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Abstract
In this paper, a class of fourth-order nonlinear neutral dynamic equations on time
scales is investigated. We obtain some sufficient conditions for the existence of
nonoscillatory solutions tending to zero with some characteristics of the equations by
Krasnoselskii’s fixed point theorem. Finally, two interesting examples are presented to
show the significance of the results.

MSC: 34N05; 34C10; 39A13

Keywords: Nonoscillatory solution; Tending to zero; Fourth-order; Neutral dynamic
equation; Time scale

1 Introduction
In this paper, we consider the existence of nonoscillatory solutions tending to zero of a
fourth-order nonlinear neutral dynamic equation

R4
(
t, x(t)

)
+ f

(
t, x

(
h(t)

))
= 0 (1)

on a time scale T with supT = ∞, where

Rk
(
t, x(t)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

x(t) + p(t)x(g(t)), k = 0,

r4–k(t)R�
k–1(t, x(t)), k = 1, 2, 3,

R�
3 (t, x(t)), k = 4

and t ∈ [t0,∞)T with t0 ∈ T. Moreover, throughout this paper we satisfy the conditions as
follows:

(C1) ri ∈ Crd([t0,∞)T, (0,∞)), i = 1, 2, 3;
(C2) p ∈ Crd([t0,∞)T, [0,∞)) and limt→∞ p(t) = p0 ∈ [0, 1);
(C3) g, h ∈ Crd([t0,∞)T,T) and limt→∞ g(t) = limt→∞ h(t) = ∞;
(C4) f ∈ C([t0,∞)T ×R,R) and xf (t, x) > 0 for x �= 0;
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(C5) ηi = limt→∞ Hi(g(t))/Hi(t) ∈ (0, 1], where

H1(t) =
∫ ∞

t

�u3

r3(u3)
, H2(t) =

∫ ∞

t

∫ ∞

u3

�u2�u3

r2(u2)r3(u3)
,

and

H3(t) =
∫ ∞

t

∫ ∞

u3

∫ ∞

u2

�u1�u2�u3

r1(u1)r2(u2)r3(u3)

if Hi(t0) < ∞, i = 1, 2, 3, respectively.
In recent years, the research on nonoscillation of dynamic equations on time scales has

made some progress. The scientists have provided some sufficient conditions which guar-
antee that the equations have nonoscillatory solutions with certain characteristics. We
refer the reader to [1–6] for details of the theory of time scale, and [7–22] with the ref-
erences cited therein for the achievements on the existence of nonoscillatory solutions of
nonlinear neutral dynamic equations on time scales.

A solution x of (1) is called eventually positive (or eventually negative) if there exists
T ∈ [t0,∞)T satisfying x(t) > 0 (or x(t) < 0) for t ∈ [T ,∞)T. The existence and asymptotic
behavior of nonoscillatory solutions of a class of nonlinear neutral dynamic equations on
time scales similar to (1) have been studied successively. Without loss of generality, only
the eventually positive solutions are considered. For the first-order case, Zhu and Wang
[22] investigated

(
x(t) + p(t)x

(
g(t)

))� + f
(
t, x

(
h(t)

))
= 0.

Gao and Wang [8], Deng and Wang [7] considered the second-order case

(
r(t)

(
x(t) + p(t)x

(
g(t)

))�)� + f
(
t, x

(
h(t)

))
= 0

under different assumptions
∫ ∞

t0
1/r(t)�t < ∞ and

∫ ∞
t0

1/r(t)�t = ∞, respectively. Then,
the third-order case

(
r1(t)

(
r2(t)

(
x(t) + p(t)x

(
g(t)

))�)�)� + f
(
t, x

(
h(t)

))
= 0 (2)

was studied in [15, 19, 21], and the higher-order case was considered in [17, 18, 20]. To have
a deeper understanding of the asymptotic behavior of nonoscillatory solutions of these
equations, Qiu [16] studied (1) with some conditions. In their works, different groups of
eventually positive solutions of the equations are summarized. For each case, an appro-
priate Banach space is introduced and Krasnoselskii’s fixed point theorem is employed to
present some sufficient conditions (or necessary and sufficient conditions) for the exis-
tence of these solutions.

We note that the case tending to zero is an important type for nonoscillatory solutions
of the equations. However, the asymptotic behavior of this type is more complicated than
those of other cases. It is obvious that the results of the existence for nonoscillatory solu-
tions tending to zero are not satisfactory in [7, 8, 15, 20, 22]. Some special sufficient con-
ditions are provided but not enough to be applied universally. Therefore, new methods
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should be found to study nonoscillatory solutions tending to zero of the equations. Mojsej
and Tartal’ová [23] were concerned with a third-order nonlinear differential equation

(
1

p(t)

(
1

r(t)
x′(t)

)′)′
+ q(t)f

(
x(t)

)
= 0, t ≥ a, (3)

where f satisfies the Lipschitz condition. The authors obtained some nice sufficient condi-
tions to ensure that (3) has a solution x with limt→∞ x(t) = 0 meeting some characteristics.
Inspired by [23], Qiu [24] investigated the nonoscillatory solutions tending to zero of (2)
when g(t) ≥ t for t ∈ [t0,∞)T, by employing a Banach space

BC[T0,∞)T =
{

x ∈ C
(
[T0,∞)T,R

)
: sup

t∈[T0,∞)T

∣
∣x(t)

∣
∣ < ∞

}
, (4)

where C([T0,∞)T,R) is the set of all continuous functions that map [T0,∞)T into R and
‖x‖ = supt∈[T0,∞)T |x(t)|. According to Krasnoselskii’s fixed point theorem, some new re-
sults are presented. However, considering the cases such as g(t) = t – 2, g(t) = t/3, and
g(t) = t + cos t for t ∈ [t0,∞)T, the conclusions in [24] are not applicable when g(t) ≥ t is
not fulfilled eventually, especially for [7, 8, 15–22]. Afterwards, Qiu et al. [25] studied (2)
under g(t) ≤ t for t ∈ [t0,∞)T and partially solved the problem. In this paper, we continue
to relax the constraint and unite the cases of the function g . Provided that Hi have been
defined for i = 1, 2, 3, note that they are all strictly decreasing on [t0,∞)T. For the case that
g(t) ≥ t is not satisfied eventually, the condition ηi = 1 should be satisfied for i = 1, 2, 3,
respectively.

In the following, Krasnoselskii’s fixed point theorem (see [26]) is presented in Lemma 1.1,
which will be used in the next section. Then, we show the relation between R0 and x in
Lemma 1.2 (see [24, Lemma 2.5]).

Lemma 1.1 Suppose that U is a contraction mapping, V is completely continuous, and
Ux + Vy ∈ � holds for all x, y ∈ �, where U , V : � → X are two operators, X is a Banach
space, and � is a bounded, convex, and closed subset of X, then U + V has a fixed point
in �.

Lemma 1.2 Suppose that x is an eventually positive solution of (1). If there exists a constant
a ≥ 0 satisfying limt→∞ R0(t, x(t)) = a, then we have

lim
t→∞ x(t) =

a
1 + p0

.

2 Main results
In this section, we present some sufficient conditions for the existence of eventually posi-
tive solutions of (1) under different assumptions. Firstly, suppose that the function f (t, x)
is nondecreasing with respect to x, then we have Theorems 2.1–2.4.

Theorem 2.1 Assume that the function f (t, x) is nondecreasing with respect to x, H1(t0) <
∞, and

∫ ∞

t0

∫ u2

t0

∫ u1

t0

f (u0, 2H1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2 < ∞, (5)
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then there exists T1 ∈ [t0,∞)T such that (1) has two eventually positive solutions x1 and
x2 tending to zero, which satisfy that R0(t, xi(t)) > 0, R1(t, xi(t)) < 0, i = 1, 2, R2(t, x1(t)) < 0,
R3(t, x1(t)) < 0, R2(t, x2(t)) > 0, and R3(t, x2(t)) > 0 for t ∈ [T1,∞)T.

Proof Take p1 satisfying p0 < p1 < (1 + 4p0)/5 < 1, then there exists T0 ∈ [t0,∞)T such that

5p1 – 1
4

≤ p(t) ≤ p1 < 1, p(t)
H1(g(t))

H1(t)
≥ (5p1 – 1)η1

4
, t ∈ [T0,∞)T, (6)

and
∫ ∞

T0

∫ u2

T0

∫ u1

T0

f (u0, 2H1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2 ≤ 1 – p1η1

4
.

Choose T1 ∈ (T0,∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1,∞)T. Define a Banach
space BC[T0,∞)T as (4), �1 = {x ∈ BC[T0,∞)T : H1(t) ≤ x(t) ≤ 2H1(t)}, and two operators
U1, V1 : �1 → BC[T0,∞)T as follows:

(U1x)(t) =

⎧
⎨

⎩
(U1x)(T1), t ∈ [T0, T1)T,

3p1η1H1(t)/2 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V1x)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(V1x)(T1), t ∈ [T0, T1)T,

3H1(t)/2

+
∫ ∞

t
∫ u3

T1

∫ u2
T1

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T.

The proof that U1 and V1 satisfy the conditions in Lemma 1.1 is similar to those of [7,
Theorem 2.5], [8, Theorem 2], [15, Theorem 3.1], and [22, Theorem 8], so it is omitted
here. Therefore, there exists x1 ∈ �1 such that (U1 + V1)x1 = x1, and then, for t ∈ [T1,∞)T,
we obtain

x1(t) =
3(1 + p1η1)

2
H1(t) – p(t)x1

(
g(t)

)

+
∫ ∞

t

∫ u3

T1

∫ u2

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3. (7)

Since
∫ ∞

t

∫ u3

T1

∫ u2

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3

< H1(t)
∫ ∞

T1

∫ u2

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2

≤ H1(t)
∫ ∞

T1

∫ u2

T1

∫ u1

T1

f (u0, 2H1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2

for t ∈ [T1,∞)T and

lim
t→∞ H1(t)

∫ ∞

T1

∫ u2

T1

∫ u1

T1

f (u0, 2H1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2 = 0
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in view of (5), by Lemma 1.2, we derive

lim
t→∞ x1(t) = lim

t→∞ R0
(
t, x1(t)

)
= 0. (8)

Moreover, for t ∈ [T1,∞)T, it follows that

R0
(
t, x1(t)

)
=

3(1 + p1η1)
2

H1(t)

+
∫ ∞

t

∫ u3

T1

∫ u2

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3 > 0,

R1
(
t, x1(t)

)
= –

3(1 + p1η1)
2

–
∫ t

T1

∫ u2

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2 < 0,

R2
(
t, x1(t)

)
= –

∫ t

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)

�u0�u1 < 0,

and

R3
(
t, x1(t)

)
= –

∫ t

T1

f
(
u0, x

(
h(u0)

))
�u0 < 0.

On the other hand, we define another operator V 1 : �1 → BC[T0,∞)T as follows:

(V 1x)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(V 1x)(T1), t ∈ [T0, T1)T,

3H1(t)/2

+
∫ ∞

t
∫ ∞

u3

∫ u2
T1

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T.

Similarly, there exists x2 ∈ �1 such that (U1 + V 1)x2 = x2, and then, for t ∈ [T1,∞)T, we
obtain

x2(t) =
3(1 + p1η1)

2
H1(t) – p(t)x2

(
g(t)

)

+
∫ ∞

t

∫ ∞

u3

∫ u2

T1

∫ u1

T1

f (u0, x2(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3.

It follows that

lim
t→∞ x2(t) = lim

t→∞ R0
(
t, x2(t)

)
= 0. (9)

For t ∈ [T1,∞)T, we obtain

R0
(
t, x2(t)

)
> 0, R1

(
t, x2(t)

)
< 0, R2

(
t, x2(t)

)
> 0, R3

(
t, x2(t)

)
> 0.

The proof is complete. �
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Theorem 2.2 Assume that the function f (t, x) is nondecreasing with respect to x, H1(t0) <
∞, and

∫ ∞

t0

∫ ∞

u2

∫ u1

t0

f (u0, 2H1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2 < ∞, (10)

then there exists T1 ∈ [t0,∞)T such that (1) has two eventually positive solutions x1 and
x2 tending to zero, which satisfy that R0(t, xi(t)) > 0, R1(t, xi(t)) < 0, i = 1, 2, R2(t, x1(t)) < 0,
R3(t, x1(t)) > 0, R2(t, x2(t)) > 0, and R3(t, x2(t)) < 0 for t ∈ [T1,∞)T.

Proof Take p1 satisfying p0 < p1 < (1 + 4p0)/5 < 1, then there exists T0 ∈ [t0,∞)T such that
(6) holds and

∫ ∞

T0

∫ ∞

u2

∫ u1

T0

f (u0, 2H1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2 ≤ 1 – p1η1

4
.

Define the same T1, BC[T0,∞)T, �1, and U1 as in Theorem 2.1, and an operator V ′
1 : �1 →

BC[T0,∞)T as follows:

(
V ′

1x
)
(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(V ′
1x)(T1), t ∈ [T0, T1)T,

3H1(t)/2

+
∫ ∞

t
∫ u3

T1

∫ ∞
u2

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T.

Then there exists x1 ∈ �1 such that (U1 + V ′
1)x1 = x1. For t ∈ [T1,∞)T, we obtain

x1(t) =
3(1 + p1η1)

2
H1(t) – p(t)x1

(
g(t)

)

+
∫ ∞

t

∫ u3

T1

∫ ∞

u2

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3,

which means that (8) and

R0
(
t, x1(t)

)
> 0, R1

(
t, x1(t)

)
< 0, R2

(
t, x1(t)

)
< 0, R3

(
t, x1(t)

)
> 0

for t ∈ [T1,∞)T.
Define another operator V ′

1 : �1 → BC[T0,∞)T as follows:

(
V ′

1x
)
(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(V ′
1x)(T1), t ∈ [T0, T1)T,

3H1(t)/2

+
∫ ∞

t
∫ ∞

u3

∫ ∞
u2

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T.

Then there exists x2 ∈ �1 such that (U1 + V ′
1)x2 = x2, and then, for t ∈ [T1,∞)T, we obtain

x2(t) =
3(1 + p1η1)

2
H1(t) – p(t)x2

(
g(t)

)

+
∫ ∞

t

∫ ∞

u3

∫ ∞

u2

∫ u1

T1

f (u0, x2(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3.
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It follows that (9) holds and

R0
(
t, x2(t)

)
> 0, R1

(
t, x2(t)

)
< 0, R2

(
t, x2(t)

)
> 0, R3

(
t, x2(t)

)
> 0

for t ∈ [T1,∞)T. This completes the proof. �

Theorem 2.3 Assume that the function f (t, x) is nondecreasing with respect to x, H2(t0) <
∞, and

∫ ∞

t0

∫ u1

t0

f (u0, 2H2(h(u0)))
r1(u1)

�u0�u1 < ∞, (11)

then there exists T1 ∈ [t0,∞)T such that (1) has two eventually positive solutions x1 and
x2 tending to zero, which satisfy that R0(t, xi(t)) > 0, R1(t, xi(t)) < 0, R2(t, xi(t)) > 0, i = 1, 2,
R3(t, x1(t)) > 0, and R3(t, x2(t)) < 0 for t ∈ [T1,∞)T.

Proof Take p1 as in Theorem 2.1. Then there exists T0 ∈ [t0,∞)T such that

5p1 – 1
4

≤ p(t) ≤ p1 < 1, p(t)
H2(g(t))

H2(t)
≥ (5p1 – 1)η2

4
, t ∈ [T0,∞)T,

and
∫ ∞

T0

∫ u1

T0

f (u0, 2H2(h(u0)))
r1(u1)

�u0�u1 ≤ 1 – p1η2

4
.

Choose the same T1, BC[T0,∞)T as in Theorem 2.1, �2 = {x ∈ BC[T0,∞)T : H2(t) ≤ x(t) ≤
2H2(t)}, and two operators U2, V2 : �2 → BC[T0,∞)T as follows:

(U2x)(t) =

⎧
⎨

⎩
(U2x)(T1), t ∈ [T0, T1)T,

3p1η2H2(t)/2 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V2x)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(V2x)(T1), t ∈ [T0, T1)T,

3H2(t)/2

+
∫ ∞

t
∫ ∞

u3

∫ u2
T1

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T.

Similarly, U2 and V2 satisfy the conditions in Lemma 1.1. Then there exists x1 ∈ �2 such
that (U2 + V2)x1 = x1. For t ∈ [T1,∞)T, it follows that

x1(t) =
3(1 + p1η2)

2
H2(t) – p(t)x1

(
g(t)

)

+
∫ ∞

t

∫ ∞

u3

∫ u2

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3.

Since
∫ ∞

t

∫ ∞

u3

∫ u2

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3

< H2(t)
∫ ∞

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)

�u0�u1
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≤ H2(t)
∫ ∞

T1

∫ u1

T1

f (u0, 2H2(h(u0)))
r1(u1)r2(u2)

�u0�u1

for t ∈ [T1,∞)T and

lim
t→∞ H2(t)

∫ ∞

T1

∫ u1

T1

f (u0, 2H2(h(u0)))
r1(u1)r2(u2)

�u0�u1 = 0

by virtue of (11), by Lemma 1.2, we obtain (8) and

R0
(
t, x1(t)

)
> 0, R1

(
t, x1(t)

)
< 0, R2

(
t, x1(t)

)
> 0, R3

(
t, x1(t)

)
> 0

for t ∈ [T1,∞)T.
On the other hand, define V 2 : �2 → BC[T0,∞)T as follows:

(V 2x)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(V 2x)(T1), t ∈ [T0, T1)T,

3H2(t)/2

+
∫ ∞

t
∫ ∞

u3

∫ ∞
u2

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T.

Similarly, there exists x2 ∈ �2 such that (U2 + V 2)x2 = x2, and then, for t ∈ [T1,∞)T, we
obtain

x2(t) =
3(1 + p1η2)

2
H2(t) – p(t)x2

(
g(t)

)

+
∫ ∞

t

∫ ∞

u3

∫ ∞

u2

∫ u1

T1

f (u0, x2(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3,

which implies that (9) holds. For t ∈ [T1,∞)T, we derive

R0
(
t, x2(t)

)
> 0, R1

(
t, x2(t)

)
< 0, R2

(
t, x2(t)

)
> 0, R3

(
t, x2(t)

)
< 0.

The proof is complete. �

Theorem 2.4 Assume that the function f (t, x) is nondecreasing with respect to x, H3(t0) <
∞, and

∫ ∞

t0

f
(
u0, 2H3

(
h(u0)

))
�u0 < ∞, (12)

then there exists T1 ∈ [t0,∞)T such that (1) has an eventually positive solution x tending to
zero, which satisfies that R0(t, x(t)) > 0, R1(t, x(t)) < 0, R2(t, x(t)) > 0, and R3(t, x(t)) < 0 for
t ∈ [T1,∞)T.

Proof Take p1 as in Theorem 2.1. Then there exists T0 ∈ [t0,∞)T such that

5p1 – 1
4

≤ p(t) ≤ p1 < 1, p(t)
H3(g(t))

H3(t)
≥ (5p1 – 1)η3

4
, t ∈ [T0,∞)T,

and
∫ ∞

T0

f
(
u0, 2H3

(
h(u0)

))
�u0 ≤ 1 – p1η3

4
.
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Choose the same T1, BC[T0,∞)T as in Theorem 2.1, �3 = {x ∈ BC[T0,∞)T : H3(t) ≤ x(t) ≤
2H3(t)}, and two operators U3, V3 : �3 → BC[T0,∞)T as follows:

(U3x)(t) =

⎧
⎨

⎩
(U3x)(T1), t ∈ [T0, T1)T,

3p1η3H3(t)/2 – p(t)x(g(t)), t ∈ [T1,∞)T,

(V3x)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

(V3x)(T1), t ∈ [T0, T1)T,

3H3(t)/2

+
∫ ∞

t
∫ ∞

u3

∫ ∞
u2

∫ u1
T1

f (u0,x(h(u0)))
r1(u1)r2(u2)r3(u3)�u0�u1�u2�u3, t ∈ [T1,∞)T.

Similarly, U3 and V3 satisfy the conditions in Lemma 1.1. Then there exists x ∈ �3 such
that (U3 + V3)x = x. For t ∈ [T1,∞)T, we obtain

x(t) =
3(1 + p1η3)

2
H3(t) – p(t)x

(
g(t)

)

+
∫ ∞

t

∫ ∞

u3

∫ ∞

u2

∫ u1

T1

f (u0, x(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3.

Since
∫ ∞

t

∫ ∞

u3

∫ ∞

u2

∫ u1

T1

f (u0, x(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3

< H3(t)
∫ ∞

T1

f
(
u0, x

(
h(u0)

))
�u0 ≤ H3(t)

∫ ∞

T1

f
(
u0, 2H3

(
h(u0)

))
�u0

for t ∈ [T1,∞)T and

lim
t→∞ H3(t)

∫ ∞

T1

f
(
u0, 2H3

(
h(u0)

))
�u0 = 0

by virtue of (12), similarly, we can conclude (8) and

R0
(
t, x(t)

)
> 0, R1

(
t, x(t)

)
< 0, R2

(
t, x(t)

)
> 0, R3

(
t, x(t)

)
< 0

for t ∈ [T1,∞)T. This completes the proof. �

Secondly, we obtain Theorems 2.5–2.8 based on the assumption that the function f (t, x)
satisfies the Lipschitz condition on an interval.

Theorem 2.5 Assume that H1(t0) < ∞. If there exist a constant L > 0 and two functions
q ∈ Crd([t0,∞)T, (0,∞)) and f0 ∈ C([0, 2H1(t0)],R) such that

xf (t, x) ≤ xq(t)f0(x), t ∈ [t0,∞)T, (13)
∣
∣f (t, x1) – f (t, x2)

∣
∣ ≤ L · q(t)|x1 – x2|, x1, x2 ∈ [

0, 2H1(t0)
]
, (14)

and
∫ ∞

t0

∫ u2

t0

∫ u1

t0

q(u0)
r1(u1)r2(u2)

�u0�u1�u2 < ∞, (15)
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then there exists T1 ∈ [t0,∞)T such that (1) has two eventually positive solutions x1 and
x2 tending to zero, which satisfy that R0(t, xi(t)) > 0, R1(t, xi(t)) < 0, i = 1, 2, R2(t, x1(t)) < 0,
R3(t, x1(t)) < 0, R2(t, x2(t)) > 0, and R3(t, x2(t)) > 0 for t ∈ [T1,∞)T.

Proof Take p1 satisfying p0 < p1 < (1 + 4p0)/5 < 1. There also exists T0 ∈ [t0,∞)T such that
(6) holds and

∫ ∞

T0

∫ u2

T0

∫ u1

T0

q(u0)
r1(u1)r2(u2)

�u0�u1�u2 ≤ min

{
1 – p1η1

4K
, 1

}
,

where K = max{|f0(x)| : x ∈ [0, 2H1(t0)]} > 0. Then define the same T1, BC[T0,∞)T, �1, U1,
and V1 as in Theorem 2.1. Proceeding as in the proof of Theorem 2.1, there exists x1 ∈ �1

such that (U1 + V1)x1 = x1, and we arrive at (7). Since

∫ ∞

t

∫ u3

T1

∫ u2

T1

∫ u1

T1

f (u0, x1(h(u0)))
r1(u1)r2(u2)r3(u3)

�u0�u1�u2�u3

< H1(t)
∫ ∞

T1

∫ u2

T1

∫ u1

T1

q(u0)f0(x1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2

≤ K · H1(t)
∫ ∞

T1

∫ u2

T1

∫ u1

T1

q(u0)
r1(u1)r2(u2)

�u0�u1�u2

for t ∈ [T1,∞)T and

lim
t→∞ K · H1(t)

∫ ∞

T1

∫ u2

T1

∫ u1

T1

q(u0)
r1(u1)r2(u2)

�u0�u1�u2 = 0

in view of (15), by Lemma 1.2, we obtain (8) and

R0
(
t, x1(t)

)
> 0, R1

(
t, x1(t)

)
< 0, R2

(
t, x1(t)

)
< 0, R3

(
t, x1(t)

)
< 0

for t ∈ [T1,∞)T. Similarly, we deduce the remaining conclusions as in Theorem 2.1. This
completes the proof. �

In views of Theorems 2.2–2.5, we can also obtain Theorems 2.6–2.8 respectively when
f (t, x) satisfies the Lipschitz condition on an interval. The proofs are similar to those of
Theorems 2.2–2.4 and thus are omitted.

Theorem 2.6 Assume that H1(t0) < ∞. If there exist a constant L > 0 and two functions
q ∈ Crd([t0,∞)T, (0,∞)) and f0 ∈ C([0, 2H1(t0)],R) satisfying (13), (14), and

∫ ∞

t0

∫ ∞

u2

∫ u1

t0

q(u0)
r1(u1)r2(u2)

�u0�u1�u2 < ∞,

then there exists T1 ∈ [t0,∞)T such that (1) has two eventually positive solutions x1 and
x2 tending to zero, which satisfy that R0(t, xi(t)) > 0, R1(t, xi(t)) < 0, i = 1, 2, R2(t, x1(t)) < 0,
R3(t, x1(t)) > 0, R2(t, x2(t)) > 0, and R3(t, x2(t)) < 0 for t ∈ [T1,∞)T.
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Theorem 2.7 Assume that H2(t0) < ∞. If there exist a constant L > 0 and two functions
q ∈ Crd([t0,∞)T, (0,∞)) and f0 ∈ C([0, 2H2(t0)],R) satisfying (13),

∣∣f (t, x1) – f (t, x2)
∣∣ ≤ L · q(t)|x1 – x2|, x1, x2 ∈ [

0, 2H2(t0)
]
,

and
∫ ∞

t0

∫ u1

t0

q(u0)
r1(u1)

�u0�u1 < ∞,

then there exists T1 ∈ [t0,∞)T such that (1) has two eventually positive solutions x1 and
x2 tending to zero, which satisfy that R0(t, xi(t)) > 0, R1(t, xi(t)) < 0, R2(t, xi(t)) > 0, i = 1, 2,
R3(t, x1(t)) > 0, and R3(t, x2(t)) < 0 for t ∈ [T1,∞)T.

Theorem 2.8 Assume that H3(t0) < ∞. If there exist a constant L > 0 and two functions
q ∈ Crd([t0,∞)T, (0,∞)) and f0 ∈ C([0, 2H3(t0)],R) satisfying (13),

∣
∣f (t, x1) – f (t, x2)

∣
∣ ≤ L · q(t)|x1 – x2|, x1, x2 ∈ [

0, 2H3(t0)
]
,

and
∫ ∞

t0

q(u0)�u0 < ∞,

then there exists T1 ∈ [t0,∞)T such that (1) has an eventually positive solution x tending to
zero, which satisfies that R0(t, x(t)) > 0, R1(t, x(t)) < 0, R2(t, x(t)) > 0, and R3(t, x(t)) < 0 for
t ∈ [T1,∞)T.

In addition, we also have the following conclusion.

Theorem 2.9 Assume that one of the following conditions

∫ ∞

t0

�u3

r3(u3)
= ∞, (16)

∫ ∞

t0

∫ ∞

u3

�u2�u3

r2(u2)r3(u3)
= ∞, (17)

and
∫ ∞

t0

∫ ∞

u3

∫ ∞

u2

�u1�u2�u3

r1(u1)r2(u2)r3(u3)
= ∞ (18)

holds, then (1) has no eventually positive solution x, for which R1, R2, and R3 are all even-
tually negative.

Proof Suppose that x is an eventually positive solution of (1) and there exists T0 ∈ [t0,∞)T
such that, for t ∈ [T0,∞)T, we have

x(t) > 0, R1
(
t, x(t)

)
< 0, R2

(
t, x(t)

)
< 0, R3

(
t, x(t)

)
< 0.
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There also exists T1 ∈ (T0,∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1,∞)T. Sub-
stituting u0 for t in (1) and integrating (1) with respect to u0 from T1 to u1, where
u1 ∈ [σ (T1),∞)T, we have

R3
(
u1, x(u1)

)
– R3

(
T1, x(T1)

)
= –

∫ u1

T1

f
(
u0, x

(
h(u0)

))
�u0 < 0,

which implies that

R�
2
(
u1, x(u1)

)
<

R3(T1, x(T1))
r1(u1)

. (19)

Integrating (19) with respect to u1 from T1 to u2, where u2 ∈ [σ (T1),∞)T, we have

R2
(
u2, x(u2)

)
< R2

(
T1, x(T1)

)
+ R3

(
T1, x(T1)

)∫ u2

T1

�u1

r1(u1)
.

By analogy, we obtain

R0
(
t, x(t)

)
< R0

(
T1, x(T1)

)
+ R1

(
T1, x(T1)

)∫ t

T1

�u3

r3(u3)

+ R2
(
T1, x(T1)

)∫ t

T1

∫ u3

T1

�u2�u3

r2(u2)r3(u3)

+ R3
(
T1, x(T1)

)∫ t

T1

∫ u3

T1

∫ u2

T1

�u1�u2�u3

r1(u1)r2(u2)r3(u3)
.

If one of (16)–(18) holds, then we derive R0(t, x(t)) → –∞ as t → ∞. However, we have
R0(t, x(t)) = x(t) + p(t)x(g(t)) > 0 for t ∈ [T1,∞)T. It causes a contradiction. This completes
the proof. �

3 Examples
In this section, two interesting examples are provided to illustrate the conclusions.

Example 3.1 Let T =
⋃∞

n=1[2n – 1, 2n]. For t ∈ [3,∞)T, consider

(
tα

(
tβ

(
t2

(
x(t) + p(t)x

(
t –

cosπ t
π

))�)�)�)�

+ t · x(t – 2) = 0, (20)

where p satisfies (C2). Here, we have r1(t) = tα , r2(t) = tβ , r3(t) = t2, g(t) = t – cos(π t)/π ,
h(t) = t – 2, f (t, x) = t · x, and t0 = 3. Moreover, we obtain

∫ ∞

t0

�u3

r3(u3)
=

∫ ∞

3

�u3

u2
3

< ∞, H1(t) =
∫ ∞

t

�u3

u2
3

<
1
2

, t ∈ [3,∞)T,

and η1 = limt→∞ H1(g(t))/H1(t) = 1. Hence, it fulfills conditions (C1)–(C5). Since f (t, x) is
nondecreasing with respect to x, when α > 3 and β > 1, or α ≤ 3 and β > 4 – α, we have

∫ ∞

t0

∫ u2

t0

∫ u1

t0

f (u0, 2H1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2
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≤
∫ ∞

3

∫ u2

3

∫ u1

3

u0

uα
1 uβ

2
�u0�u1�u2 <

1
2

∫ ∞

3

∫ u2

3

�u1�u2

uα–2
1 uβ

2
< ∞,

which means that (20) has two eventually positive solutions x1 and x2 tending to zero
in terms of Theorem 2.1. Moreover, there exists T1 ∈ [t0,∞)T such that R0(t, xi(t)) > 0,
R1(t, xi(t)) < 0, i = 1, 2, R2(t, x1(t)) < 0, R3(t, x1(t)) < 0, R2(t, x2(t)) > 0, and R3(t, x2(t)) > 0 for
t ∈ [T1,∞)T.

When α > 3 and β > 4 – α, it follows that

∫ ∞

t0

∫ ∞

u2

∫ u1

t0

f (u0, 2H1(h(u0)))
r1(u1)r2(u2)

�u0�u1�u2 <
1
2

∫ ∞

3

∫ ∞

u2

�u1�u2

uα–2
1 uβ

2
< ∞.

Hence, we deduce that (20) has two eventually positive solutions satisfying the conclusions
of Theorem 2.2.

When α > 3 and β > 1, we obtain H2(3) < ∞. Then there exists a constant M > 0 such
that

H2(t) =
∫ ∞

t

∫ ∞

u3

�u2�u3

uβ
2 u2

3
≤ M,

from which it follows that
∫ ∞

t0

∫ u1

t0

f (u0, 2H2(h(u0)))
r1(u1)

�u0�u1

≤ 2M
∫ ∞

3

∫ u1

3

u0

uα
1
�u0�u1 < 4M

∫ ∞

3

�u1

uα–2
1

< ∞.

Note that η2 = 1. Therefore, (20) has two eventually positive solutions fulfilling the results
of Theorem 2.3.

When α > 1 and β > 3 – α, we obtain H3(3) < ∞,

H3(t) =
∫ ∞

t

∫ ∞

u3

∫ ∞

u2

�u1�u2�u3

uα
1 uβ

2 u2
3

= O
(
t1–α–β

)
, η3 = 1,

and

∫ ∞

t0

f
(
u0, 2H3

(
h(u0)

))
�u0 =

∫ ∞

3
O

(
1

uα+β–2
0

)
�u0 < ∞,

where the conclusions of Theorem 2.4 are satisfied.
On the other hand, consider conditions (16)–(18). Obviously, (16) does not hold here.

Then (17) is satisfied when α ∈ R and β ≤ 1, and (18) holds when α ≤ 1 and β ∈ R, or
α > 1 and β ≤ 2 – α. By virtue of Theorem 2.9, if these conditions of α and β are satisfied,
then we can conclude that (20) has no eventually positive solution x, for which R1, R2, and
R3 are all eventually negative.

Example 3.2 Let T = [1,∞)R. For t ∈ T, consider

(
tα

(
tβ

(
t3(x(t) + p(t)x(t + 1)

)′)′)′)′ +
x3(t)

t
= 0, (21)
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where p satisfies (C2). Here, we have r1(t) = tα , r2(t) = tβ , r3(t) = t3, g(t) = t + 1, h(t) = t,
f (t, x) = x3/t, and t0 = 1. Then, we take q(t) = 1/t and f0(x) = x3.

Firstly, for α ≥ 1 and β > 1, we have

H1(t0) =
∫ ∞

t0

du3

r3(u3)
=

∫ ∞

1

du3

u3
3

=
1
2

, η1 = 1,

∣∣f (t, x1) – f (t, x2)
∣∣ =

1
t

· |x1 – x2| ·
∣∣x2

1 + x1x2 + x2
2
∣∣

≤ 3 · 1
t

· |x1 – x2|, x1, x2 ∈ [0, 1],

and
∫ ∞

t0

∫ u2

t0

∫ u1

t0

q(u0)
r1(u1)r2(u2)

du0 du1 du2 =
∫ ∞

1

∫ u2

1

∫ u1

1

du0 du1 du2

u0uα
1 uβ

2
< ∞,

from which we get the conclusion of Theorem 2.5. On the other hand, for α > 1 and β ≥ 1,
we derive

∫ ∞

t0

∫ ∞

u2

∫ u1

t0

q(u0)
r1(u1)r2(u2)

du0 du1 du2 =
∫ ∞

1

∫ ∞

u2

∫ u1

1

du0 du1 du2

u0uα
1 uβ

2
< ∞.

Hence, the result of Theorem 2.6 is obtained.
Secondly, for α > 1 and β > 1, there exists a constant M > 0 such that

H2(t0) =
∫ ∞

t0

∫ ∞

u3

du2 du3

r2(u2)r3(u3)
=

∫ ∞

1

∫ ∞

u3

du2 du3

uβ
2 u3

3
≤ M, η2 = 1.

Moreover, it follows that

∣
∣f (t, x1) – f (t, x2)

∣
∣ ≤ 12M2 · 1

t
· |x1 – x2|, x1, x2 ∈ [0, 2M]

and
∫ ∞

t0

∫ u1

t0

q(u0)
r1(u1)

du0 du1 =
∫ ∞

1

∫ u1

1

du0 du1

u0uα
1

< ∞.

Then we obtain the conclusion of Theorem 2.7.
Finally, we find that

∫ ∞

t0

q(u0) du0 =
∫ ∞

1

du0

u0
= ∞,

so the result of Theorem 2.8 seems not to be deduced. However, for α > 1 and β > 1, in
view of Theorem 2.4, we have H3(1) < ∞,

H3(t) =
∫ ∞

t

∫ ∞

u3

∫ ∞

u2

du1 du2 du3

uα
1 uβ

2 u3
3

= O
(
t–α–β

)
, η3 = 1,
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and
∫ ∞

t0

f
(
u0, 2H3

(
h(u0)

))
du0 =

∫ ∞

3

du0

O(u3α+3β+1
0 )

< ∞.

Therefore, we still derive the result of Theorem 2.4 (or Theorem 2.8).

4 Conclusion
In this paper, we successfully obtain some new results for the existence of nonoscillatory
solutions tending to zero of a class of fourth-order nonlinear neutral dynamic equations
on time scales. Moreover, compared with the existing references, the assumptions of func-
tions f and g are more relaxed. According to this technique, we can continue to study the
existence of nonoscillatory solutions tending to zero of similar forms of higher-order non-
linear neutral dynamic equations on time scales.
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