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Abstract
In this study, we deal with some new vector valued multiplier spaces SGh (

∑
k zk) and

SwGh (
∑

k zk) related with
∑

k zk in a normed space Y . Further, we obtain the
completeness of these spaces via weakly unconditionally Cauchy series in Y and Y∗.
Moreover, we show that if

∑
k zk is unconditionally Cauchy in Y , then the multiplier

spaces of Gh-almost convergence and weakly Gh–almost convergence are identical.
Finally, some applications of the Orlicz–Pettis theorem with the newly formed
sequence spaces and unconditionally Cauchy series

∑
k zk in Y are given.
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1 Introduction and preliminaries
Consider � as the space of real (or complex) valued sequences. Consider Y to be a se-
quence space with linear topology. Then Y is said to be a K-space provided that each of
the maps pi : Y →R defined by pi(z) = zi is continuous ∀i ∈N. A K-space Y , where Y is a
complete linear space, is called FK space. A normed FK space is called BK space. An FK
space Y is said to have the property AK if for every sequence y = (yn)n≥1 ∈ Y

y = lim
n→∞

n∑

k=1

ykek ,

where ek = (0, 0, 0, . . . , 1, 0, . . .) such that 1 is in the kth-position ∀k ∈ N. The spaces of
bounded, convergent, and null sequences, which are denoted by �∞, c, and c0, respec-
tively, are BK spaces which are endowed with the sup norm ‖y‖∞ = supk∈N |yk|. By �1, we
denote the space of absolutely summable sequences, bs and cs are the spaces consisting of
all bounded and convergent series. Let Y and Z be two sequence spaces and A = (ank)n,k∈N
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be an infinite matrix. Then, for z = (zk) ∈ Y , we have A : Y → Z which is defined as

(Az)n =
∑

k

ankzk . (1.1)

If
∑

k ankzk converges for each n ∈ N, then we call Az the A-transform of z. Thus, A ∈
(Y , Z) iff the series in (1.1) converges ∀n ∈ N and Az ∈ Z. A sequence z = (zk) is called
A–summable to p ∈C (the set of complex numbers) if (Az) converges to p. For a detailed
study about recent results in summability theory, one can refer to [8, 24, 33]. The Euler
gamma functions are represented by �(γ ) where γ ∈ (0,∞) is defined as an improper
integral such as �(γ ) =

∫ ∞
0 e–ttγ –1 dt. Let (γ )k be the generalized factorial function which

is defined in terms of Euler gamma function as

(γ )k =

⎧
⎨

⎩

1, k = 0,
�(γ +k)
�(γ ) = γ (γ + 1)(γ + 2)(γ + 3) · · · (γ + k – 1), k ∈N,

where N is denoted by a set of all positive integers. Kizmaz [20] gave the idea of difference
sequences spaces which was generalized by Et and Colak [15]. Recently, many specialists
like Ahmad and Mursaleen [2], Tripathy [32], Altay and Basar [4] studied difference se-
quences spaces. For a detailed study about the difference sequence spaces, one can refer
to [27, 28]. Furthermore, Baliarsingh ([6, 7]) defined the generalized fractional difference
operator �γ , which is given as

(
�γ z

)
k =

∞∑

i=0

(–1)i�(γ + 1)
i!�(γ – i + 1)

zk+i (k ∈N0),

where N0 = N ∪ {0} and z ∈ �. In [25] the difference operator �γ , �(γ ), �–γ , �(–γ ) is
defined from � to � as follows:

(
�γ z

)
k =

∞∑

i=0

(–γ )i

i!
zk+i, (1.2)

(
�(γ )z

)
k =

∞∑

i=0

(–γ )i

i!
zk–i, (1.3)

(
�–γ z

)
k =

∞∑

i=0

(γ )i

i!
zk+i, (1.4)

(
�(–γ )z

)
k =

∞∑

i=0

(γ )i

i!
zk–i. (1.5)

It is being assumed throughout that the above defined summations are convergent for
z ∈ �. For a detailed study of fractional difference operator, one may refer to [6]. Recently,
Mohiuddine et al. [23] studied linear isomorphic spaces of fractional-order difference op-
erators. A lot of research has been made in this field, one can refer to [1, 17, 34].

Let Y be a Banach space. Then
∑

k zk ∈ Y is called unconditionally convergent (uc) or
unconditionally Cauchy (uC) if

∑
k zπ (k) is convergent (or Cauchy, resp.) for every π ∈ N,

where π is the permutation. Further,
∑

k zk ∈ Y is called weakly unconditionally Cauchy
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(wuC) if the sequence (
∑n

k=1 zπ (k)) is weakly Cauchy sequence or, alternatively,
∑

k zk is
wuC iff

∑
k |z∗(zk)| < ∞ ∀z∗ ∈ Y ∗, the space of all linear and bounded (continuous) func-

tionals defined on Y . For a detailed study, one can refer to [10]. Using the completeness
property of a subspace of �∞ obtained by almost convergence, a depiction of wuC and
uc series along with a new form of the Orlicz–Pettis theorem was presented by Aizpuru
et al. [3]. Recently, a vector valued multiplier space through Cesàro convergence was in-
troduced by Altay and Kama [5]. Esi [11] investigated some classes of generalized para-
normed sequence spaces associated with multiplier sequences. Tripathy and Mahanta [31]
also studied vector valued sequences associated with multiplier sequences. Furthermore,
Karakus and Basar introduced the multiplier spaces S�(T), Sw�(T) and studied some new
multiplier spaces by using generalization of almost summability in [18, 19]. To know more
about multiplier spaces, one may refer to [13, 14, 16, 29]. Lorentz proved that a sequence
z = (zk) ∈ �∞ is said to be almost convergent to L ∈C and is denoted by f – lim zk = L iff

lim
m→∞

m∑

k=0

zn+k

m + 1
= L

uniformly in n. For a detailed study of almost convergence of the sequence spaces, one can
refer to [12, 22, 35]. A sequence z = (zk) ∈ �∞ is called FA-summable if

lim
n→∞

∞∑

k=0

ankzk+m = L

uniformly in m ∈N.
Altay and Basar [4] first studied generalized weighted mean operator G(p, q) which was

further enlarged to a difference operator G(p, q,�) by Polat et al. [26]. Later, Demiriz and
Cakan [9] introduced generalized weighted mean of order m as G(p, q,�m). Consider a set
of all sequences U and p = (pn) such that pn 
= 0 ∀n ∈ N and 1

p = ( 1
p n

), ∀p ∈ U. As defined
by Nayak et al. [25], the generalized weighted fractional difference mean or factorable
fractional difference matrix G(p, q,�(γ )) = (g�(γ )

nk ) is defined as follows:

g�(γ )
nk =

⎧
⎨

⎩

∑n
i=k pn

(–γ )i–k
(i–k)! qi, when 1 ≤ k ≤ n;

0, when k > n,

where i, k, n ∈N such that pn depends on n and qk on k.
Let us consider h = (hk) to be a strictly increasing sequence of positive real numbers

such that

0 < h1 < h2 < h3 < · · · and lim
k→∞

hk = ∞. (1.6)

It is being assumed throughout that any term with a negative subscript is zero. The
matrix G(p, q,�(γ ), h) = (g�(γ )

hnk ) is given by

g�(γ )
hnk =

⎧
⎨

⎩

1
hn

∑n
i=k pn

(–γ )i–k
(i–k)! qi, when 1 ≤ k ≤ n;

0, when k > n.
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A sequence z = (zk) ∈ � is called Gh-convergent to a ∈R if

lim
n→∞

1
hn

n∑

k=1

pnqk�
(γ )zk = a, ∀n ∈N

or

lim
n→∞

1
hn

n∑

k=1

pn

( n∑

i=k

(–γ )i–k

(i – k)!
qi

)

zk = a, ∀n ∈N.

Before going to our main results, we present some lemmas. For details, one may refer to
[30].

Lemma 1.1
(i) Let Y be a normed space. Then

∑
k zk is said to be wuC series iff

H = sup
n∈N

{∥
∥
∥
∥
∥

n∑

k=1

tkzk

∥
∥
∥
∥
∥

: |tk| ≤ 1

}

= sup
n∈N

{∥
∥
∥
∥
∥

n∑

k=1

εkzk

∥
∥
∥
∥
∥

: |εk| ∈ {–1, 1}
}

= sup
n∈N

{ n∑

k=1

∣
∣z∗(zk)

∣
∣ : ∀z∗ ∈ BY∗

}

,

where H ∈R
+, where R+ is the set of positive real numbers and BY∗ represents the

closed unit ball of Y ∗.
(ii) Suppose that Y is a normed space. Then a formal series

∑
k zk in Y is called uC (or

wuC) iff, for any (an) ∈ �∞,
∑

k akzk converges, i.e.,
∑

k zk is an �∞–(respectively a
c0–) multiplier convergent series.

2 Main results
Definition 2.1 Consider Y to be a normed space and h = (hn) to be the sequence fulfilling
property (1.6). Then z = (zk) is called Gh-almost convergent (or wGh-almost convergent)
to z0 ∈ Y if

lim
n→∞

1
hn

m+n∑

k=m

pm+n

(m+n∑

i=k

(–γ )i–k

(i – k)!
qi

)

zk = z0

uniformly in m ∈N or

lim
n→∞

1
hn

m+n∑

k=m

pm+n

(m+n∑

i=k

(–γ )i–k

(i – k)!
qi

)

z∗(zk) = z∗(z0)

uniformly in m ∈ N, ∀z∗ ∈ Y ∗, where z0 ∈ Y is the Gh-limit (or weak Gh-limit) of z = (zk)
and is denoted by Gh – limn→∞ zn = z0 or (wGh – limn→∞ zn = z0).
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Let �(Y ) be the Y -valued sequence space. Then the spaces of all Gh-almost convergent
and wGh-almost convergent sequences in Y are denoted by Gh(Y ) and wGh(Y ), respec-
tively, which are defined as

Gh(Y ) =

{

(zk) ∈ �(Y ) : lim
n→∞

1
hn

m+n∑

k=m

pm+n

(m+n∑

i=k

(–γ )i–k

(i – k)!
qi

)

zk ,

uniformly exists in m ∈N

}

and

wGh(Y ) =

{

z∗(zk) ∈ �(Y ) : lim
n→∞

1
hn

m+n∑

k=m

pm+n

(m+n∑

i=k

(–γ )i–k

(i – k)!
qi

)

z∗(zk),

uniformly exists in m ∈N

}

.

We may consider this definition as a generalization of almost convergence given by
Lorentz [21].

Proposition 2.2 Suppose that Y is a normed space. If z = (zk) is Gh-almost convergent in
Y , then z ∈ �∞(Y ).

Proof Since z = (zk) is an Gh-almost convergent sequence in Y , then ∃z0 ∈ Y , ∀ε > 0 and
n′

0 ∈ N such that

∥
∥
∥
∥
∥

1
hn

m+n∑

k=m

pm+n

(m+n∑

i=k

(–γ )i–k

(i – k)!
qi

)

zk – z0

∥
∥
∥
∥
∥

< ε,

∀m ∈N and n ≥ n0, which implies that
∥
∥
∥
∥
∥

1
hn

m+n∑

k=m

pm+n

(m+n∑

i=k

(–γ )i–k

(i – k)!
qi

)

zk

∥
∥
∥
∥
∥

≤ ‖z0‖ + ε,

∃Z > 0 such that

pm

hn′
0

qm
∥
∥�(γ )zm

∥
∥ =

∥
∥
∥
∥
∥

hn′
0+1

hn′
0

pm+n′
0+1

m+n′
0+1∑

k=m

qk

hn′
0+1

�(γ )zk – pm+n′
0+1

m+n′
0+1∑

k=m+1

qk

hn′
0

�(γ )zk

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

hn′
0+1

hn′
0

pm+n′
0+1

m+n′
0+1∑

k=m

qk

hn′
0+1

�(γ )zk

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

pm+n′
0+1

m+n′
0+1∑

k=m+1

qk

hn′
0

�(γ )zk

∥
∥
∥
∥
∥

≤
(hn′

0+1

hn′
0

+ 1
)

(‖z0‖ + ε
)
,

which yields that

∥
∥�(γ )zm

∥
∥ ≤

(hn′
0+1 + hn′

0

pmqm

)
(‖z0‖ + ε

)
= Z.
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There exists an analog of Proposition 2.2 in weak topologies as, by the Banach–Mackey
theorem, a weak bounded subset of Y is also bounded. �

Proposition 2.3 Let Y be the normed space. If z = (zk) is a wGh-almost convergent se-
quence, then (zk) ∈ �∞(Y ).

Definition 2.4 Suppose that Y is a normed space and h = (hn) is the sequence fulfilling
property (1.6). Then

∑
k zk ∈ Y is called Gh-almost convergent to z0 ∈ Y if

lim
n→∞

∥
∥
∥
∥
∥

1
hn

m+n∑

k=m

pm+nqk�
γ sk – z0

∥
∥
∥
∥
∥

= 0

uniformly in m ∈N, where �γ sk =
∑k

j=1 �γ zj ∀k ∈ N. So, we use the notation Gh –
∑

k zk =
z0 for Gh-almost convergence. By some easy calculation, we have Gh –

∑
k zk = z0 iff

lim
n→∞

[
1
hn

m∑

k=1

pmqk�
(γ )zk +

1
hn

n∑

k=1

pm+nqm+k�
(γ )zm+k

]

= z0,

i.e.,

lim
n→∞

[
1
hn

m∑

k=1

pm

( m∑

i=k

(–γ )i–k

(i – k)!
qi

)

zk +
1
hn

n∑

k=1

pm+n

( n∑

i=k

(–γ )i–k

(i – k)!
qi

)

zm+k

]

= z0

in the norm topology, uniformly in m ∈ N ∀m, n, k ∈ N. We can write wGh –
∑

k zk = z0

if the series is weakly Gh-almost convergent to z0 in the weak topology. To obtain the
definition given in [3], we will take hn = n + 1, pn+m = 1, γ = 0 such that qk = �qm+nzk ,
where qn = n, ∀n ∈N.

3 Multiplier spaces of Gh-almost convergence
This particular section deals with multiplier spaces of Gh–almost convergence and gives
a theorem related to completeness through wuC series.

Definition 3.1 Suppose that Y is the normed space such that
∑

k zk belongs to Y . Then
the Y -valued multiplier space of Gh-almost convergence of

∑
k zk is defined as

SGh

(∑

k

zk

)

=
{

y = (yk) ∈ �∞ :
∑

k

zkykisGh-almost convergent
}

equipped with S (summing operator), and the sup norm is also defined by

S : SGh

(∑

k

zk

)

→ Y , y = (yk) �→ S(y) = Gh –
∑

k

zkyk . (3.1)

Theorem 3.2 Suppose that Y is a Banach space such that the formal series
∑

k zk belongs
to Y . Then the following are identical:

(i)
∑

k zk is wuC.
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(ii) SGh (
∑

k zk) is complete.
(iii) c0 ⊆ SGh (

∑
k zk).

Proof (i) ⇒ (ii) Since
∑

k zk is wuC series in Y , then from Lemma 1.1 the following supre-
mum is greater than zero, i.e., Q > 0 such that

Q = sup
n∈N

{∥
∥
∥
∥
∥

n∑

k=1

tkzk

∥
∥
∥
∥
∥

: |tk| ≤ 1

}

.

Now, let tn ∈ SGh (
∑

k zk), where tn = (tn
k ) such that limn→∞ ‖tn – t0‖ = 0 with t0 ∈ �∞.

We wish to prove that t0 ∈ SGh (
∑

k zk). Let yn = Gh –
∑

k tn
k zk , then yn ∈ Y since (tn

k ) ∈
SGh (

∑
k zk). Now ∀ε > 0, ∃n′

0 ∈ N and ν1,ν2 > n′
0 such that ‖tν1 – tν2‖ < ε

3Q . Therefore, for
ν1,ν2 > n′

0, ∃n ∈N which satisfies the inequalities

∥
∥
∥
∥
∥

yν1 –

[ m∑

k=1

pm+n

hn

m∑

i=k

(–γ )i–k

(i – k)!
qitν1

k zk +
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qitν1

m+kzm+k

]∥
∥
∥
∥
∥

<
ε

3
, (3.2)

∥
∥
∥
∥
∥

yν2 –

[ m∑

k=1

pm+n

hn

m∑

i=k

(–γ )i–k

(i – k)!
qitν2

k zk +
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qitν2

m+kzm+k

]∥
∥
∥
∥
∥

<
ε

3
, (3.3)

and

∥
∥
∥
∥
∥

m∑

k=1

pm+n

hn

m∑

i=k

(–γ )i–k

(i – k)!
qi

(
tν1
k – tν2

k
)
zk +

n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qi

(
tν1
m+k – tν2

m+k
)
zm+k]

∥
∥
∥
∥
∥

<
ε

3
, (3.4)

uniformly in m ∈N. Thus, ∃n′
0 ∈N such that

‖yν1 – yν2‖ ≤ (3.2) + (3.3) + (3.4) < ε

∀ν1,ν2 ≥ n′
0. To a further extent, ∃y0 ∈ Y such that yn → y0 as n → ∞, as Y is complete.

Now, we also have to show that Gh –
∑

k t0
k zk = y0. For this, let ∀ε > 0, we have ‖tj – t0‖ <

ε
3Q , and for fixed j

‖yj – y0‖ <
ε

3
. (3.5)

Hence, ∃n′
0 ∈N such that

∥
∥
∥
∥
∥

yj –

[ m∑

k=1

pm

hn

m∑

i=k

(–γ )i–k

(i – k)!
qit

j
kzk +

n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qit

j
m+kzm+k

]∥
∥
∥
∥
∥

<
ε

3
(3.6)

∀n ≥ n′
0, uniformly in m ∈N, since

yj = Gh –
∑

k

tj
kzk ∀j ∈N.
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From Lemma 1.1, we get

[ m∑

k=1

pm

hn

m∑

i=k

(–γ )i–k

(i – k)!
qi

(tj
k – t0

k )
‖tj – t0‖zk +

n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qi

(tj
m+k – t0

m+k)
‖tj – t0‖ zm+k

]

≤ Q. (3.7)

Since
∑

k zk is a wuC series, so ∀ε > 0 ∃n′
0 ∈ N such that

∥
∥
∥
∥
∥

y0 –

[ m∑

k=1

pm

hn

m∑

i=k

(–γ )i–k

(i – k)!
qit0

k zk +
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qit0

m+kzm+k

]∥
∥
∥
∥
∥

≤ (3.5) + (3.6)

+

∥
∥
∥
∥
∥

m∑

k=1

pm

hn

m∑

i=k

(–γ )i–k

(i – k)!
qi

(
tj
k – t0

k
)
zk +

n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qi

(
tj
m+k – t0

m+k
)
zm+k

∥
∥
∥
∥
∥

≤ ε

3
+

ε

3
+

∥
∥tj – t0∥∥.Q

≤ ε

3
+

ε

3
+

ε

3Q
.Q = ε,

∀n ≥ n′
0 uniformly in m ∈N. Therefore, t0 = (t0

k )k ∈ SGh (
∑

k zk).
(ii) ⇒ (iii) If SGh (

∑
k zk) is a complete space with t = (tk) being an arbitrary sequence

in the space c0, then we need to show that t = (tk) ∈ SGh (
∑

k zk). Now, since SGh (
∑

k zk)
is a complete space, then it contains the space of eventually zero sequences c0. That is,
φ ⊂ SGh (

∑
k zk). Since c0 is an AK space, we have t[m] =

∑m
k=1 tkek ∈ SGh (

∑
k zk). Therefore,

limm→∞ ‖t[m] – t‖∞ = 0. Thus t = (tk) ∈ SGh (
∑

k zk).
(iii) ⇒ (i) Let us consider that a series

∑
k zk is not wuC, then ∃z∗ ∈ Bz∗ such

that
∑∞

k=1 |z∗(zk)| = +∞. Since
∑∞

k=1 |z∗(zk)| = +∞, then there exists m1 such that
∑m1

k=1 |z∗(zk)| > n.n for n > 1. Let us define

(tk) =

⎧
⎨

⎩

1
n , when z∗(zk) ≥ 0;

– 1
n , when z∗(zk) < 0,

for k = {1, 2, 3, . . .}, which implies that
∑m1

k=1 tkz∗(zk) > n and tkz∗(zk) ≥ 0. Let m2 > m1 such
that

∑m2
k=m1+1 tkz∗(zk) > n2.n2. Now, we define

(tk) =

⎧
⎨

⎩

1
n2 , when z∗(zk) ≥ 0;

– 1
n2 , when z∗(zk) < 0,

for k = {m1 + 1, . . . m2}, which shows that
∑m2

k=m1+1 tkz∗(zk) > n2 and tkz∗(zk) ≥ 0. Thus,
for arbitrary null sequences t = (tk) ∈ SGh (

∑
k zk), we have

∑
k tkz∗(zk) → +∞, which is a

contradiction since the sequences of partial sums {∑η

k=1 tkz∗(zk)}n∈N should be bounded
by the hypothesis. Therefore, our claim is wrong, and hence the series

∑
k zk must be wuC

series.
(ii) ⇒ (i) Suppose that SGh (

∑
k zk) is a Banach space and t = (tk) ∈ c0(Y ), which means

c0(Y ) ⊆ SGh (
∑

k zk) (already proved), which implies that
∑

k tkzk is almost convergent for
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all t = (tk) ∈ c0(Y ). From the monotonicity of c0(Y ),
∑

k tkzk is subseries almost convergent,
and thus from the Orlicz–Pettis theorem, we get

∑
k tkzk is wuC. �

Corollary 3.3 Let Y be the Banach space such that the formal series
∑

k zk belongs to Y .
Then

∑
k zk is c0-multiplier convergent iff c0 ⊆ SGh (

∑
k zk).

Aizpuru et al. [3] studied SAC(
∑

k zk) which was given as

SAC

(∑

k

zk

)

=
{

t = tk ∈ �∞ : AC
∑

k

tkzk exists
}

.

We have
∑

k zk is almost convergent to z0 ∈ Y . If AC
∑

k zk = z0, then SAC(
∑

k zk) ⊆
SGh (

∑
k zk).

Corollary 3.4 Suppose that Y is a Banach space such that the formal series
∑

k zk belongs
to Y . Then the following are identical:

(i)
∑

k zk is (wuC).
(ii) c0(Y ) ⊆ SGh (

∑
k zk).

(iii) SGh (
∑

k zk) is a Banach space.
(iv) c0(Y ) ⊆ AC

∑
k tkzk .

(v) SAC(
∑

k zk) is a Banach space.

Theorem 3.5 Suppose that Y is a normed space. Then Y is complete iff SGh (
∑

k zk) is closed
in �∞ for each wuC series

∑
k zk .

Proof If we consider Y to be complete, then Theorem 3.2 shows that SGh (
∑

k zk) is
complete for each wuC series

∑
k zk . Conversely, suppose that Y is not complete, then

we obtain a series
∑

k zk with ‖zk‖ < 1
k2k and

∑
k zk = z∗∗ ∈ Y ∗∗ \ Y . Thus, we have

Gh –
∑

k zk = z∗∗. Let us define the series
∑

k xk , which is wuC, as it is defined that
xk = kzk for k ∈ N. Consider a sequence t = (tk) ∈ c0 given by tk = 1

k ∀k ∈ N, then we have
Gh –

∑
k tkzk ∈ Y ∗∗ \ Y . Therefore, t /∈ SGh (

∑
k zk), which implies that there exists

∑
k zk

such that SGh (
∑

k zk) is not complete. �

Theorem 3.6 Suppose that Y is a Banach space such that the formal series
∑

k zk belongs
to Y , then

∑
k zk is wuC iff S defined in (3.1) is continuous.

Proof Suppose that S is continuous and I is a set such that

I =

{∥
∥
∥
∥
∥

n∑

k=1

ykzk

∥
∥
∥
∥
∥

: ‖yk‖ ≤ 1,∀n ∈N

}

. (3.8)

Thus, we have Q = supn∈N I ≤ ‖S‖ such that
∑

k zk in Y is wuC as φ ⊂ SGh (
∑

k zk). Con-
versely, let

∑
k zk be wuC series, then Q = supn∈N I , since the set I in (3.8) is bounded. If

y = (yk) ∈ SGh (
∑

k zk), then ‖S(y)‖ = ‖Gh –
∑

k ykzk‖ ≤ Q‖y‖. We can say that S is continu-
ous. �
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As defined in [3], the linear mapping T related with
∑

k zk in Y is given as

T : SAC

(∑

k

zk

)

→ Y , t = (tk) → A(t) = AC
∑

k

akzk . (3.9)

Corollary 3.7 Suppose that Y is a Banach space such that the formal series
∑

k zk belongs
to Y . Then the following are identical:

(i)
∑

k zk is (wuC).
(ii) T : SAC(

∑
k zk) → Y is continuous.

(iii) S described in (3.1) is continuous.

4 Multiplier spaces of weak Gh-almost convergence
This particular section deals with multiplier spaces of weak Gh-almost convergence and
build on the prior results to weak topologies.

Definition 4.1 Let us consider
∑

k zk to be the formal series in the normed space Y . Then
the Y -valued multiplier space of wGh-almost convergence of

∑
k zk is defined as

SwGh

(∑

k

zk

)

=
{

y = (yk) ∈ �∞ :
∑

k

zkyk is wGh-almost convergent
}

,

equipped with S (summing operator), and the sup norm is also defined by

S : SwGh

(∑

k

zk

)

→ Y , y → S(y) = wGh –
∑

k

zkyk . (4.1)

Theorem 4.2 Suppose that Y is a Banach space such that the formal series
∑

k zk belongs
to Y . Then the following are identical:

(i)
∑

k zk is (wuC).
(ii) SwGh (

∑
k zk) is a Banach space.

(iii) c0 ⊆ SwGh (
∑

k zk).

Proof Consider
∑

k zk is wuC series in Y . Then ∃Q such that Q = supn∈N I as defined in
(3.8). If (tn

k ) is a Cauchy sequence in SwGh (
∑

k zk), then we have t0 = (t0
k ) ∈ �∞(Y ) such that

tn → t0, as n → ∞. Since �∞(Y ) is a Banach space, we wish to prove that t0 ∈ SwGh (
∑

k zk).
Let yn = wGh –

∑
k tn

k zk , then yn ∈ Y since (tn
k ) ∈ SGh (

∑
k zk) for each n ∈ N. Now, ∀ε >

0 ∃n′
0 ∈ N such that ‖tν1 – tν2‖ < ε

3Q ∀ν1, ν2 > n′
0. Thus, for ν1,ν2 > n′

0 ∃n ∈ N such that the
following inequalities are satisfied for all y∗ ∈ Y ∗:

∥
∥
∥
∥
∥

y∗(yν1 ) –

[ m∑

k=1

pm+n

hn

m∑

i=k

(–γ )i–k

(i – k)!
qiy∗(tν1

k zk
)

+
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qiy∗(tν1

m+kzm+k
)
]∥
∥
∥
∥
∥

<
ε

3
, (4.2)

∥
∥
∥
∥
∥

y∗(yν2 ) –

[ m∑

k=1

pm+n

hn

m∑

i=k

(–γ )i–k

(i – k)!
qiy∗(tν2

k zk
)
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+
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qiy∗(tν2

m+kzm+k
)
]∥
∥
∥
∥
∥

<
ε

3
, (4.3)

and
∥
∥
∥
∥
∥

m∑

k=1

pm+n

hn

m∑

i=k

(–γ )i–k

(i – k)!
qiy∗[(tν1

k – tν2
k

)
zk

]

+
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qiy∗[(tν1

m+k – tν2
m+k

)
zm+k

]
∥
∥
∥
∥
∥

<
ε

3
(4.4)

uniformly in m ∈N. Thus, ∀ε > 0

‖yν1 – yν2‖ =
∣
∣y∗(yν1 ) – y∗(yν2 )

∣
∣ ≤ (4.2) + (4.3) + (4.4) < ε

∀ν1,ν2 ≥ n′
0 and y∗ ∈ Y ∗. To a further extent, ∃y∗

0 ∈ Y ∗ such that yn → y0 as n → ∞, as Y
is complete.

Now, we also have to show that wGh –
∑

k t0
k zk = y0. For this, let ∀ε > 0, we have ‖tj – t0‖ <

ε
3Q , and for fixed j and y∗ ∈ Y ∗, we have

∥
∥y∗(yj – y0)

∥
∥ <

ε

3
. (4.5)

Hence, ∃n′
0 ∈N such that

∥
∥
∥
∥
∥

y∗(yj) –

[ m∑

k=1

pm

hn

m∑

i=k

(–γ )i–k

(i – k)!
qiy∗(tj

kzk
)

+
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qiy∗(tj

m+kzm+k
)
]∥
∥
∥
∥
∥

<
ε

3
(4.6)

∀n ≥ n′
0, uniformly in m ∈N, since

yj = wGh –
∑

k

tj
kzk ∀j ∈N.

Now, from Lemma 1.1, we get

[ m∑

k=1

pm

hn

m∑

i=k

(–γ )i–k

(i – k)!
qiy∗ (tj

k – t0
k )

‖tj – t0‖zk

+
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qiy∗ (tj

m+k – t0
m+k)

‖tj – t0‖ zm+k

]

≤ Q. (4.7)

Since
∑

k zk is wuC, so ∀ε > 0 ∃n′
0 ∈N such that

∥
∥
∥
∥
∥

y∗(y0) –

[ m∑

k=1

pm

hn

m∑

i=k

(–γ )i–k

(i – k)!
qiy∗(t0

k zk
)

+
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qiy∗(t0

m+kzm+k
)
]∥
∥
∥
∥
∥

≤ (4.5) + (4.6) +

∥
∥
∥
∥
∥

m∑

k=1

pm

hn

m∑

i=k

(–γ )i–k

(i – k)!
qiy∗[(tj

k – t0
k
)
zk

]
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+
n∑

k=1

pm+n

hn

n∑

i=k

(–γ )i–k

(i – k)!
qiy∗[(tj

m+k – t0
m+k

)
zm+k

]
∥
∥
∥
∥
∥

≤ ε

3
+

ε

3
+

∥
∥tj – t0∥∥.Q

≤ ε

3
+

ε

3
+

ε

3Q
.Q = ε

∀n ≥ n′
0, uniformly in m ∈N. Thus,

t0 =
(
t0
k
)

k ∈ SwGh

(∑

k

zk

)

.

(ii) ⇒ (iii) If SwGh (
∑

k zk) is complete with t = (tk) being a sequence in c0, then we need
to prove that t = (tk) ∈ SwGh (

∑
k zk). Now, since SwGh (

∑
k zk) is a complete space, then it

contains the space of eventually zero sequences c0. That is, φ ⊂ SwGh (
∑

k zk). Since c0 is
an AK space, we have t[m] =

∑m
k=1 tkek ∈ SwGh (

∑
k zk). Therefore, limm→∞ ‖t[m] – t‖∞ = 0.

Thus t = (tk) ∈ SwGh (
∑

k zk).
(iii) ⇒ (ii) We can prove this with the same example as given in Theorem 3.2.
(ii) ⇒ (i) Suppose that SwGh (

∑
k zk) is a Banach space and t = (tk) ∈ c0(Y ), which means

c0(Y ) ⊆ SwGh (
∑

k zk) (already proved), which implies that
∑

k tkzk is almost convergent for
all t = (tk) ∈ c0(Y ). Therefore, from the monotonicity of c0(Y ),

∑
k tkzk is subseries almost

convergent, and thus we get
∑

k tkzk is wuC from the Orlicz–Pettis theorem. �

Corollary 4.3 Suppose that Y is a Banach space such that the formal series
∑

k zk belongs
to Y . Then

∑
k zk is c0-multiplier convergent iff c0 ⊆ SwGh (

∑
k zk).

SwGh (
∑

k zk) of almost summability related with
∑

k zk was studied by Aizpuru et al. [3]
which is given as

SwAC

(∑

k

zk

)

=
{

t = (tk) ∈ �∞ : wAC
∑

k

tkzk exists
}

.

Corollary 4.4 Suppose that Y is a Banach space such that the formal series
∑

k zk belongs
to Y . Then the following are identical:

(i)
∑

k zk is (wuC).
(ii) c0(Y ) ⊆ SwGh (

∑
k zk).

(iii) SwGh (
∑

k zk) is a Banach space.
(iv) For all t = (tk) ∈ c0 there exists wAC

∑
k tkzk .

(v) SwAC(
∑

k zk) is a Banach space.

Theorem 4.5 Suppose that Y is a normed space. Then Y is complete iff SwGh (
∑

k zk) is
closed in �∞ for each wuC series

∑
k zk .

Proof The proof is similar to Theorem 3.5. So, we omit the details. �

Theorem 4.6 Suppose that Y is a Banach space such that the formal series
∑

k zk belongs
to Y , then

∑
k zk is wuC iff S defined in (4.1) is continuous.
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Proof The proof is similar to Theorem 3.5. So, we omit the details. �

Corollary 4.7 Suppose that Y is a Banach space such that the formal series
∑

k zk belongs
to Y . Then the following are identical:

(i)
∑

k zk is (wuC).
(ii) T : SwAC(

∑
k zk) → Y is continuous.

(iii) S described in (4.1) is continuous.

Remark 4.8 Suppose that χ is a linear space and μ1 and μ2 are linear topologies on χ such
that μ2 has a neighborhood base at 0 consisting of μ1 closed sets [in a sense of Wilanski].
If z = (zi) ⊂ χ is a Cauchy sequence converging to z in (χ ,μ1), then it will converge to z in
(χ ,μ2).

Proposition 4.9 Let
∑

k zk be uC in Y . Then SwGh (
∑

k zk) = SGh (
∑

k zk).

Proof Suppose that y = (yk) ∈ SwGh (
∑

k zk). This implies that the partial sum of
∑

k ykzk

obtains a Cauchy sequence that is again weakly Gh-convergent. Since the weak topology
is connected with the norm topology, it will converge to the same point as in the norm
topology. �

5 Orlicz–Pettis theorem for weak Gh-almost convergence
This particular section deals with a new version of the Orlicz–Pettis theorem for a Banach
space Y . As noted earlier, the classical form of the Orlicz–Pettis theorem for the normed
space claims that a series is subseries convergent in weak topology for the space is subseries
convergent to the norm topology for the same space. In addition to that, if Y is complete,
then

∑
k zk is �∞-multiplier convergent. The Orlicz–Pettis theorem proportionately states

that if Y is a Banach space and if ∀M ⊂ N there exists a weakly sum
∑

k∈M zk , then
∑

k zk

is uc.

Theorem 5.1 Suppose that Y is a Banach space and sum
∑

k∈M zk is wGh-almost conver-
gent for every M ⊂N, then

∑
k zk is uc.

Proof From the previous results, we know that
∑

k zk is wuC. Let M ⊂ N, then wGh –
∑

k∈M zk = z0 ∀z0 ∈ Y . From the classical Orlicz–Pettis theorem and the equalities given
below

∑

k∈M

z∗(zk) = Gh –
∑

k∈M

z∗(zk) = z∗(z0) ∀z∗ ∈ Y ∗,

we get
∑

k zk is uc series. �

Corollary 5.2 Suppose that Y is a Banach space and
∑

k zk belongs to Y . Then the given
assertions are equivalent:

(i)
∑

k zk is uc.
(ii) �∞ ⊆ SGh (

∑
k zk).

(iii) �∞ ⊆ SwGh (
∑

k zk).



Raj et al. Advances in Difference Equations        (2021) 2021:370 Page 14 of 15

Here, we remark that if
∑

k zk is wuC series in Y , then
∑

k ykzk is wuC series for all
yk ∈ �∞. Thus,

SGh

(∑

k

zk

)

⊂ Sw

(∑

k

zk

)

,

where Sw(
∑

k zk) = {y = (yk) ∈ �∞ : w
∑

k ykzk exists}.
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