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Abstract
This paper investigates a class of generalized Cohen–Grossberg neural networks
(CGNNs) with discontinuous activations and mixed delays. Based on the nonsmooth
analysis theory, the drive-response concept, differential inclusions theory, we give
several basic assumptions to gain the finite-time synchronization issue of CGNNs.
Sufficient conditions are provided without the boundedness or monotonicity of
discontinuous activation functions. Moreover, one can estimate the settling time’s
upper bounds of the system. At last, two numerical examples and their simulations
are given to further show the benefits of the obtained control approach.
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1 Introduction
Recently, the research of neural networks with discontinuous activation functions has
gradually attracted the attention of many researchers, including systems oscillating under
earthquake, power circuits, chaos phenomenon, and dry friction (see [1–4]). Because the
non-Lipschitz phenomenon has many special advantages, the emergence of nonsmooth
has greatly improved the research of neural networks. In addition, the analysis of neu-
ral networks with discontinuous activations is accompanied by many interesting practi-
cal phenomena to explore important dynamic behavior characteristics. This arouses re-
searchers’ interest in the generalized neural networks by using discontinuous activation
functions [5–8].

In 1983, Cohen and Grossberg firstly introduced the CGNNs system, which was a use-
ful recurrent neural networks system, including evolutionary theory, population biology,
neurobiology [9]. After that, a large number of results have emerged [10–17] such as the
existence, dissipation, and exponential stability of the CGNNs model. However, there are
few works on discontinuous CGNNs system with mixed delays. In [18–20], the authors in-
vestigated the exponential stability and exponential synchronization of a class of CGNNs.
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Abdurahman and his team in [21] studied the exponential lag synchronization for both
discrete time-delays and distributed delays CGNNs. It worthy to know that, in 2003, Forti
introduced the global stability of a discontinuous right-hand side neural network system
via the framework of the theory of Filippov differential inclusions [22, 23]. In [24] they
pointed out that the sliding mode method was used to solve constrained optimization
problems, because high-gain neuron activations were often encountered in the neural net-
works system. In [25], the authors analyzed the fixed-time synchronization of a class of
discontinuous fuzzy inertial neural networks with time-varying delays based on the new
improved fixed-time stability lemmas.

As we know, the synchronization phenomenon has been widely used in software engi-
neering, ecological structure, security storage, information processing system, and many
other fields, which gets a lot of social attention. There are some micro motions from the
view of the mathematical model, which we call qualitative or stability problems. Mean-
while, the researchers pay attention to the macroscopic topology based on the synchro-
nization problem. The literature [26] was the first paper to consider finite-time control of
discontinuous chaotic systems, and [27] studied the finite-time synchronization of time-
delayed neural networks. There were many classifications of synchronization, such as
anti-synchronization [28, 29], exponential synchronization [30], robust synchronization
[31], chaos synchronization [32], and so on. The synchronization technologies mentioned
above have many defects in a real practical environment. For instance, the existence results
of the above synchronization usually are guaranteed over the infinite horizon. In addition,
when the finite initial value is required and the control accuracy has great influence on
the system, it is always difficult to estimate. Moreover, even if stringent convergence time
is given, the neural networks model may not be available in a real experimental environ-
ment. For the sake of convergence time, one needs to propose a concept named finite-time
synchronization, which means that the settling time function of any finite initial value is
bounded. Song and his team provided a novel and effective techniques method in [33],
then in [34] they investigated the finite-time synchronization problem of a class of dis-
continuous neural networks with nonlinear coupling and mixed delays. Peng and his team
in [35] investigated the finite-time synchronization control methodology for the CGNNs
system. Yang in [36] verified that the considered neural networks can gain the synchro-
nization in a finite time. In [37], the authors ensured that the target model realized the
finite-time synchronization goal of the coupled neural networks. In [38], the author solved
the challenging issues in the field of finite-time synchronization of the cellular neural net-
works.

Motivated by the aforementioned works on finite-time synchronization of CGNNs sys-
tem, this paper aims to realize the finite-time synchronization issue for the considered
system CGNNs. Our main contributions of this paper include the following three aspects.

• The CGNNs discussed in this brief are state-dependent discontinuous systems; based
on the properties of differential inclusion and set-analysis theory, the drive-response
CGNNs can be transformed into a synchronization error system. Theoretical analysis
can be extended to other fields.

• When both mixed delays and discontinuities exist in the dynamical CGNNs, how to
deal with the discrepancy within the scope of the Filippov solutions of the drive
system and the response system?
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• Because the system has special discontinuous characteristics, in order to shorten the
settling time of the drive-response CGNNs system, the more ingenious switching
controller should be devised.

2 Model description and some basic definitions
This section considers a general class of discontinuous CGNNs with mixed delays. Based
on the previous works [39–45], one can describe the model by the following equation:

dπi(t)
dt

= –�i
(
πi(t)

)
[

ai
(
πi(t)

)
–

n∑

j=1

bij(t)fj
(
πj(t)

)
–

n∑

j=1

cij(t)fj
(
πj

(
t – τij(t)

))

–
n∑

j=1

∫ +∞

0
Kij(t, s)fj

(
πj(s)

)
ds – Ii(t)

]

, i = 1, 2, . . . , n, (1)

the state vector is π (t) = (π1(t),π2(t), . . . ,πn(t))T ∈ R; �i(·) is the amplification function
of the system; ai(·) is the function with proper behavior; τij(t) and Kij : [0,∞) → [0,∞)
denote the discrete delay and the distributed delay, respectively; bij(t) and cij(t) are the
connection strength and the delayed feedbacks of two different neurons; fj(·) is the neuron
input–output activation of the ith neuron; Ii(·) is an input signal function of the external
factors;

The neuron activation functions fj(·) in the above model satisfy the following condi-
tions:

(H1) fi : R →R is discontinuous on a countable set of isolate point {ρ i
k} for each

i = 1, 2, . . . , n.
(H2) There are two nonnegative constants Li and hi that satisfy the following inequality:

∥∥F
[
fi(x) – fi(y)

]∥∥ = sup
ζi∈F[fi(x)–fi(y)]

‖ζi‖ ≤ Li‖x – y‖ + hi, i = 1, 2, . . . , n,

where F(fi(x)) = K[fi(x)] = [min{fi(x–
i ), fi(x+

i )}, max{fi(x–
i ), fi(x+

i )}].
(H3) There exist nonnegative constants Kij satisfying

∫ +∞

0
Kij(·) ds ≤ Kij, i, j = 1, 2 . . . , n.

For every i, j = 1, 2, . . . , n, we assume that ai(t), bij(t), cij(t), τij(t) are continuous ω-
periodic functions and Ii(t) are almost periodic functions; 0 ≤ τij(t) ≤ τij, τ̇ij(t) ≤ σij <
1; �i(·) is continuous and 0 < ω ≤ �i(·) ≤ ω; ȧi(·) ≥ ai, where τij, σij, ω, ω, and ai

are nonnegative constants. Moreover, we denote amax = max1≤i≤n supt∈R |ai(t)|, bmax =
max1≤i≤n,1≤j≤n supt∈R |bij(t)|, cmax = max1≤i≤n,1≤j≤n supt∈R |cij(t)|.

Choose a transformation function 	–1
i (·), which satisfies

d
du

(
	–1

i (u)
)

=
1

�i(u)
.

From the above discussion we know that 1
�i(u) > 0, which yields that 	–1

i (·) is strictly
monotone increasing, then the inverse function of 	–1

i (·) exists, we denote (	–1
i (·))–1 =
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	i(·). Let xi(t) = 	–1
i (πi(t)), one can have πi(t) = 	i(x(t)) and dxi(t)

dt = d	–1
i (πi(t))
dπi(t) π̇i(t) =

1
�i(πi(t)) π̇i(t), then we can obtain that

dxi(t)
dt

= –ai
(
	i

(
xi(t)

))
+

n∑

j=1

bij(t)fj
(
	i

(
xi(t)

))
+

n∑

j=1

cij(t)fj
(
	i

(
xi

(
t – τij(t)

)))

+
n∑

j=1

∫ +∞

0
Kij(t, s)fj

(
	i

(
xi(s)

))
ds + Ii(t), i = 1, 2, . . . , n. (2)

Obviously, in the framework of differential inclusions, system (2) can be rewritten as
follows:

dxi(t)
dt

∈ –ai
(
	i

(
xi(t)

))
+

n∑

j=1

bij(t)K
[
fj
(
	i

(
xi(t)

))]
+

n∑

j=1

cij(t)K
[
fj
(
	i

(
xi

(
t – τij(t)

)))]

+
n∑

j=1

∫ +∞

0
Kij(t, s)K

[
fj
(
	i

(
xi(s)

))]
ds + Ii(t).

For any compact interval of [0, τ ), the vector function x = (x1, x2, . . . , xn)T is continuous
and absolutely continuous. According to the Filippov framework, one can find a measur-
able function γ = (γ1,γ2, . . . ,γn)T : (–∞, τ ) → R

n such that γi(t) ∈ K[fi(	i(xi(t)))], then
one can obtain that x is a state solution of CGNNs and

dxi(t)
dt

= –ai
(
	i

(
xi(t)

))
+

n∑

j=1

bij(t)γj(t) +
n∑

j=1

cij(t)γj(t – τ )

+
n∑

j=1

∫ +∞

0
Kij(t, s)γj(s) ds + Ii(t). (3)

Through the above discussion, consider CGNNs system (1) as the drive system. By giving
the initial value of CGNNs φ(s) = (φ1(s),φ2(s), . . . ,φn(s))T , we can obtain the corresponding
response system as follows:

dξi(t)
dt

= –�i
(
ξi(t)

)
[

ai
(
ξi(t)

)
–

n∑

j=1

bij(t)fj
(
ξj(t)

)
–

n∑

j=1

cij(t)fj
(
ξj
(
t – τij(t)

))

–
n∑

j=1

∫ +∞

0
Kij(t, s)fj

(
ξj(s)

)
ds – Ii(t)

]

+ ui(t), i = 1, 2, . . . , n, (4)

where ui(t) is the appropriate controller.
Similarly, let yi(t) = 	–1

i (ξi(t)), i = 1, 2, . . . , n, we can derive that

dyi(t)
dt

= –ai
(
	i

(
yi(t)

))
+

n∑

j=1

bij(t)γ̃j(t) +
n∑

j=1

cij(t)γ̃j(t – τ )

+
n∑

j=1

∫ +∞

0
Kij(t, s)γ̃j(s) ds + Ii(t) +

ui(t)
�i(	i(yi(t)))

, (5)

where γ̃i(t) ∈ K[fi(	i(yi(t)))] and γ̃ (t) = (γ1(t),γ2(t), . . . ,γn(t))T .
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Lemma 2.1 (See [23, 39]) If V (y(t)) : Rn ×R is a C-regular function, for any compact inter-
val of [0, +∞), y(t) : [0, +∞) → R

n is an absolutely continuous function. For a continuous
function ϒ : (0,∞) →R with ϒ(�) > 0 for � ∈ (0, +∞), if it satisfies that

dV (t)
dt

≤ –ϒ
(
V (t)

)
for a.e. t ≥ 0

and

∫ V (0)

0

1
ϒ(�)

= t∗ < +∞,

then we have V (t) = 0 for t ≥ t∗; especially, we have:
(1) If ϒ = K1� + K2�

μ for all � > 0, where μ ∈ (0, 1) and K1, K2 > 0, then one can estimate
the settling time as

t∗ =
1

K1(1 – μ)
ln

K1V 1–μ(0) + K2

K2
.

(2) If ϒ(�) = K�μ and K > 0, then one can estimate the settling time as

t∗ =
V 1–μ(0)
K(1 – μ)

.

Remark 2.2 Since 	(·) is strictly monotone increasing and ai(	i(t)) is an abstract function
which contains linear functions as special cases. In other words, we can express ai(	i(t))
as a common function –Di(t)	i(t). Compared with the existing papers, our model which
considers CGNNs is more general and common of previous results.

3 Main results
Firstly, we focus on ensuring the finite-time synchronization issue between the above re-
sponse model (4) and the drive model (1). Let ei(t) = yi(t) – xi(t), i = 1, 2, . . . , n, one can
obtain

dei(t)
dt

= –
(
ai

(
	i

(
yi(t)

))
– ai

(
	i

(
xi(t)

)))
+

n∑

j=1

bij(t)γ ∗
j (t) +

n∑

j=1

cij(t)γ ∗
j (t – τ )

+
n∑

j=1

∫ +∞

0
Kij(t, s)γ ∗

j (s) ds +
ui(t)

�i(	i(yi(t)))
, (6)

where γ ∗
j (t) = γ̃j(t) – γj(t).

Then we consider the following two kinds of important controllers to achieve the finite-
time synchronization issue.

Case (1). The state-feedback controller ui(t):

ui(t) = –k1
(
πi(t) – ξi(t)

)
– k2 sign

(
πi(t) – ξi(t)

)
, (7)

where i = 1, 2, . . . , N , k1, k2 > 0.
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Case (2). The corresponding adaptive controller ui(t)s of Case (1):

ui(t) = –pi
(
πi(t) – ξi(t)

)
– qi sign

(
πi(t) – ξi(t)

)
, (8)

where P = diag(p1, p2, . . . , pn), Q = diag(q1, q2, . . . , qn), and the controller rules of pi and qi

are as follows:

ṗi = eT
i (t)

ρi

�i(yi(t))
(
πi(t) – ξi(t)

)
and

q̇i = eT
i (t)

�i

�i(yi(t))
sign

(
πi(t) – ξi(t)

)
, i = 1, 2, . . . , n,

ρi and �i are arbitrary positive constants.

Theorem 3.1 If conditions (H1)–(H3) are supported, the response system (4) with state-
feedback controller (7) can synchronize to the corresponding drive system (1) in a finite-time
if the following assumption holds:

(H4) ω + k1·ω
ω

> (bmax + cmax + Kmax) · nLmax and k2
ω

> (bmax + cmax + Kmax) · nhmax.

Proof Let

V (t) =
1
2

eT (t)e(t) +
n
2

· Lmaxcmax
∫ t

t–τ

eT (s) · e(s) ds,

where e(t) = (e1(t), e2(t), . . . , en(t))T .
Obviously V (t) is C-regular. The derivative of Lyapunov function V (t) can be obtained

along the error system (6) as follows:

dV (t)
dt

= eT (t)ė(t) =
n∑

i=1

eT
i (t)ėi(t)

=
n∑

i=1

eT
i (t)

(

–
(
ai

(
	i

(
yi(t)

))
– ai

(
	i

(
xi(t)

)))
+

n∑

j=1

bij(t)γ ∗
j (t)

+
n∑

j=1

cij(t)γ ∗
j (t – τ ) +

n∑

j=1

∫ +∞

0
Kij(t, s)γ ∗

j (s) ds

–
k1

�i(yi(t))
(
πi(t) – ξi(t)

)
–

k2

�i(yi(t))
sign

(
πi(t) – ξi(t)

)
)

+
n
2

· LmaxcmaxeT (t)e(t) –
n
2

· LmaxcmaxeT (t – τ )e(t – τ )

= –
n∑

i=1

eT
i (t)

(
ai

(
	i

(
yi(t)

))
– ai

(
	i

(
xi(t)

)))
+

n∑

i=1

n∑

j=1

eT
i (t)bij(t)γ ∗

j (t)

+
n∑

i=1

n∑

j=1

eT
i (t)cij(t)γ ∗

j (t – τ ) +
n∑

i=1

n∑

j=1

eT
i (t)

∫ +∞

0
Kij(t, s)γ ∗

j (s) ds

–
n∑

i=1

eT
i (t)k1

1
�i(yi(t))

(
	i

(
yi(t)

)
– 	i

(
xi(t)

))
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–
n∑

i=1

eT
i (t)k2

1
�i(yi(t))

sign
[
	i

(
yi(t)

)
) – 	i

(
xi(t)

)]

+
n
2

· LmaxcmaxeT (t)e(t) –
n
2

· LmaxcmaxeT (t – τ )e(t – τ ). (9)

Based on the definition of function 	(·) and generalized mean value theorem, one can
have

–
n∑

i=1

eT
i (t)

(
ai

(
	i

(
yi(t)

))
– ai

(
	i

(
xi(t)

))) ≤ –
n∑

i=1

eT
i (t)ωei(t). (10)

From assumptions (H1)–(H2), we can obtain that

n∑

i=1

n∑

j=1

eT
i (t)bij(t)γ ∗

j (t) ≤
n∑

i=1

n∑

j=1

∣∣eT
i (t)

∣∣ · ∣∣bij(t)
∣∣ · ∣∣γ ∗

j (t)
∣∣

≤
n∑

i=1

n∑

j=1

∣∣eT
i (t)

∣∣ · ∣∣bij(t)
∣∣ · (Lj

∣∣ej(t)
∣∣ + hj

)

≤ nbmaxLmax
n∑

i=1

eT
i (t)ei(t) + nbmaxhmax

n∑

i=1

n∑

k=1

∣
∣eik(t)

∣
∣, (11)

and

n∑

i=1

n∑

j=1

eT
i (t)cij(t)γ ∗

j (t – τ ) ≤
n∑

i=1

n∑

j=1

∣
∣eT

i (t)
∣
∣ · ∣∣cij(t)

∣
∣ · ∣∣γ ∗

j (t – τ )
∣
∣

≤
n∑

i=1

n∑

j=1

∣∣eT
i (t)

∣∣ · ∣∣cij(t)
∣∣ · (Lj

∣∣ej(t – τ )
∣∣ + hj

)

≤ cmaxLmax
n∑

i=1

n∑

j=1

eT
i (t)ej(t – τ ) + ncmaxhmax

n∑

i=1

n∑

i=1

∣∣eik(t)
∣∣

≤ cmaxLmax

(
n
2

n∑

i=1

eT
i (t)ei(t) +

n
2

n∑

j=1

eT
j (t – τ )ej(t – τ )

)

+ ncmaxhmax
n∑

i=1

n∑

k=1

∣
∣eik(t)

∣
∣. (12)

From condition (H3), similarly we have

n∑

i=1

n∑

j=1

eT
i (t)

∫ +∞

0
Kij(t, s)γ ∗

j (s) ds ≤
n∑

i=1

n∑

j=1

KijeT
i (t)γ ∗

j (s)

≤ nKmaxLmax
n∑

i=1

eT
i (t)ei(t)

+ nKmaxhmax
n∑

i=1

n∑

k=1

∣∣eik(t)
∣∣. (13)
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Moreover, because 	i(·) is strictly monotone increasing, which implies that
sign(	i(yi(t)) – 	i(xi(t))) = sign(yi(t) – xi(t)) = sign ei(t), then we obtain

–
n∑

i=1

eT
i (t)k1

1
�i(yi(t))

(
	i

(
yi(t)

)
– 	i

(
xi(t)

)) ≤ –
n∑

i=1

k1 · ω
ω

eT
i (t)ei(t), (14)

–
n∑

i=1

eT
i (t)k2

1
�i(yi(t))

sign
[
	i

(
yi(t)

)
– 	i

(
xi(t)

)] ≤ –
n∑

i=1

n∑

k=1

k2

ω

∣
∣eik(t)

∣
∣. (15)

Recalling controller (9) and combined with equations (10)–(15), based on the basic in-
equalities of Jensen’s inequality, one can gain

dV (t)
dt

≤ –
[
ω +

k1 · ω
ω

–
(
bmax + cmax + Kmax

) · nLmax

]
·

n∑

i=1

eT
i (t)ei(t)

–
[

k2

ω
–

(
bmax + cmax + Kmax

) · nhmax

]
·

n∑

i=1

n∑

k=1

∣
∣eik(t)

∣
∣

≤ –κ1V (t) – κ2V
1
2 (t). (16)

Then, according to assumption (H4) in this theorem, one can see κ1 > 0 and κ2 > 0, then
we know that the origin of error system (6) is finite-time stable with feedback controller
(7), and the settling time is obtained by

t∗
1 ≤ 2

κ1
ln

κ1V 1
2 (0) + κ2

κ2
=

2
κ1

ln
κ1‖e(0)‖2 + κ2

κ2
. �

Theorem 3.2 If conditions (H1)–(H3) are supported, then the response system (4) with
adaptive controller (8) can synchronize to the corresponding drive system (1).

Proof In this proof, we let the new Lyapunov functional be as follows:

V (t) =
1
2

n∑

i=1

eT
i (t)ei(t) +

n
2

· Lmaxcmax
∫ t

t–τ

eT (s) · e(s) ds

+
n∑

i=1

1
2ρik

(pi – θ )2 +
n∑

i=1

1
2�i

(qi – ϑ)2,

where θ and ϑ are positive constants to be determined.
The derivative of Lyapunov function V (t) can be obtained along the error system (6) as

follows:

V̇ (t) =
n∑

i=1

eT
i (t)

[

–
(
ai

(
	i

(
yi(t)

))
– ai

(
	i

(
xi(t)

)))
+

n∑

j=1

bij(t)γ ∗
j (t) +

n∑

j=1

cij(t)γ ∗
j (t – τ )

+
n∑

j=1

∫ +∞

0
Kij(t, s)γ ∗

j (s) ds –
pi

�i(yi(t))
(
πi(t) – ξi(t)

)

–
qi

�i(yi(t))
sign

(
πi(t) – ξi(t)

)
]
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+
n∑

i=1

(pi – θ )eT
i (t)

1
�i(yi(t))

(
πi(t) – ξi(t)

)

+
n∑

i=1

(qi – ϑ)eT
i (t)

1
�i(yi(t))

sign
(
πi(t) – ξi(t)

)

+
n
2

· LmaxcmaxeT (t)e(t) –
n
2

· LmaxcmaxeT (t – τ )e(t – τ ). (17)

Since

–
n∑

i=1

eT
i (t)

θ

�i(yi(t))
(
	i

(
yi(t)

)
– 	i

(
xi(t)

)) ≤ –
n∑

i=1

θ · ω
ω

eT
i (t)ei(t), (18)

–
n∑

i=1

eT
i (t)

ϑ

�i(yi(t))
sign

[
	i

(
yi(t)

)
– 	i

(
xi(t)

)] ≤ –
n∑

i=1

n∑

k=1

ϑ

ω

∣∣eik(t)
∣∣. (19)

It follows from (18)–(19), recalling (10)–(13), one can deduce that

dV (t)
dt

≤ –
[
ω +

θ · ω
ω

–
(
bmax + cmax + Kmax

) · nLmax

]
·

n∑

i=1

eT
i (t)ei(t)

–
[

ϑ

ω
–

(
bmax + cmax + Kmax

) · nhmax

]
·

n∑

i=1

n∑

k=1

∣∣eik(t)
∣∣

≤ –κ3V (t) – κ4V
1
2 (t). (20)

Based on the definition of θ and ϑ , we can choose suitable values of θ and ϑ to make κ3 =
ω + θ ·ω

ω
– (bmax + cmax + Kmax) · nLmax > 0 and κ4 = ϑ

ω
– (bmax + cmax + Kmax) · nhmax > 0. Then

we prove that the origin of error system (6) is finite-time stable with adaptive controller
(8), and the settling time is obtained by

t∗
1 ≤ 2

κ3
ln

κ3V 1
2 (0) + κ4

κ4
=

2
κ3

ln
κ3‖e(0)‖2 + κ4

κ4
. �

Remark 3.3 This paper considers that the distributed delays are unbounded, which is
more difficult to verify than the bounded case. In the pervious results, the delay kernels
satisfy

Kij =

⎧
⎨

⎩
1, 0 ≤ t ≤ τij,

0, t > τij,

where τij > 0 are constants, then the CGNNs can be rewritten as a special case in this
paper.

Remark 3.4 In fact, the finite time synchronization problem is very complex and difficult
to calculate when there exist the discontinuity phenomenon, mixed delays, and switching
controllers in the traditional neural network model. This paper overcomes these difficul-
ties and has some innovation. By using Theorem 3.1 and Theorem 3.2, the finite-time syn-
chronization problem can be generalized, that is, by choosing the appropriate controller,
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the stability time of the synchronization error system can be estimated more easily. On the
other hand, the controller selected in this paper is more widely used as the estimation of
stability time. It provides a theoretical basis for solving complex problems in engineering
application.

4 Examples
Example 4.1 Consider the following two-dimensional discontinuous CGNNs with and
mixed delays:

dπi(t)
dt

= –�i
(
πi(t)

)
[

ai
(
πi(t)

)
–

n∑

j=1

bij(t)fj
(
πj(t)

)
–

n∑

j=1

cij(t)fj
(
πj

(
t – τij(t)

))

–
n∑

j=1

∫ +∞

0
Kij(t, s)fj

(
πj(s)

)
ds – Ii(t)

]

, i = 1, 2. (21)

Let �1(π1(t)) = 0.5 + 0.1 cos(π1(t)), �2(π2(t)) = 0.5 – 0.1 sin(π2(t)), a1(π1(t)) = –0.4π1(t),
a2(π2(t)) = –0.4π2(t), b11(t) = b22(t) = 0.1, b12(t) = b21(t) = 0, c11(t) = c22(t) = 0.2, c12(t) =
c21(t) = 0, K11 = K12 = K21 = K22 = 1, and I1(t) = 0.2 sin

√
2t + 0.1 sin

√
5t, I2(t) = 0.3 ×

cos
√

3t – 0.2 sin 2t.
The two neuron activation functions which satisfy the two conditions (H1)–(H2) are

designed as follows:

f1(·) = f2(·) =

⎧
⎨

⎩
x – 0.1, x < 0,

x + 0.1, x ≥ 0.

Let Lmax = hmax = 1, then we consider the control rule ui(t) = –k1(πi(t) – ξ (t)) –
k2 sign(πi(t) – ξ (t)) with k1 = k2 = 3.5. It is easy to check that

2.7 = ω +
k1 · ω

ω
>

(
bmax + cmax + Kmax

) · nLmax = 2.6,

5.8 =
k2

ω
>

(
bmax + cmax + Kmax

) · nhmax = 2.6,

which show that the assumption in Theorem 3.1 is satisfied. Figure 1 and Fig. 2(c) indicate
the simulation results.

Example 4.2 Consider the following discontinuous CGNNs with mixed delays:

dπi(t)
dt

= –�i
(
πi(t)

)
[

ai
(
πi(t)

)
–

n∑

j=1

bij(t)fj
(
πj(t)

)
–

n∑

j=1

cij(t)fj
(
πj

(
t – τij(t)

))

–
n∑

j=1

∫ +∞

0
Kij(t, s)fj

(
πj(s)

)
ds – Ii(t)

]

, i = 1, 2, (22)

where the parameters have the same meanings as in equation (21).
We consider the novel adaptive controller ui(t) = –pi(πi(t) – ξ (t)) – qi sign(πi(t) – ξ (t))

with ṗi = eT
i (t) �i

�i(yi(t)) (πi(t) – ξi(t)), q̇i = eT
i (t) �i

�i(yi(t)) sign(πi(t) – ξi(t)). For CGNNs (22), we
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Figure 1 (a) and (b) show the state trajectories π1(t), ξ1(t) and state trajectories π2(t), ξ2(t) in Example 4.1
and Example 4.2, respectively

Figure 2 (c) Synchronization error trajectories of the drive system and the response system with feedback
controller can be achieved in finite-time in Example 4.1; (d) Synchronization error trajectories of the drive
system and the response system with adaptive controller can be achieved in finite-time in Example 4.2

can choose suitable parameters θ = 3 and ϑ = 3 to make the condition in Theorem 3.2 be
satisfied. With given random initial state, Fig. 2(d) shows that the two state trajectories ap-
proach the zero solution, then the simulation result is presented to illustrate the obtained
theoretical findings.

5 Conclusions
The finite-time synchronization problem of discontinuous CGNNs with mixed delay is
studied in this brief. By using the Lyapunov functional framework, new mathematical
analysis techniques, Filippov theory, and inequality techniques, a new state feedback con-
troller and an adaptive controller are constructed to realize finite-time synchronization
of complex neural networks. Compared with previous results, we overcome the problem
of non-Lipschitz continuity system, so how to deal with the right discontinuous system
is a challenge. Finally, two numerical simulations verify the advantages of the proposed
switching control method and mathematical calculation method. Future research will fo-
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cus on the analysis of neural networks with time delay and the design of more effective
coupling schemes between different neurons in the system.
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