

(
�2
(
ν – τ2(ν)

)))
,

[
a22

∗

b22∗
+ H2

∗
] p–1∑

ν=0

exp
(
�2(ν)

)
>

p–1∑

ν=0

c2(ν)
δ2(ν) exp(1)

,
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[
a22

∗

b22∗
+ H2

∗
]

exp
(
�2(α2)

)
>

c2∗
δ∗

2 exp(1)

and

�2(η2) > log

[
c2∗b22∗

δ∗
2 exp(1)(a22∗ + b22∗H2

∗)

]
. (16)

From Eqs. (10) and (11), we obtain

p–1∑

ν=0

H1(ν) exp
(
�1(ν)

)
<

p–1∑

ν=0

a12(ν)
b12(ν) + exp(�2(ν))

exp
(
�2(ν)

)

+
p–1∑

ν=0

c1(ν) exp
(
�1
(
ν – τ1(ν)

)
– δ1(ν)

× exp
(
�1
(
ν – τ1(ν)

)))
. (17)

If

p–1∑

ν=0

exp
(
�2(ν)

)≤
p–1∑

ν=0

exp
(
�1(ν)

)
,

and (12), then it follows from Eqs. (13) and (17) that

p–1∑

ν=0

H1(ν) exp
(
�1(ν)

)
<

p–1∑

ν=0

a12(ν)
b12(ν) + exp(�2(ν))

exp
(
�1(ν)

)

+
p–1∑

ν=0

c1(ν) exp
(
�1
(
ν – τ1(ν)

)
– δ1(ν)

× exp
(
�1
(
ν – τ1(ν)

)))
,

[
H1∗ –

a12
∗

b12∗

] p–1∑

ν=0

exp
(
�2(ν)

)≤
[
H1∗ –

a12
∗

b12∗

] p–1∑

ν=0

exp
(
�1(ν)

)

<
p–1∑

ν=0

c1(ν)
δ1(ν) exp(1)

and

�2(β2) < log

[
c1

∗b12∗
δ1∗ exp(1)(b12∗H1∗ – a12

∗)

]
. (18)

From (11) and (15) we obtain

p–1∑

ν=0

H2(ν) exp
(
�2(ν)

)
<

p–1∑

ν=0

a21(ν)
b21(ν) + exp(�1(ν))

exp
(
�1(ν)

)

+
p–1∑

ν=0

c2(ν) exp
(
�2
(
ν – τ2(ν)

)
– δ2(ν) exp

(
�2
(
ν – τ2(ν)

)))
. (19)
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If

p–1∑

ν=0

exp
(
�1(ν)

)≤
p–1∑

ν=0

exp
(
�2(ν)

)

and (12), then from (13) and (19) we obtain

p–1∑

ν=0

H2(ν) exp
(
�2(ν)

)
<

p–1∑

ν=0

a21(ν)
b21(ν) + exp(�1(ν)

exp
(
�2(ν)

)

+
p–1∑

ν=0

c2(ν) exp
(
�2
(
ν – τ2(ν)

)
– δ2(ν)

× exp
(
�2
(
ν – τ2(ν)

)))
,

[
H2∗ –

a21
∗

b21∗

] p–1∑

ν=0

exp
(
�1(ν)

)≤
[
H2∗ –

a21
∗

b21∗

] p–1∑

ν=0

exp
(
�2(ν)

)

<
p–1∑

ν=0

c2(ν)
δ2(ν) exp(1)

,

and

�1(β1) < log

[
c2

∗b21∗
δ2∗ exp(1)(b21∗H2∗ – a21

∗)

]
. (20)

From Lemma (2), (8), (9), (14), and (16), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�1(ν) ≥ �1(α1) –
∑p–1

ν=0 |�1(ν + 1) – �1(ν)|
> log[ c1∗b11∗

δ∗
1 exp(1)(a11∗+b11∗H1∗) ] – M1,

�2(ν) ≥ �1(α2) –
∑p–1

ν=0 |�2(ν + 1) – �2(ν)|
> log[ c2∗b22∗

δ∗
2 exp(1)(a22∗+b22∗H2∗) ] – M2.

(21)

From Lemma 2, equations (8), (9), (18), and (20), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�1(ν) ≤ �1(β1) +
∑p–1

ν=0 |�1(ν + 1) – �1(ν)|
< log[ c2∗b21∗

δ2∗ exp(1)(b21∗H2∗–a21∗) ] + M1,

�2(ν) ≤ �2(β2) +
∑p–1

ν=0 |�2(ν + 1) – �2(ν)|
< log[ c1∗b12∗

δ1∗ exp(1)(b12∗H1∗–a12∗) ] + M2.

(22)

From the first equations of (21) and (22), we have maxν∈Ip |�1(ν)| < S1, where

S1 = max

{∣∣∣∣log

[
c1∗b11∗

δ∗
1 exp(1)(a11∗ + b11∗H1

∗)

]∣∣∣∣ + M1,

∣∣∣∣log

[
c2

∗b21∗
δ2∗ exp(1)(b21∗H2∗ – a21

∗)

]∣∣∣∣ + M1

}
. (23)
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By a similar argument, the second equations of (21) and (22) imply that maxν∈Ip |�2(ν)| <
S2, where

S2 = max

{∣∣∣∣log

[
c2∗b22∗

δ∗
2 exp(1)(a22∗ + b22∗H2

∗)

]∣∣∣∣ + M2,

∣∣∣∣log

[
c1

∗b12∗
δ1∗ exp(1)(b12∗H1∗ – a12

∗)

]∣∣∣∣ + M2

}
. (24)

Clearly, S1 and S2 are independent of η. Denote S = S1 + S2 + S0, where S0 is sufficiently
large such that each solution (�1,�2)T of the system of algebraic equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

– a11
b11+exp(�1) + a12

b12+exp(�2) exp(�2 – �1) – H1

+ c1 exp(–δ1 exp(�1)) = 0,

– a22
b22+exp(�2) + a21

b21+exp(�1) exp(�1 – �2) – H2

+ c2 exp(–δ2 exp(�2)) = 0,

satisfies ‖(�1,�2)‖ = |�1|+ |�2| < S and max |�1(ν)|+ max |�2(ν)| < S. Define a set as follows:

O =
{(

�1(ν),�2(ν)
)T ∈Z :

∥∥(�1,�2)T∥∥ < S
}

.

This satisfies condition (I) in Lemma 1. If

� ∈ ∂O ∩ kerL = ∂O ∩R
2,

then � is a constant vector in R
2 with ‖�‖ = S satisfying

QN (�1,�2) =

⎛

⎜⎜⎜⎜⎝

– a11
b11+exp(�1) + a12

b12+exp(�2) exp(�2 – �1)
–H1 + c1 exp(–δ1 exp(�1))

– a22
b22+exp(�2) + a21

b21+exp(�1) exp(�1 – �2)
–H2 + c2 exp(–δ2e�2 )

⎞

⎟⎟⎟⎟⎠
�=
(

0
0

)
.

Therefore condition (II) is satisfied in Lemma 1. In order to verify condition (III) in
Lemma 1, we consider a homotopy

Bμ

(
(�1,�2)T) = μJQN

(
(�1,�2)T) + (1 – μ)ρ

(
(�1,�2)T).

By a direct computation and the invariance property of homotopy, one has

deg
(
JQN (�1,�2)T ,� ∩ kerL , (0, 0)T)

= deg
(
ρ(�1,�2)T ,O ∩ kerQ, (0, 0)T) �= 0.

Hence � verifies all the requirements in Lemma 1. Then we get that equation (4) has
at least one periodic solution (�1,�2)T with period p in DomQ ∩ O, which implies that
system (1) has at least one positive periodic solution

(
exp(�1), exp(�2)

)T ,

with period p. The proof is completed. �
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4 An example for the system
Now, we illustrate the main Theorem 3 with the following model.

Example 1 Consider that a discrete Nicholson’s dual system similar to system (1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1(ν + 1) = k1(ν) exp(– 0.8+0.1 cosν
0.7+0.3 sinν+k1(ν)

+ 0.6+0.1 cosν
0.9+0.2 sinν+k2(ν)

k2(ν)
k1(ν)

– (2.2 + cosν) k1(ν–(0.8+0.2 cosν))
k1(ν)

+ (1.6+0.3 cosν)k1(ν–(0.8+0.2 cosν))
k1(ν)

× exp(–(1 + sinν
2 )k1(ν – (0.8 + 0.2 cosν)))),

k2(ν + 1) = k2(ν) exp(– 0.7+0.3 cosν
0.8+0.1 sinν+k2(ν)

+ 0.9+0.2 cosν
0.6+0.1 sinν+k1(ν)

k1(ν)
k2(ν)

– (3 – 0.1 sinν) k2(ν–(0.6+0.1 sinν))
k2(ν)

+ (1.4+0.1 cosν)k2(ν–(0.6+0.1 sinν))
k2(ν)

× exp(–(1 + cosν
2 )k2(ν – (0.6 + 0.1 sinν)))),

(25)

has at least one 2π-periodic solutions. Clearly, Ip = {0, 1, 2, . . . , 19, 20} and

aij(l) =

[
0.8 + 0.1 cos l 0.6 + 0.1 cos l
0.9 + 0.2 cos l 0.7 + 0.3 cos l

]
,

bij(l) =

[
0.7 + 0.3 sin l 0.9 + 0.2 sin l
0.6 + 0.1 sin l 0.8 + 0.1 sin l

]
,

ci(ν) =

[
1.6 + 0.3 cosν

1.4 + 0.1 cosν

]
, τi(ν) =

[
0.8 + 0.2 cosν

0.6 + 0.1 sinν

]
,

δi(ν) =

[
1 + sinν

2
1 + cosν

2

]
, Hi(ν) =

[
2.2 + cosν

3.0 – 0.1 sinν

]

for i, j = 1, 2. Table 1 shows the results of aij and bij, where i = 1, 2 and j = 1, 2. Also, one
can see the graphs of aij and bij in Figs. 1 and 2. In addition, for ν ∈ Ip, we get

a∗
11 = 0.9000, a∗

12 = 0.7000, a∗
21 = 1.1000, a∗

22 = 1.0000,

b11∗ = 0.4123, b12∗ = 0.7082, b21∗ = 0.5041, b22∗ = 0.7041.

Now, by using (3), we obtain

H∗
1 = 3.5000, H∗

2 = 3.0958, H1∗ = 1.2100, H2∗ = 2.9090.

In this level, the numerical results in Table 1 imply that

a∗
11

b11 ∗
+ H∗

1 = 5.3827 > 0,
a∗

22
b22 ∗

+ H∗
2 = 4.5161 > 0,
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Figure 1 Graphics of aij , i, j = 1, 2, in Example 1

Figure 2 Graphics of bij , where i, j = 1, 2, in Example 1

and

H1∗ = 1.2100 > 0.9884 =
a∗

12
b12∗

, H2∗ = 2.9090 > 2.1820 =
a∗

21
b21∗

.

By employing Algorithms 1 and 2, we can compute the above results.
Thus assumptions (1), (2), and (3) all hold for system (25) from the main Theorem 3.

Thus, Theorem 3 yields that system (25) has at least one 2π-periodic solution.

5 Conclusions and discussion
In the last decades, Nicholson’s blowflies model has found successful applications in many
areas such as population dynamics, system control theory, biomathematics, and optimiza-
tion problems. In this paper, we study a discrete Nicholson’s dual system with density-
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Table 1 Numerical results of aij and bij , where i = 1, 2 and j = 1, 2, in Example 1

ν aij bij

a11 a12 a21 a22 b11 b12 b21 b22

0 0.9000 0.7000 1.1000 1.0000 0.7000 0.9000 0.6000 0.8000
1 0.9000 0.7000 1.1000 1.0000 0.7005 0.9003 0.6002 0.8002
2 0.9000 0.7000 1.1000 1.0000 0.7010 0.9007 0.6003 0.8003
3 0.9000 0.7000 1.1000 1.0000 0.7016 0.9010 0.6005 0.8005
4 0.9000 0.7000 1.1000 1.0000 0.7021 0.9014 0.6007 0.8007
5 0.9000 0.7000 1.1000 1.0000 0.7026 0.9017 0.6009 0.8009
6 0.9000 0.7000 1.1000 1.0000 0.7031 0.9021 0.6010 0.8010
7 0.9000 0.7000 1.1000 1.0000 0.7037 0.9024 0.6012 0.8012
8 0.9000 0.7000 1.1000 1.0000 0.7042 0.9028 0.6014 0.8014
9 0.9000 0.7000 1.1000 1.0000 0.7047 0.9031 0.6016 0.8016
10 0.9000 0.7000 1.1000 1.0000 0.7052 0.9035 0.6017 0.8017
11 0.9000 0.7000 1.1000 0.9999 0.7058 0.9038 0.6019 0.8019
12 0.9000 0.7000 1.1000 0.9999 0.7063 0.9042 0.6021 0.8021
13 0.9000 0.7000 1.0999 0.9999 0.7068 0.9045 0.6023 0.8023
14 0.9000 0.7000 1.0999 0.9999 0.7073 0.9049 0.6024 0.8024
15 0.9000 0.7000 1.0999 0.9999 0.7079 0.9052 0.6026 0.8026
16 0.9000 0.7000 1.0999 0.9999 0.7084 0.9056 0.6028 0.8028
17 0.9000 0.7000 1.0999 0.9999 0.7089 0.9059 0.6030 0.8030
18 0.9000 0.7000 1.0999 0.9999 0.7094 0.9063 0.6031 0.8031
19 0.8999 0.6999 1.0999 0.9998 0.7099 0.9066 0.6033 0.8033

dependent morality harvesting terms. Some sufficient conditions for the existence of pos-
itive periodic solutions have been established. Moreover, a numerical example is given to
show the feasibility of our results. Also, this result relates to biological modeling [5, 16, 59].

Appendix: Supporting information

Algorithm 1 The MATLAB lines for computing aij(l)
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Algorithm 2 The MATLAB lines for computing bij(l)
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