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Abstract
The aim of this article is to discuss the uniqueness and Ulam–Hyers stability of
solutions for a nonlinear fractional integro-differential equation involving a
generalized Caputo fractional operator. The used fractional operator is generated by
iterating a local integral of the form (Iρa f )(t) =

∫ t
a f (s)s

ρ–1 ds. Our reported results are
obtained in the Banach space of absolutely continuous functions that rely on
Babenko’s technique and Banach’s fixed point theorem. Besides, our main findings are
illustrated by some examples.
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1 Introduction
Fractional calculus has gotten much consideration from analysts and engineers, as well as
it provided important tools for various areas of applied mathematics, physics, and engi-
neering. Fractional differential equations (FDEs) are used to study plentiful phenomena
such as fluid mechanics, plasma physics, optical fibers, biology, flow in nonlinear elec-
tric circuits, nonlinear oscillations of the earthquake, mechanics, aerodynamics, regular
variations in thermodynamics, etc. Actually, the transform from theoretical to the applica-
tion aspect of fractional calculus was strongly apparent in the works of Bagley and Torvik
in [1–3]. In this regard, the researchers studied many models and used fractional-order
derivatives to describe the solution of them. For instance, studying the qualitative proper-
ties of solutions of various kinds of FDEs.

Various problems may be modeled by fractional integro-differential equations (FIDEs)
such as those representing applications in science and engineering. Up to a recent time,
numerous analysts and researchers have discussed the FDEs and FIDEs and got many
interesting outcomes utilizing a wide range of fixed point techniques, for instance, Zhang
et al. [4], Ahmad et al. [5], Benchohra et al. [6, 7], Ravichandran et al. [8], Trujillo et al. [9],
and the following recent papers series [10–18].

Some similar techniques have been applied to get interesting results about some dif-
ferent types of FDEs, see [19–23]. The existence and stability of solutions were studied
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for many of FDEs with some generalized fractional operators in [24–32]. Also here we
refer to some recent works that have dealt with Hadamard fractional derivative [33–39].
For instance, Li [38] investigated the uniqueness of solutions of integral equations with
Hadamard-type, that is,

anIαn
a � (κ) + · · · + a1Iα1

a � (κ) + � (κ) = G

(
κ,� (κ)

)
.

It is realized that the standard definitions for fractional derivatives (Caputo, Riemann–
Liouville, etc.), which are introduced in the classical monographs, do not fulfill the index
law. A few analysts proposed that a differential operator cannot be known as a derivative
or fractional derivative if it does not fulfill the index law, see [40]. However, there are some
special cases that have been studied on smooth function spaces that make these operators
subject to some laws. In this regard, the considered fractional (so-called Katugampola [41,
42]) operator generalizes both the Riemann–Liouville and Hadamard fractional operators
in one form, and it is also most regarding the Erdélyi–Kober fractional operator, especially,
when ρ = 1, we get a Caputo fractional derivative, and doing ρ ↓ 0, we get a Caputo–
Hadamard fractional derivative. Consequently, the current results are a generalization of
the works of Li [38, 39] and inspired by [43, 44]. Motivated by the aforesaid discussion, in
this research paper, we concentrate on the uniqueness and Ulam–Hyers stability results
for the nonlinear FIDEs of the form

⎧
⎪⎪⎨

⎪⎪⎩

CDρ,αn
a � (κ) + an–1

CDρ,αn–1
a � (κ) + · · · + a0

CDρ,α0
a � (κ)

=
∫
κ

a F(τ ,� ′(τ )) dτ ,

� (a) = 0,

(1.1)

where 0 < αi < 1, i = 0, 1, . . . , n, n ∈ N, CDρ,σ
a is the generalized Caputo fractional deriva-

tive of order σ (> 0) ∈ {αi; i = 0, 1, . . . , n} generated by local integrals of the form (Iρ
a f )(t) =

∫ t
a f (s)sρ–1 ds, and F : [a, b] ×R →R is a continuous function.
There is an absence of various analytical strategies to obtain the qualitative properties

of solutions to such problems under generalized fractional operators. To fill this vacuum,
we are keen to obtain the existence of a unique solution and the Ulam–Hyers stability of a
solution to (1.1). Compared with preceding investigations of such problems, (1.1) is more
general because it has a generalized fractional operators. Moreover, the current results are
obtained in the Banach space of absolutely continuous functions along with Banach’s fixed
point technique and Babenko’s method [45].

The article is organized as follows: In Sect. 2 we present some necessary tools about the
essential properties of generalized fractional operators and the abstract function spaces,
in which we aim to employ our analysis techniques. Sections 3 and 4 are devoted to our
main analysis results and their illustrated examples. Finally, Sect. 5 contains our short
conclusion.

2 Preliminaries
In this section, we briefly recall some definitions, lemmas, properties, notations, and well-
known estimations that we will use later.

Let –∞ < a < b < ∞. Let AC[a, b] denote the space of absolutely continuous functions
on [a, b] [46]. We denote by Lp(a, b), p ≥ 1, the spaces of Lebesgue integrable functions on
(a, b) [46].
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Definition 2.1 ([46, (1,9,27), (1,9,28)]) The so-called multivariate Mittag-Leffler func-
tion E(a1,...,an),b(z1, . . . , zn) of n complex variables z1, . . . , zn ∈ C with complex parameters
a1, . . . , an, b ∈C is defined by

E(a1,...,an),b(z1, . . . , zn) =
∞∑

κ=0

∑

κ1+···+κn=κ

(
κ

κ1,κ2, . . . ,κk

) ∏n
j=1 zκj

j

�(b +
∑n

j=1 ajκj)
, (2.1)

in terms of multinomial coefficients
(

κ

κ1,κ2, . . . ,κk

)

=
κ !

κ1!κ2! . . .κk !
, κ ,κ1, . . . ,κk ∈N0.

Theorem 2.2 ([47] (Multinomial theorem)) For a positive integer n and a nonnegative
integer k,

(z1 + z2 + · · · + zk)n =
∑

κ1+κ2+···+κk =n

(
n

κ1,κ2, . . . ,κk

) k∏

j=1

zκj
j .

Definition 2.3 ([48, (6,3,1)](Babenko’s method)) Given the FDE

(
1 + λIα

0
)
ϑ(κ) = f (κ), (2.2)

where α > 0, λ is a constant, and Iα
0 ϑ(κ) = 1

�(α)
∫
κ

0 (κ – τ )α–1ϑ(τ ) dτ . The solution of (2.2)
is

ϑ(κ) =
(
1 + λIα

)–1f (κ), (2.3)

where (1 + λIα)–1 denotes the left inverse operator to the operation (1 + λD–α). Using the
binomial expansion of (1 + λIα)–1, solution (2.3) can be expressed by

ϑ(κ) =
∞∑

n=0

(–1)nλnIαnf (κ). (2.4)

Definition 2.4 ([49] (Dirichlet formula)) Let f be a continuous function on [a, b] and
α,β > 0. Then

∫
κ

a
(κ – τ )α–1 dτ

∫ τ

a
(τ – s)β–1f (τ , s) ds

=
∫

κ

a
ds

∫
κ

s
(κ – τ )α–1(τ – s)β–1f (τ , s) dτ . (2.5)

Define the Banach space (see [46, (1,9,27), (1,9,28)])

AC0[a, b] =
{

� : � (τ ) ∈ AC[a, b] with � (a) = 0 and ‖�‖0 =
∫ b

a

∣
∣� ′(τ )

∣
∣dτ < ∞

}

.

Next, we introduce some definitions, notation, and properties of the generalized frac-
tional integral and derivative.
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Definition 2.5 ([41]) The generalized fractional integral and derivative are defined, re-
spectively, by

ρIα
a ϑ(κ) =

ρ1–α

�(α)

∫
κ

a

(
κ

ρ – τρ
)α–1

τρ–1ϑ(τ ) dτ , α > 0,ρ > 0,

and

CDρ,α
a ϑ(κ) =

(
ρIn–α

a δn
ρϑ

)
(κ)

=
ρ1–n+α

�(n – α)

∫
κ

a

(
κ

ρ – τρ
)n–α–1

τρ–1δn
ρϑ(τ ) dτ , α > 0,ρ > 0,

where

n = –[–α], δn
ρ =

(

κ
1–ρ d

dκ

)n

.

Definition 2.6 ([50]) The incomplete gamma function is defined by

γ (α, τ ) =
∫ τ

0
sα–1e–s ds = τα�(α)e–τ

∞∑

i=0

τ i

�(α + i + 1)
, α > 0, τ ≥ 0.

Property 2.7 ([44]) If α ≥ 0, ρ > 0, and β > 0, then

ρIα
a

(
κ

ρ – aρ

ρ

)β

=
�(β + 1)

�(β + α + 1)

(
κ

ρ – aρ

ρ

)β+α

, κ > a,

CDρ,α
a

(
κ

ρ – aρ

ρ

)β

=
�(β + 1)

�(β – α + 1)

(
κ

ρ – aρ

ρ

)β–α

, κ > a.

The generalized fractional operators in Definition 2.5 fulfill the following properties.

Property 2.8 ([51]) Let α, ρ , and β > 0. If ϑ ∈ AC0[a, b], then

CDρ,α
a

ρIα
a ϑ(τ ) = ϑ(τ ), τ > a,

ρIα
a

ρIβ
a ϑ(τ ) = ρIα+β

a ϑ(τ ), τ > a,
CDρ,β

a
ρIα

a ϑ(τ ) = ρIα–β
a ϑ(τ ), α > β , τ > a,

and

ρIα
a ϑ(a) = 0.

Lemma 2.9 Let α,β ∈ [0, 1] and ρ > 0. If ϑ ∈ AC0[a, b], then

ρIα
a

CDρ,α
a ϑ(τ ) = ϑ(τ ), τ > a,

ρIα
a

CDρ,β
a ϑ(τ ) = ρIα–β

a ϑ(τ ), α > β , τ > a.
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Proof Let ϑ ∈ AC0[a, b]. From Definition 2.5 and Property 2.8, we have

ρIα
a

CDρ,α
a ϑ(τ ) = ρIα

a
ρI1–α

a δ1
ρϑ(τ ) =ρ I1

aδ1
ρϑ(τ ) = ϑ(τ ) – ϑ(a) = ϑ(τ ), τ > a,

and

ρIα
a

CDρ,β
a ϑ(τ ) = ρIα

a
ρI1–β

a δ1
ρϑ(τ ) =ρ Iα–β

a
ρI1

aδ1
ρϑ(τ )

= ρIα–β
a

(
ϑ(τ ) – ϑ(a)

)
=ρ Iα–β

a ϑ(τ ), α > β , τ > a. �

Lemma 2.10 Let α,ρ > 0. Then ρIα
a is bounded from AC0[a, b] into AC0[a, b] and

∥
∥ρIα

a ϑ
∥
∥

0 ≤ 1
�(α + 1)

(
bρ – aρ

ρ

)α

‖ϑ‖0.

Proof Let ϑ ∈ AC0[a, b]. Then

ϑ(τ ) =
∫ τ

a
ϑ ′(s) ds =

∫ τ

a
θ (s) ds, θ (τ ) = ϑ ′(τ ), and ϑ(a) = 0.

From Definition 2.5, we obtain

ρIα
a ϑ(κ) = ρIα

a

(∫ τ

a
θ (s) ds

)

(κ)

=
ρ1–α

�(α)

∫
κ

a

(
κ

ρ – τρ
)α–1

τρ–1
∫ τ

a
θ (s) ds dτ .

Using Dirichlet’s formula (2.5), we obtain

ρIα
a ϑ(κ) =

ρ1–α

�(α)

∫
κ

a
θ (s)

∫
κ

s

(
κ

ρ – τρ
)α–1

τρ–1 dτ ds

=
ρ1–α

�(α)

∫
κ

a
θ (s)

[

–
(κρ – τρ)α

αρ

]
κ

τ=s
ds

=
ρ1–α

�(α)

∫
κ

a
θ (s)

[
(κρ – sρ)α

αρ

]

ds

≤ 1
�(α + 1)

(
bρ – aρ

ρ

)α ∫
κ

a

∣
∣θ (s)

∣
∣ds

=
1

�(α + 1)

(
bρ – aρ

ρ

)α ∫
κ

a

∣
∣ϑ ′(s)

∣
∣ds

=
1

�(α + 1)

(
bρ – aρ

ρ

)α

‖ϑ‖0. �

Next, we prove the following useful lemma.

Lemma 2.11 If α ≥ 0, ρ > 0, then

ρIα
a eκ

ρ
= eaρ

(
κ

ρ – aρ

ρ

)α ∞∑

i=0

(κρ – aρ)i

�(α + i + 1)
.
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Proof By Definition 2.5, we have

ρIα
a eκ

ρ
=

1
�(α)

∫
κ

a

(
κ

ρ – τρ

ρ

)α–1

τρ–1eτρ
dτ .

Making the change of the variable

s =
κ

ρ – τρ

ρ
⇒ τρ = κ

ρ – ρs.

Therefore,

ρIα
a eκ

ρ
=

1
�(α)

∫ (κρ–aρ )/ρ

0
sα–1eκ

ρ–ρs ds =
eκρ

�(α)

∫ (κρ–aρ )/ρ

0
sα–1e–ρs ds.

Let r = ρs. Then

ρIα
a eκ

ρ
=

eκρ

ρα�(α)

∫ (κρ–aρ )

0
rα–1e–r dr.

Using Definition 2.6, we get

ρIα
a eκ

ρ
= γ

(
α,κρ – aρ

) eκρ

ρα�(α)
= eaρ

(
κ

ρ – aρ

ρ

)α ∞∑

i=0

(κρ – aρ)i

�(α + i + 1)
. �

3 Main results
Theorem 3.1 Suppose ai ∈ C (i = 0, 1, . . . , n – 1) with 0 < α0 < α1 < · · · < αn < 1. If g ∈
AC0[a, b], then the linear problem

⎧
⎨

⎩

CDρ,αn
a � (κ) + an–1

CDρ,αn–1
a � (κ) + · · · + a0

CDρ,α0
a � (κ) = g(κ),

� (a) = 0,
(3.1)

has a solution

� (κ) =
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a g(κ). (3.2)

Proof Applying ρIαn
a to both sides of (3.1), we find that

ρIαn
a

CDρ,αn
a � (κ) + an–1

ρIαn
a

CDρ,αn–1
a � (κ) + · · · + a0

ρIαn
a

CDρ,α0
a � (κ) = ρIαn

a g(κ).

Using Lemma 2.9, we obtain

� (κ) + an–1
ρIαn–αn–1

a � (κ) + · · · + a0
ρIαn–α0

a � (κ) = ρIαn
a g(κ).

By noting that � (a) = 0 and 0 < α0 < α1 < · · · < αn < 1, then

(
1 + an–1

ρIαn–αn–1
a + · · · + a0

ρIαn–α0
a

)
� (κ) = ρIαn

a g(κ).
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Thanks to Babenko’s method, we have

� (κ) =
(
1 + aρ

n–1Iαn–αn–1
a + · · · + aρ

0 Iαn–α0
a

)–1ρIαn
a g(κ).

Multinomial theorem and Property 2.8 give

� (κ) =
∞∑

j=0

(–1)j
(
an–1

ρIαn–αn–1
a + · · · + a0

ρIαn–α0
a

)j ρIαn
a g(κ)

=
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× (
an–1

ρIαn–αn–1
a

)j1 · · · (a0
ρIαn–α0

a
)jn ρIαn

a g(κ)

=
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a g(κ).

By taking the limit as κ → a, we obtain � (a) = 0. It remains to show that the series con-
verges in the space AC0[a, b] and is absolutely continuous on [a, b]. By Lemma 2.10

∥
∥ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a g
∥
∥

0 ≤ κ‖g‖0,

where

κ =
( bρ–aρ

ρ
)j1(αn–αn–1)+···+jn(αn–α0)+αn

�(j1(αn – αn–1) + · · · + jn(αn – α0) + αn + 1)
. (3.3)

Then

‖�‖0 ≤ κ

∞∑

j=0

∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)
∣
∣aj1

n–1
∣
∣ · · · ∣∣ajn

0
∣
∣

× ( bρ–aρ

ρ
)j1(αn–αn–1)+···+jn(αn–α0)+αn

�(j1(αn – αn–1) + · · · + jn(αn – α0) + αn + 1)
‖g‖0

= κ

∞∑

j=0

∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× (|an–1|( bρ–aρ

ρ
)(αn–αn–1))j1 · · · (|a0|( bρ–aρ

ρ
)(αn–α0))jn

�(j1(αn – αn–1) + · · · + jn(αn – α0) + αn + 1)
‖g‖0

= κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

‖g‖0,
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where

E(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

, . . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

< ∞

is the value at

v1 = |an–1|
(

bρ – aρ

ρ

)αn–αn–1

, . . . , vn = |a0|
(

bρ – aρ

ρ

)αn–α0

of the multivariate Mittag-Leffler function E(αn–αn–1,...,αn–α0,αn+1)(v1, . . . , vn) defined by
Eq. (2.1). Thus, the series to the right of Eq. (3.2) is convergent. Clearly, � (κ) ∈ AC[a, b]
since g ∈ AC[a, b]. To confirm that the acquired series is a solution, we substitute it into
the left-hand side of Eq. (3.1) as follows:

CDρ,αn
a

( ∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a g(κ)

)

+ an–1
CDρ,αn–1

a

( ∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a g(κ)

)

+ · · · + a0
CDρ,α0

a

( ∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a g(κ)

)

= CDρ,αn
a

(
ρIαn

a g(κ) +
∞∑

j=1

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a g(κ)

)

+

( ∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1+1
n–1 · · ·ajn

0
ρI(j1+1)(αn–αn–1)+···+jn(αn–α0)

a g(κ)

)

+ · · · +

( ∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn+1

0
ρIj1(αn–αn–1)+···+(jn+1)(αn–α0)

a g(κ)

)
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= g(κ) +
∞∑

j=1

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)

a g(κ)

+
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1+1
n–1 · · ·ajn

0
ρI(j1+1)(αn–αn–1)+···+jn(αn–α0)

a g(κ)

+ · · · +
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn+1

0
ρIj1(αn–αn–1)+···+(jn+1)(αn–α0)

a g(κ)

= g(κ)

by the deletion. Observe that all series are absolutely convergent and the term rearrange-
ments are possible for the deletion. In fact,

–
∑

j1+···+jn=1

(
j

j1, j2, . . . , jn

)

aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)

a g(κ)

+
∑

j1+···+jn=0

(
j

j1, j2, . . . , jn

)

aj1+1
n–1 · · ·ajn

0
ρI(j1+1)(αn–αn–1)+···+jn(αn–α0)

a g(κ) + · · ·

+
∑

j1+···+jn=0

(
j

j1, j2, . . . , jn

)

aj1
n–1 · · ·ajn+1

0
ρIj1(αn–αn–1)+···+(jn+1)(αn–α0)

a g(κ)

= 0.

The remnant terms cancel each other comparatively. Obviously, the uniqueness follows
directly from the fact that

CDρ,αn
a � (κ) + an–1

CDρ,αn–1
a � (κ) + · · · + a0

CDρ,α0
a � (κ) = 0

only has solution zero by Babenko’s approach. This finalizes the proof. �

Remark 3.2 A solution of Eq. (3.1) in AC0[a, b] is said to be stable if ∀ε > 0 ∃δ > 0 such that
‖�‖0 < ε if ‖g‖0 < δ. Applying the inequality

‖�‖0 ≤ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

‖g‖0, (3.4)

we obtain that � is stable.

Example 3.3 The Katugampola-type FIDE

CDρ,0.9
a � (κ) + 2CDρ,0.7

a � (κ) – CDρ,0.4
a � (κ) =

(
κ

ρ – aρ

ρ

)β
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has the solution

� (κ) =
∞∑

j=0

(–1)j
∑

j1+j2=j

(
j

j1, j2

)

(2)j1 (–1)j2

× �(β + 1)
�(β + 0.2j1 + 0.5j2 + 1.9)

×
(
κ

ρ – aρ

ρ

)β+0.2j1+0.5j2+0.9

in AC0[a, b]. Indeed, in view of Theorem 3.1, we have

� (κ) =
∞∑

j=0

(–1)j
∑

j1+j2=j

(
j

j1, j2

)

(2)j1 (–1)j2

× ρI0.2j1+0.5j2+0.9
a

(
κ

ρ – aρ

ρ

)β

.

Using Property 2.7, we obtain

� (κ) =
∞∑

j=0

(–1)j
∑

j1+j2=j

(
j

j1, j2

)

(2)j1 (–1)j2

× �(β + 1)
�(β + 0.2j1 + 0.5j2 + 1.9)

×
(
κ

ρ – aρ

ρ

)β+0.2j1+0.5j2+0.9

.

Example 3.4 The Katugampola-type FIDE

CDρ,0.8
a � (κ) + CDρ,0.7

a � (κ) – 3CDρ,0.2
a � (κ) = eκ

ρ

has the solution

� (κ) = eaρ
∞∑

j=0

(–1)j
∑

j1+j2=j

(
j

j1, j2

)

(–3)j2

×
(
κ

ρ – aρ

ρ

)0.1j1+0.6j2+0.8

×
∞∑

i=0

(κρ – aρ)i

�(0.1j1 + 0.6j2 + 0.8 + i + 1)

in AC0[a, b]. Indeed, according to Theorem 3.1, we obtain

� (κ) =
∞∑

j=0

(–1)j
∑

j1+j2=j

(
j

j1, j2

)

(1)j1 (–3)j2

× ρI0.1j1+0.6j2+0.8
a eκ

ρ
.
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Using Lemma 2.11, we get

� (κ) =
∞∑

j=0

(–1)j
∑

j1+j2=j

(
j

j1, j2

)

(–3)j2

× eaρ

(
κ

ρ – aρ

ρ

)0.1j1+0.6j2+0.8

×
∞∑

i=0

(κρ – aρ)i

�(0.1j1 + 0.6j2 + 0.8 + i + 1)
.

The next theorem proves the uniqueness result of Eq. (1.1).

Theorem 3.5 Suppose that F : [a, b] ×R →R is a continuous function, and there exists a
constant C such that

∣
∣
F(κ,�1) – F(κ,�2)

∣
∣ ≤ C|�1 – �2|, κ ∈ [a, b],�1,�2 ∈R.

In addition, if

CκE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)(αn–αn–1)

, . . . , |a0|
(

bρ – aρ

ρ

)(αn–α0))

< 1, (3.5)

then problem FIDE (1.1) has a unique solution on AC0[a, b].

Proof Define the operator L on AC0[a, b] by

L(� ) =
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

aj1
n–1 · · ·ajn

0

× ρIj1(αn–αn–1)+···+jn(αn–α0)+αn
a

∫
κ

a
F

(
τ ,� ′(τ )

)
dτ .

Let � ∈ AC0[a, b]. Then

∫
κ

a
F

(
τ ,� ′(τ )

)
dτ ∈ AC0[a, b],

as � ′(τ ) ∈ L(a, b) and F(τ ,� ′(τ )) ∈ L(a, b). Obviously,

∥
∥
∥
∥

∫
κ

a
F

(
τ ,� ′(τ )

)
dτ

∥
∥
∥
∥

0
=

∫ b

a

∣
∣
F

(
κ,� ′(κ)

)∣
∣dκ

=
∫ b

a

∣
∣
F

(
κ,� ′(κ)

)
– F(κ, 0) + F(κ, 0)

∣
∣dκ

≤
∫ b

a

∣
∣
F

(
κ,� ′(κ)

)
– F(κ, 0)

∣
∣dκ +

∫ b

a

∣
∣
F(κ, 0)

∣
∣dκ

≤ C
∫ b

a

∣
∣� ′(κ)

∣
∣dκ +

∫ b

a

∣
∣
F(κ, 0)

∣
∣dκ < ∞.
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Inequality (3.4) shows that

∥
∥L(� )

∥
∥

0 < ∞ and L(� )(a) = 0.

Moreover, L(� ) is absolutely continuous on [a, b] by Theorem 3.1. Consequently, L :
AC0[a, b] → AC0[a, b]. It remains to show that L is a contraction. To this end, let � ,� ∗ ∈
AC0[a, b]. Then

∥
∥L(� ) – L

(
� ∗)∥∥

0 ≤ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

×
∥
∥
∥
∥

∫
κ

a
F

(
τ ,� ′(τ )

)
dτ –

∫
κ

a
F

(
τ ,� ∗′(τ )

)
dτ

∥
∥
∥
∥

0
.

Since

∥
∥
∥
∥

∫
κ

a
F

(
τ ,� ′(τ )

)
dτ –

∫
κ

a
F

(
τ ,� ∗′(τ )

)
dτ

∥
∥
∥
∥

0
=

∫ b

a

∣
∣
F

(
κ,� ′(κ)

)
– F

(
κ,� ∗′(κ)

)∣∣dκ

≤ C
∫ b

a

∣
∣� ′ – � ∗′∣∣dκ

= C
∥
∥� – � ∗∥∥

0,

we get

∥
∥L(� ) – L

(
� ∗)∥∥

0 ≤ CκE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)∥
∥� – � ∗∥∥

0.

Inequality (3.5) shows that L is contractive. The proof is done. �

4 Ulam–Hyers stability (UHS)
Here, we develop and give some recent results on the UHS and generalized UHS of system
(1.1). For ε > 0 and �1 ∈ AC0[a, b], we consider the following inequality:

∣
∣
∣
∣
CDρ,αn

a �1(κ) + an–1
CDρ,αn–1

a �1(κ) + · · · + a0
CDρ,α0

a �1(κ)

–
∫

κ

a
F

(
τ ,� ′(τ )

)
dτ

∣
∣
∣
∣ ≤ ε, κ ∈ [a, b]. (4.1)

Remark 4.1 Let ε > 0. The function �1 ∈ AC0[a, b] satisfies (4.1) if and only if there exists
a small perturbation ζ (κ) ∈ AC0[a, b] with ζ (0) = 0 such that

(i) ‖ζ‖0 =
∫
κ

a |ζ ′(τ )|dτ ≤ ε, for κ ∈ [a, b],
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(ii) For κ ∈ [a, b],

⎧
⎨

⎩

CDρ,αn
a �1(κ) + an–1

CDρ,αn–1
a �1(κ) + · · · + a0

CDρ,α0
a �1(κ)

=
∫
κ

a F(τ ,� ′
1(τ )) dτ +

∫
κ

a |ζ ′(τ )|dτ .
(4.2)

Lemma 4.2 The solution of perturbed problem (4.2) with the condition �1(a) = 0 satisfies
the following inequality:

‖�1 – ZF‖0 ≤ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

ε,

where

ZF(κ) : =
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a

∫
κ

a
F

(
τ ,� ′

1(τ )
)

dτ

and κ is defined by (3.3).

Proof By Theorem 3.1, the solution of perturbed problem (4.2) is given by

�1(κ) =
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

aj1
n–1 · · ·ajn

0

× ρIj1(αn–αn–1)+···+jn(αn–α0)+αn
a

[∫
κ

a
F

(
τ ,� ′

1(τ )
)

dτ +
∫

κ

a

∣
∣ζ ′(τ )

∣
∣dτ

]

. (4.3)

From Eq. (4.3), Remark 4.1, and Eq. (3.4), we get

‖�1 – ZF‖0 ≤ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

×
∥
∥
∥
∥

∫
κ

a
F

(
τ ,� ′

1(τ )
)

dτ +
∫

κ

a

∣
∣ζ ′(τ )

∣
∣dτ –

∫
κ

a
F

(
τ ,� ′

1(τ )
)

dτ

∥
∥
∥
∥

0

≤ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

‖ζ‖0

≤ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

ε. �
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Theorem 4.3 (UHS) Assume that the assumptions of Theorem 3.5 and (4.1) hold. Then
problem (1.1) is UH stable.

Proof Let ε > 0 and �1 ∈ AC0[a, b] satisfy (4.1), and let � ∈ AC0[a, b] be a unique solution
of

⎧
⎨

⎩

CDρ,αn
a � (κ) + an–1

CDρ,αn–1
a � (κ) + · · · + a0

CDρ,α0
a � (κ) =

∫
κ

a F(τ ,� ′(τ )) dτ ,

� (a) = �1(a) = 0,

that is,

� (κ) = � (a) +
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a

[∫
κ

a
F

(
τ ,� ′(τ )

)
dτ

]

.

Since � (a) = �1(a) = 0, we get

� (κ) =
∞∑

j=0

(–1)j
∑

j1+···+jn=j

(
j

j1, j2, . . . , jn

)

× aj1
n–1 · · ·ajn

0
ρIj1(αn–αn–1)+···+jn(αn–α0)+αn

a

[∫
κ

a
F

(
τ ,� ′(τ )

)
dτ

]

.

By virtue of Lemma 4.2 and Eq. (3.4), we have

‖�1 – �‖0 ≤ ‖�1 – ZF‖0 + ‖ZF – �‖0

≤ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

ε

+ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

×
∥
∥
∥
∥

∫
κ

a
F

(
τ ,� ′

1(τ )
)

dτ –
∫

κ

a
F

(
τ ,� ′(τ )

)
dτ

∥
∥
∥
∥

0
.

Using the assumptions of Theorem 3.5, we obtain

∥
∥
∥
∥

∫
κ

a
F

(
τ ,� ′

1(τ )
)

dτ –
∫

κ

a
F

(
τ ,� ′(τ )

)
dτ

∥
∥
∥
∥

0
≤ C‖�1 – �‖0.

Consequently,

‖�1 – �‖0 ≤ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,
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. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

ε

+ κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

,

. . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

C‖�1 – �‖0.

By dint of inequality (3.5), we conclude that

‖�1 – �‖0 ≤ CFε,

where CF := R

1–RC and

R := κE(αn–αn–1,...,αn–α0,αn+1)

(

|an–1|
(

bρ – aρ

ρ

)αn–αn–1

, . . . , |a0|
(

bρ – aρ

ρ

)αn–α0)

. �

Conclusion 4.4 Under assumptions of Theorem 4.3, if we set �(ε) = CFε such that �(0) =
0, then problem (1.1) is generalized Ulam–Hyers stable.

Example 4.5 Let a = 1 and b = ρ
√

1 + ρ . Then there is a unique solution for the following
Katugampola-type FIDE:

CDρ,0.9
a � (κ) – CDρ,0.4

a � (κ) + CDρ,0.3
a � (κ) – CDρ,0.1

a � (κ)

=
∫

κ

a

(
eτ2

C(3 + eτ2 )
sin� ′(τ ) + ecos τ + ln(1 +

√
τ )

)

dτ , (4.4)

where the constant C is to be determined.
Clearly, the function

F(κ, z) =
eκ2

C(3 + eκ2 )
sin z + ecosκ + ln(1 +

√
κ)

is a continuous function from [1, ρ
√

1 + ρ] ×R to R and satisfies

∣
∣
F(κ, z1) – F(κ, z2)

∣
∣ =

∣
∣
∣
∣

eκ2

C(3 + eκ2 )
sin z1 –

eκ2

C(3 + eκ2 )
sin z1

∣
∣
∣
∣

≤ eκ2

C(3 + eκ2 )
| sin z1 – sin z1|

≤ eκ2

C(3 + eκ2 )
|z1 – z1| ≤ 1

C
|z1 – z1|.

Obviously bρ–aρ

ρ
= 1 and

∞∑

j=0

∑

j1+j2+j3=j

(
j

j1, j2, j3

)

×
(

| – 1|
(

bρ – aρ

ρ

)0.5)j1(

|1|
(

bρ – aρ

ρ

)0.6)j2(

| – 1|
(

bρ – aρ

ρ

)0.8)j3
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× 1
�(0.5j1 + 0.6j2 + 0.8j3 + 1.9)

=
∞∑

j=0

∑

j1+j2+j3=j

(
j

j1, j2, j3

)
1

�(0.5j1 + 0.6j2 + 0.8j3 + 1.9)

= E(0.5,0.6,0.8,1.9)(1, 1, 1).

Then we choose a positive C such that

CκE(0.5,0.6,0.8,1.9)(1, 1, 1) < 1.

According to Theorem 3.5, Eq. (4.4) has a unique solution.
Furthermore, by Theorem 4.3, for any solution �1(κ) ∈ AC0[a, b] of the inequality

∣
∣
∣
∣
CDρ,0.9

a �1(κ) – CDρ,0.4
a �1(κ) + CDρ,0.3

a �1(κ) – CDρ,0.1
a �1(κ)

–
∫

κ

a

(
eτ2

C(3 + eτ2 )
sin� ′

1(τ ) + ecos τ + ln(1 +
√

τ )
)

dτ

∣
∣
∣
∣ ≤ ε, κ ∈ [a, b], (4.5)

there exists a unique solution � (κ) ∈ AC0[a, b] of Eq. (4.4) such that

‖�1 – �‖0 ≤ CFε,

where CF := R

1–RC > 0, R = κE(0.5,0.6,0.8,1.9)(1, 1, 1), and κ = 1
�(0.5j1+0.6j2+0.8j3+1.9) . Hence

Eq. (4.4) is UH stable.

Remark 4.6 The results obtained in this work will remain valid if we use generalized
Riemann–Liouville-type instead of generalized Caputo-type in the proposed problem
(1.1). Specifically, in problem (1.1), if we replace Caputo derivatives with Riemann–
Liouville derivatives, then Lemma 2.9 is valid with respect to RLDρ,α

a (·), due to ϑ(a) = 0
whenever ϑ ∈ AC0[a, b].

5 Conclusions
Using the Banach space AC0[a, b], Banach’s fixed point technique, and Babenko’s method,
we have obtained the uniqueness of solutions for nonlinear FIDE (1.1) with generalized
Caputo fractional derivatives. Moreover, we have proven various types of stability analysis
of the suggested problem. Also, some pertinent examples are given to substantiate the
main results. The reported results in this study extend and develop the presented study
by Li [38].

As future work, we are thinking of extending the current results to include more gener-
alized operators such as ψ-Caputo [52].
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