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Abstract
This paper deals with boundary value problems for local and nonlocal Laplace
operator in 2D with exponential nonlinearities, the so-called Liouville type equations.
They include the mean field equation and other equations arising in the statistical
mechanics. Existence results into an explicit form for the Dirichlet problem in the unit
disc B1 ⊂ R2 and in the participation of positive parameters in the right-hand sides are
proved in Theorems 2 and 3. Theorem 2 is illustrated by several examples including
an application to the differential geometry. In Theorem 4 global radial solution of the
Cauchy problem with constant data at ∂B1 and under appropriate conditions is
constructed. It develops logarithmic singularities for r = 0, r =∞. An illustrative
example to Theorem 4 in the case of two exponents is given at the end of the paper.
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1 Introduction
Following the pioneering work [15] of L. Onsager (1903–1968) in the frames of the sta-
tistical mechanics of two-dimensional point vortices and the mean field equations of hy-
drodynamic turbulence in equilibrium, different types of nonlocal elliptic equations with
exponential type nonlinearities recently have been intensively studied. In what follows we
propose several papers on the subject [2–4, 6, 9, 16, 19, 25–27, 30]. Very often in investigat-
ing these boundary value problems (BVP) variational methods are applied (for example,
see [12, 14]). The advantage of this approach is that one can work in bounded smooth
domains in the plane. Our aim here is to find (mainly) radial solutions to the boundary
value problems for local and nonlocal PDE of Liouville type. To do this, we shall use the
machinery of the classical ODE (see [1, 21–23, 29]) as in several cases the solutions of our
PDE with constant data on the unit circumference S1 = ∂B1 = {|x| = 1, x ∈ R2} are radi-
ally symmetric [10, 24]. The coefficients of the equations could be radial too. Topological
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methods are also applied in the investigation of elliptic PDE with exponential nonlineari-
ties, see [13].

We shall consider two nonlocal BVPs which do not possess radial solutions.

2 Preliminary definitions and formulation of the main results
In order to formulate the corresponding results, we propose several preliminary notes
from the complex analysis. Consider the analytic function f (z) in B1 = {z ∈ C1 : |z| < 1},
f ∈ C0(B̄1), f |S1 �= 0. Then f (z) can vanish in finitely many points α1, . . . ,αn of the unit disc
B1. Certainly, f (z) =

∏n
j=1(z – αj)h(z), where the analytic function h(z) in B1 is such that

h ∈ C0(B̄1), h|B̄1 �= 0. The zeros of f (z) are counted with their multiplicities, i.e., multiple
zeros are admissible too.

Proposition 1 Suppose that the analytic function f in B1 is nontrivial and |f ||S1 = 1. Then
f has finitely many zeros αj (at least one) in B1 and

f (z) = eiγ
n∏

j=1

z – αj

1 – ᾱjz
, γ = const ∈ R1. (1)

Conversely, each analytic function f in B1+ε , ε > 0 of the form (1) satisfies the equality
|f ||S1 = 1. The function B(z) = eiγ ∏n

j=1
z–αj

1–ᾱjz
is called finite Blaschke product and α∗

j = 1
ᾱj

,
αj �= 0, αj ∈ B1 is the inverse point of αj with respect to S1. One can see [11, 19, 31] that
B verifies the inequality |B′||S1 > 0, and if 0 < |αj| < 1 and

∑n
j=1(α∗

j – αj) �= 0, n ≥ 4, then B′

possesses at least one zero in B1 and at least one zero in C1 \ B̄1.
Assume that

�u +
∣
∣F(z)

∣
∣2eu = 0 in B1, (2)

F(z) being an analytic function in B̄1, F �= 0 there. Suppose that �(z) is an arbitrary analytic
function in B1, � ∈ C0(B̄1) and �′ �= 0 in B̄1. Then it is well known [19] that the general
classical solution of (2) is given by the formula

u = log
8|�′(z)|2

|F(z)|2(1 + |�(z)|2)2 . (3)

This is the famous result of Liouville (1853) shown when F ≡ 1.
In the case when �′(z) vanishes at finitely many points {βj}n

j=1 ⊂ B1 and F(z) vanishes at
the points {γj}m

j=1 ⊂ B1, the generalized solution of (2) is defined as follows:

�u +
∣
∣F(z)

∣
∣2eu = 4π

( n∑

j=1

δ(z – βj) –
m∑

j=1

δ(z – γj)

)

, (4)

where u is a measurable function (distribution) in the unit disc, the Dirac delta function
δ(z – βj) = δ(x – Reβj)

⊗
δ(y – Imβj), z = x + iy and (4) is satisfied in the distribution sense.

The generalized solution is given by the same formula (3).
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We shall study now the nonlocal BVP

�u + λ
∣
∣B′(z)

∣
∣2 eu

∫
B1

eu dx
= 0 in B1 \ {α1, . . . ,αn},λ > 0

u|∂B1 = 0

(5)

and

�u + λ
∣
∣B′(z)

∣
∣2 eu

∫
B1

eu|B′|2 dx
= 0 in B1 \ {α1, . . . ,αn},λ > 0

u|∂B1 = 0.

(6)

To specify the formulation of our first result, put

B(z) = eiγ
k∏

j=1

(
z – αj

1 – ᾱjz

)kj

, kj ≥ 1,
k∑

1

kj = n. (7)

λ > 0 is the spectral parameter of our nonlocal nonlinear BVP (5), (6). We use the notation
B(z) (coming from Blaschke) instead of f (z).

Theorem 2 (a) Consider BVP (5) and suppose that at least one kj of (7) is ≥ 2. Then, for
each value λ ∈ (0,∞), BVP (5) has a solution. Otherwise, i.e., if k1 = · · · = kn = 1, there
exists λ0 > 0 and such that (5) possesses a solution only for the values of λ ∈ (0,λ0) (finite
spectrum). The solution u is not unique.

(b) BVP (6) has a finite spectrum 0 < λ < λ0 for each kj ≥ 1. Therefore, a solution of (6)
exists only for these values of λ. We shall write down the exact value of λ0. Moreover, the
solutions in general are neither radial nor uniquely determined. They can be written into
an explicit form.

Remark 1 Assume that at least one αj ∈ B1 \ {0}. Then the corresponding solution u is
nonradial. u is radial if α1 = 0, k1 ≥ 1, and kj = 0 for j ≥ 2.

We shall illustrate Theorem 2 by two examples of the mean field equations. Theo-
rem 2 can be applied to the theory of minimal, non-super conformal degenerate two-
dimensional surfaces M2 in R4 (see De Azevedo and Guadalupe [20, 28]). More precisely,
the Gaussian curvature K and the normal curvature χ satisfy the degenerate nonlinear
system of PDE (see [28]):

|B|2(K2 – χ2)1/4
� log |χ – K | = 2(2K – χ ),

|B|2(K2 – χ2)1/4
� log |χ + K | = 2(2K + χ ),

K2 > χ2, K < 0.

(8)

Our next result deals with two spectral parameter BVPs, namely

�u + λ1
eu/2

∫
B1

eu/2 dx
+ λ2|x|2 eu

∫
B1

eu dx
= 0 in B1,λ1 > 0,λ2 > 0

u|∂B1 = 0,

(9)
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�u + λ1
eu/2

∫
B1

eu/2 dx
+ λ2|x|2 eu

∫
B1

|x|2eu dx
= 0 in B1,λ1 > 0,λ2 > 0

u|∂B1 = 0.

(10)

Theorem 3 Consider BVP (9). It has a radial solution u(r,μ), μ = (μ1,μ2), μ1 > 0, μ2 > 0
of the form

u = log
B2

0(μ)

[a0 + μ1B0
8 r2 + B2

0r4

32a0
( μ2

1
8 + μ2)]2

, (11)

where a0 > 0 is a parameter, B0(μ) > 0 is a function of (μ1,μ2) and μ ∈ �̃ = {0 < μ1 ≤ 8, 0 <
μ1 ≤ 4,μ1 + μ2

2 ≤ 1
4 } satisfy the transcendental system

0 < λ1 = F1(μ1,μ2),

0 < λ2 = F2(μ1,μ2).
(12)

The functions F1, F2 are written explicitly in what follows.

The solution u is obtained by putting the inverse functions μ1 = G1(λ1,λ2), μ2 =
G2(λ1,λ2) of (12) into (11). The above 2 × 2 mapping is smoothly invertible for almost
all points (λ1,λ2).

The study of (10) is left to the reader.
We shall find the solutions of (8) vanishing at αj, as B = B(z) is the Blaschke finite product.

Our next step is to study the non-correct Cauchy problem in the unit disc for the Laplace
operator equipped with a linear combination of exponential nonlinearities with radial co-
efficients. The notion of correct Cauchy problem contains the existence of a unique solu-
tion and its continuous dependence on the initial data. The Cauchy problem for Laplace
operator with initial data for t = 0 is non-correct.

Theorem 4 (a) Consider the local non-correct Cauchy problem

�u +
n∑

j=1

μj|x|ρj eκju = 0 in B1, (13)

μj > 0, κ1 > κ2 > · · · > 0 and either ρj′ ≥ 1 for some j′ or ρj′′ = 0, u|∂B1 = u0 = const, ∂u
∂n |∂B1 =

u1 = const.
Under the condition
(i) ρ1+2

κ1
= ρ2+2

κ2
= · · · = ρn+2

κn
= –A > 0,

Equation (13) possesses for 1 ≥ r > 0 a unique smooth radial solution u(r,μ), μ =
(μ1, . . . ,μn) which can be prolonged globally for r > 1. The function u has logarithmic sin-
gularities at r = 0 and r = ∞ of the following types: u ∼ log rA–

√
2C for r → ∞, where C(μ)

depends also on (u0, u1) and is written explicitly, u ∼ log rA+
√

2C , r → 0.
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(b) The nonlocal BVP

�u +
n∑

j=1

λj|x|ρj
eκju

∫
B1

eκju dx
= 0 in B1,λj > 0

u|∂B1 = u0,
∂u
∂n

|∂B1 = u1

(14)

under the requirements (i) and κj
√

2C(μ) > ρj, j = 1, . . . , n, has the solution u(r,μ) con-
structed in (a), where λ = (λ1, . . . ,λn) satisfies the transcendental system

0 < λj = μj

∫

B1

eκju dx ≡ Fj(μ), 1 ≤ j ≤ n, (15)

the corresponding integrals in Fj(μ) are convergent, and the symbols μj = μj(λ), 1 ≤ j ≤ n
stand for the solutions of system (15).

Then u = u(r,μ(λ)) verifies (14).

As it is evident, the solvability of (15) is rather complicated, uneffectively. As is concerns
the solution u of (13), it can be written as u = w+ A log r, log r = 1√

2

∫ w(r)
w0

dz√
C–

∑n
1 Bje

κjz , where

Bj = μj
κj

> 0 and 2C = w2
1 + 2

∑n
1 Bjeκjw0 , w(0) = u0, w′(0) = u1 – A.

We shall illustrate Theorem 4 (a), case κ1 = 1, κ2 = 1/2, ρ1 = 2, ρ2 = 0 ⇒ A = –4, by a
solution u that is expressed as a logarithm of the radial function of r1/2

√
2C . In the case

κ1 = 1, κ2 = 2, κ3 = 3, ρ1 = 1, ρ2 = 4, ρ3 = 7 ⇒ A = –3, the solution w(r,μ) is expressed by
Legendre’s elliptic functions of first and third kind [5].

The paper is organized as follows. In Sect. 3 Theorem 2 is proved and radial and nonra-
dial solutions are found with applications to geometry. In Sect. 4 Theorem 3 is shown. In
Sect. 5 Theorem 4 is proved and an illustrative example is proposed. The solution is given
explicitly as a rational function of two exponents.

3 Proof of Theorem 2 and an application to the differential geometry
The main idea of the proof is to localize

∫
B1

eu dx, respectively
∫

B1
|B′(z)|2eu dx, near

the zeroes αj of B(z). Thus, take � = CB(z), C = const > 0 in (3), i.e., F = �′(z) ⇒ u =
log 8C2

λ(1+C2|B|2)2 . C will be determined further on, and it takes two values: C+(λ), C–(λ). So

u|∂B1 = 0 ⇐⇒ 1 = 2
√

2C√
λ(1+C2)

as |B(z)||S1 = 1. Therefore, C±(λ) =
√

2(1±
√

1– λ
2 )√

λ
, 0 < λ ≤ 2 ⇒

C+(λ) > C–(λ) for 0 < λ < 2, C±(2) = 1. Therefore, C+(λ) ∼ 2
√

2
λ

, λ → 0, C–(λ) ∼
√

2
4

√
λ,

λ → 0, i.e., C–(λ) is bounded in (0, 2].
In the case (5) we denote λ

μ
=

∫
B1

eu dx, and in the case (6) we put λ
μ

=
∫

B1
|B′(z)|2eu dx,

μ > 0. So (5), (6) take the same form but with different μ > 0:

�u + μ
∣
∣B′(z)

∣
∣2eu = 0 in B1,

u|S1 = 0,
(16)

�u + μ
∣
∣B′(z)

∣
∣2eu = 0 in B1,

u|S1 = 0.
(17)
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The solutions of (16), (17) are given by the formula

u = log
8C2±(μ)

μ(1 + C2±(μ)|B|2)2 (18)

and C±(μ) =
√

2
μ

(1 ± √
1 – μ/2), 0 < μ ≤ 2, C+(μ) > C–(μ) for 0 < μ < 2, C±(2) = 1. More-

over, C′
–(μ) > 0 for 0 < μ < 2, while C′

+(μ) < 0, i.e., 0 < μ1 < μ2 < 2 ⇒ C–(μ1) �= C–(μ2) and
C+(μ1) �= C+(μ2).

To solve (5), (6) we must solve the transcendental equations

λ

μ
=

∫

B1

eu dx =
8C2

μ

∫

B1

dx
(1 + C2|B|2)2 , (19)

λ

μ
=

∫

B1

|B′|2 dx
(1 + C2|B|2)2 .

8C2

μ
, (20)

i.e.,

λ

8
= C2

±(μ)
∫

B1

dx
(1 + C2|B|2)2 = G1,±(μ), 0 < μ ≤ 2, (21)

λ

8
= C2

±(μ)
∫

B1

|B′|2 dx
(1 + C2|B|2)2 = G2,±(μ), 0 < μ ≤ 2. (22)

As we mentioned,

∫

B1

(. . .) =
m∑

j=1

∫

Bε(αj)
(. . .) +

∫

B1\∪Bε (αj)
,

where Bε(αj) = {z : |z – αj| ≤ ε}, 0 < ε � 1.
As in B1 \ ∪Bε(αj) = D, the function |B| is bounded, i.e., 0 < C0 < |B(z)| ≤ C1 and |B′| is

bounded, we conclude that
∫

D(. . .) → 0 for μ → 0. In fact C2
–(μ) ∼ 1

8μ, μ → 0. In the case
C2

+(μ) ∼ 8
μ

, μ → 0 we have again that
∫

D(. . .) → 0 for μ → 0. As it concerns
∫

Bε(αj)
(. . .),

after a translation it is reduced to the estimation of the integrals

Ij = C2
±(μ)

∫

Bε(0)

dx
(1 + C2±|z|2kj |hj(z)|2)2

, hj(0) �= 0, (23)

respectively

IIj = C2
±(μ)k2

j

∫

Bε(0)

|z|2kj–2|gj(z)|2 dx
(1 + C2±|z|2kj |hj(z)|2)2

, (24)

where z = x1 + ix2, |z|2 = x2
1 + x2

2, gj(0) �= 0, gj, hj being analytic. De facto gj(z) = gj(αj + reiϕ)
etc. We shall study only the case IIj as it seems to be more complicated. The case Ij is
considered in a similar way. Thus,

IIj±(μ) = C2
±(μ)k2

j

∫ ε

0

∫ 2π

0

r2kj–1|gj(reiϕ)|2 dr dϕ

(1 + C2±(μ)r2kj |hj(reiϕ)|2)2
. (25)
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One can easily see that G1–(+0) = G2–(+0) = 0, G1±(2) =
∫

B1
dx

(1+|B|2)2 , G2±(2) =
∫

B1
|B′|2 dx

(1+|B|2)2 .
Consequently, we must find G2+(0).

The change rkj C+ = z in the integral II+(μ) leads to

IIj+(μ) = kj

∫ ε
kj C+

0

∫ 2π

0

z|gj( z
1
kj

C
1/kj
+

eiϕ)|2 dz dϕ

(1 + z2|hj(z
1
kj C1/kj

+ eiϕ)|2)2
(26)

→μ→0 kj
∫ ∞

0
∫ 2π

0
z dz dϕ|gj(0)|2
(1+z2|hj(0)|2)2 = π

|gj(0)|2
|hj(0)|2 kj according to the Lebesgue dominated conver-

gence theorem.
Conclusion G2+(0) = π

∑m
j=1 kj

|gj(αj)|2
|hj(αj)|2 .

Therefore, μ ∈ (0, 2) ⇒ G2–(0) = 0, G2–(2) = G2+(2) =
∫

B1
|B′|2 dx

(1+|B|2)2 , G2+(0) = π
∑m

1 kj ×
|gj(αj)|2
|hj(αj)|2 .

For BVP (6), the spectral parameter λ ∈ (0, 8G2±(2)] ∪ (8G±(2), 8G2+(0)).
In case (5),

λ ∈ (0, 8G1±(2)] ∪
(

8G1±(2),

{∞ if at least one kj ≥ 2
8π

∑n
1

1
|hj(αj)|2 , k1 = · · · = kn = 1

})

(G1±(2) =
∫

B1
dx

(1+|B|2)2 ).
Theorem 2 is proved.
Solving the transcendental Eqs. (21), (22), finding μ = μ(λ) ∈ (0, 2], and inserting it in

u± = log
8C2±(μ)

μ(1 + C2±(μ)|B(z)|2)2 ,

we obtain the solutions of our nonlocal nonlinear BVP (5), (6). The nonuniqueness of the
solutions of (5), (6) was established in the considerations for C±(μ) after formula (18).

We give several examples.

Example 1 Consider the nonlocal BVP

�u + λ
eu

∫
B1

eu dx
|x|2 = 0 in B1,λ > 0

u|∂B1 = 0.

Then the spectral parameter λ ∈ (0,∞) = (0, 8π + 4π2] ∪ (8π + 4π2,∞). The mapping

λ = 64πC
∫ 1

0

r dr
(C + r4)2 , (27)

where C = C±(μ) = 16–μ±16
√

1–μ/8
μ

, μ ∈ (0, 8), is invertible in both subintervals (0, 8π + 4π2]
and (8π + 4π2, +∞), μ = μ(λ) and the solutions are u± = log 32C±(μ)

μ(C±+r4)2 .
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Example 2

�u + λ
|x|2eu

∫
B1

|x|2eu dx
= 0 in B1,λ > 0

u|∂B1 = 0.

Then λ ∈ (0, 16π ) = (0, 8π ] ∪ (8π , 16π ), the mapping λ = 8π

1±√
1–μ/8 is invertible in both

subintervals, 0 < μ ≤ 8 and u± = log 32C±
μ(1+C±r4) . More precisely, μ = λ

π2 (2π – λ
8 ).

Example 3 To find solutions of system (8), we put 0 > K – χ = –eu, 0 > K + χ = –ev ⇒ K =
– eu+ev

2 , χ = eu–ev

2 . Thus, (8) takes the form

|B|e u+v
4 �u = –

(
3eu + ev),

|B|e u+v
4 �v = –

(
eu + 3ev).

(28)

Put p = 3u–v
4 , q = 3v–u

4 and rewrite (28) as

|B|�u = –
(
3ep + eq),

|B|�v = –
(
ep + 3eq).

(29)

Thus,

|B|�p = |B|3�u – �v
4

= –2ep,

|B|�q = –2eq.
(30)

This way system (29) reduces to two scalar equations:

|B|�p + 2ep = 0,

|B|�q + 2eq = 0.
(31)

Put the extra condition p|∂B1 = 0, q|∂B1 = 0. Then with μ = 2, � = C1z, � = C2z, p =
log

4C2
1 |B|

(1+C2
1 |z|2)2 , q = log

4C2
2 |B|

(1+C2|z|2)2 , C1 > 0, C2 > 0, i.e., C1 = 1, C2 = 1. Consequently, u = q+3p
2 ,

v = p+3q
2 and u = log 16|B|2

(1+|z|2)4 , v = log 16|B|2
(1+|z|2)2 .

This way we obtain that K = – 16|B|2
(1+|z|2)4 , χ = 0. Certainly, avoiding the condition p|∂B1 =

q|∂B1 = 0, we shall obtain a two-parametric family of solutions of our system:

K =
–8|B|2C1C2

(1 + C2
1 |z|2)(1 + C2

2 |z|2)

(
C2

1
(1 + C2

1 |z|2)2 +
C2

2
(1 + C2

2 |z|2)2

)

,

χ =
8|B|2C1C2

(1 + C2
1 |z|2)(1 + C2

2 |z|2)

(
C2

1
(1 + C2

1 |z|2)2 –
C2

2
(1 + C2

2 |z|2)2

)

,

C1 > 0, C2 > 0; B(αj) = 0 ⇒ K(αj) = 0, χ (αj) = 0.
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4 Proof Theorem 3
To begin with, we shall find a radial solution of the Liouville equation containing two
exponential nonlinearities (see [17]):

�u + λ1eu/2 + λ2|x|2eu = 0 in B1,λ1 > 0,λ2 > 0. (32)

We shall look for a solution of (32) having the form u = log(B2
0ϕ

2A) ⇒ eu = B2
0ϕ

2A, eu/2 =
B0ϕ

A, B0 > 0.
Evidently,

ϕϕ′′ –
(
ϕ′)2 +

ϕϕ′

r
= –

1
2A

(
λ1B0ϕ

A+2 + λ2B2
0ϕ

2A+2r2), 0 ≤ r < 1. (33)

We take A = –1 ⇒ – 1
2A = 1

2 ⇒ ϕA+2 = ϕ, 2A + 2 = 0.
Assume that ϕ(r) = a0 + a2r2 + a4r4, ai being unknown constants, a0 > 0 and such that

ϕ(r) > 0 for r ≥ 0. Thus,

ϕ

(

ϕ′′ +
ϕ′

r
–

λ1B0

2

)

–
(
ϕ′)2 =

λ2B2
0

2
r2. (34)

Inserting the expression for ϕ(r) into (34) and equalizing the coefficients in front of the
same powers of r in the left- and right-hand sides of (34), we get

a2 =
λ1B0

8
, a4 =

4a2
2 + λ2

2 B2
0

16a0
=

B2
0

32a0

(
λ2

1
8

+ λ2

)

, (35)

where a0 > 0 and B0 are parameters.
Then the radial solution u of (32) can be written as a two-parameter family of smooth

functions:

u = log
B2

0

(a0 + λ1B0
8 r2 + B2

0r4

32a0
( λ2

1
8 + λ2))2

. (36)

We require a0 + λ1B0
8 r2 + B2

0r4

32a0
( λ2

1
8 + λ2) > 0 for each r ≥ 0. Having in mind that the discrim-

inant of that polynomial �1 = – 1
8 B2

0λ2 < 0, we conclude that the latter condition holds. To
solve the Dirichlet problem u|∂B1 = 0 for (32), we must have

B0 = a0 +
λ1B0

8
+

B2
0

32a0

(
λ2

1
8

+ λ2

)

, (37)

i.e., we obtain a quadratic equation with respect to B0 > 0

B2
0( λ2

1
8 + λ2)

32a0
+ B0

(
λ1

8
– 1

)

+ a0 = 0. (38)

We suppose at first that the discriminant of (38) �2 = ( λ1
8 – 1)2 – 1

8 ( λ2
1

8 + λ2) ≥ 0, i.e.,

1 ≥ 1/4
(

λ1 +
λ2

2

)

. (39)
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In this case (38) has two real roots of the same sign. That is why we assume that

0 < λ1 ≤ 8. (40)

According to (39), 0 < λ1 < 4, 4 ≥ λ1 + λ2
2 , 0 < λ2 < 8.

So the solution B0 of (38) is

B01,2(λ1,λ2) = 16a0
1 – λ1

8 ±
√

1 – 1
4 (λ1 + λ2

2 )
λ2

1
8 + λ2

, a0 > 0. (41)

Consequently, (36) with B01,2 expressed by (41) gives us a radial solution of the Dirichlet
problem u|∂B1 = 0 for (32).

This is the Dirichlet BVP for nonlocal Liouville equation with two exponential nonlin-
earities (deterministic problem):

�u + λ1
eu/2

∫
B1

eu/2 dx
+ λ2|x|2 eu

∫
B1

eu dx
= 0 in B1,λ1 > 0,λ2 > 0,

u|∂B1 = 0.

(42)

Denote 0 < μ1 = λ1∫
B1

eu/2 dx , 0 < μ2 = λ2∫
B1

eu dx , i.e.,

�u + μ1eu/2 + μ2|x|2eu = 0 in B1

u|∂B1 = 0.
(43)

We studied before this local Dirichlet BVP (32). The only difference between (32) and
(43) is that we have to write μ1, μ2 instead of λ1, λ2 in formula (36) for the radial solution
of (43). Our last step is to compute the integrals

I1 =
∫

B1

eu/2 dx > 0, I2 =
∫

B1

eu dx (44)

by using appropriate formulas from [8]. Thus,

λ1

μ1
= I1 = 2πB0

∫ 1

0

r dr
(a0 + a2r2 + a4r4)

.

The change y = r2, a2
2 – 4a0a4 < 0, a0 > 0, a2 > 0, a4 > 0 leads to

I1 =
πB0√

K

[

arctg
a4√

K

(

1 +
a2

2a4

)

– arctg
a2

2
√

K

]

, (45)

where a2 = μ1B0
8 , a4 = B2

32a0
( μ2

1
8 +μ2), B01,2(μ1,μ2) = 1– μ1

8 ±
√

1– 1
4 (μ1+ μ2

2 )
μ2

1
8 +μ2

16a0, K = a0a4 – a2
2

4 =

B2
0μ2
32 .
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This way we obtain that

λ1 = F1(μ1,μ2)

=
8πμ1√

2μ2

[

arctg

(B0( μ2
1

8 + μ2)
4a0

√
2μ2

(

1 +
2μ1a0

B0( μ2
1

8 + μ2)

))

– arctg
μ1

2
√

2μ2

]

(46)

in the open triangle R = {(μ1,μ2) : 0 < μ1 < 4, 0 < μ2 < 8, 4 > μ1 + μ2
2 }.

Compute now the integral I2 [8]:

I2(r) = πB2
0

∫ dr2

(a0 + a2r2 + a4r4)2 .

One can easily see that

I2 = I2(1) – I2(0)

=
16π

μ2

[ 1 + 2μ1a0

B0(
μ2

1
8 +μ2)

(1 + 2μ1a0

B0(
μ2

1
8 +μ2)

) + 32μ2a2
0

B2
0(

μ2
1

8 +μ2)

+
B0( μ2

1
8 + μ2)

4a0
√

2μ2
arctg

((

1 +
2μ1a0

B0( μ2
1

8 + μ2)

)B0( μ2
1

8 + μ2)
4a0

√
2μ2

)

–
2μ1a0/B0( μ2

1
8 + μ2)

32μ2a2
0

B2
0(

μ2
1

8 +μ2)2
+ 4μ2

1a2
0

B2
0(

μ2
1

8 +μ2)2

–
B0( μ2

1
8 + μ2)

4a0
√

2μ2
arctg

μ1

2
√

2μ2

]

. (47)

Certainly, B0( μ2
1

8 + μ2) = 16a0(1 – μ1
8 ±

√
1 – 1/4(μ1 + μ2

2 )), and the denominator of the

third term in (47) is 32a2
0(

μ2
1

8 +μ2)

B0(
μ2

1
8 +μ2)

= 32a2
0

B0
. This way we get

λ2

μ2
= I2 ⇒ λ2 = μ2I2 = F2(μ1,μ2) > 0.

To simplify the previous formulas for λ1 = F1(μ1,μ2) and λ2 = F2(μ1,μ2) in R, we shall
use the identity arctgα – arctgβ = arctg α–β

1+αβ
, α > 0, β > 0 and the series development

arctgα = α – α3

3 + α5

5 + · · · , α near 0. The smooth mapping F = (F1, F2) maps R onto
some set R̃ ⊂ R2

λ1,λ2
. The solvability of (42) is reduced via formula (36) with (μ1,μ2) writ-

ten instead of (λ1,λ2) to the invertibility of R F→ R̃. For given (λ1,λ2) ∈ R̃, we must find
(μ1,μ2) ∈ R. To find out (μ1,μ2) into an explicit form is a difficult task. Below we write
L± = 1 – μ1

8 ±
√

1 – 1
4 (μ1 + μ2

2 ) in R and observe that L+ > 0, L– = 0 ⇐⇒ μ1 = μ2 = 0 and

L+L– = μ2
8 + μ2

1
64 > 0. Therefore, L– = μ2/8+μ2

1/64
L+

, 1/2 ≤ L+ ≤ 2 in R̄, L+(0, 8) = 1, L+(0, 0) = 2,
L+(4, 0) = 1

2 .
Depending on the sign ± in L±, we shall write λ1±, λ2±. Put M±(μ1,μ2) = 8μ2 + 8L±μ1 +

μ2
1. Standard but tiresome computations lead to the following formulas:

λ1± =
8πμ1√

2μ2
arctg

16L±
√

2μ2

M±
, (48)
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λ2± = 16π

[ 1 + μ1
8L±

(1 + μ1
8L± )2 + μ2

8L2±

–
μ1

8L±
μ2

8L2±
+ μ2

1
64L2±

+
4L±√
2μ2

arctg
16L±

√
2μ2

M±

]

. (49)

Certainly, 0 < 8μ2 + 8L–μ1 + μ2
1 = 8μ2 + μ1

μ2
8 +

μ2
1

64
L+

+ μ2
1 for (μ1,μ2) �= 0.

Evidently, λ1±, λ2± ∈ C0(μ2 > 0). Fix (μ0
1,μ0

2) �= 0 and consider the cases λ1±. The func-
tion M± is positive near (μ0

1,μ0
2) and therefore is bounded there, i.e., arctg L± 16

√
2μ2

M± =
L± 16

√
2μ2

M± + O(M–2± μ2) near (μ0
1,μ0

2). Thus, limλ1± = 0 for μ1 → μ0
1 > 0, μ2 → 0.

This way we see that λ1±,λ2± ∈ C0(R̄ \ (0, 0)). Moreover, λ2+(μ1 = 0,μ2 > 0) = 16π ×
[ 1

1+ μ2
8L2+

+ 4L+√
2μ2

arctg 2
√

2L+√
μ2

], L+(0,μ2) = 1 +
√

1 – μ2
8 , 0 < μ2 < 8. Thus, limμ2→0 λ2+(0,μ2) =

+∞, λ2+(μ1 = 0,μ2 > 0) ≥ c0 > 0 for 0 < c1 ≤ μ2 < 8, λ2+(μ1 = 0,μ2 = 8) = 16π ( 1
2 + π

4 ),
λ1+(μ1 = 4,μ2 = 0) = 8π , λ2+(μ1 = 4,μ2 = 0) = +0.

To study the behavior of λ1±, λ2± near the origin, we define the paths μ1 = μα
2 , α > 0,

μ2 > 0 leading to 0 in R2
μ1,μ2 . Then

1
8π

√
2
λ1+

(
μα

2 ,μ2
)

= μα–1/2
2 arctg

16
√

2L+

8√
μ2 + 8L+μα–1/2

2 + μ2α
2

. (50)

Standard computations give us that

lim
μ2→0

λ1+
(
μα

2 ,μ2
)

=

⎧
⎪⎪⎨

⎪⎪⎩

16π , 0 < α < 1/2,

8π/
√

2 arctg 2
√

2, α = 1/2,

0, α > 1/2.

The evaluation of limμ2→0 λ2+(μα
2 ,μ2) is technically more complicated. In fact, according

to (49), λ2+(μα
2 ,μ2) = I + II + III and the third term contains arctg 16L+

√
2μ2

M+
. We have to find

limμ2→0 I , limμ2→0 II and limμ2→0 III .
We have to develop II(μα

2 ,μ2) and III(μα
2 ,μ2) in Taylor series taking into account first

several terms (not only one) in the corresponding finite sum. This way we come to the
expression

lim
μ2→0

λ2+
(
μα

2 ,μ2
)

=

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 < α < 1/3,
259

3 , α = 1/3,

+∞, 1/3 < α.

Geometrical visualization of F is given on Fig. 1.
Applying Sard’s theorem to the smooth mapping F in R, we conclude that, for almost

each λ = (λ1,λ2) ∈ R̃, there exists such μ = (μ1,μ2) ∈ R that λ = F(μ) and D(F1,F2)
D(μ1,μ2) �= 0.

Therefore, the mapping F is smoothly invertible near the point μ and μ = F–1(λ). Putting
μ = μ(λ) into (36) with B0 given by (41) we obtain the solution of (32). Certainly, in (36)
and (41) the parameters μ1, μ2 are written instead of (λ1,λ2). The case λ1–, λ2– is left to
the reader. This way Theorem 3 is proved.
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Figure 1 Graphs of F

Possible generalization of Theorem 3 concerns the stochastic Dirichlet problem for (42),
namely

�u +
λ1eu/2 + λ2|x|2eu

∫
B1

(λ1eu/2 + λ2|x|2eu) dx
= 0 in B1,λ1 > 0,λ2 > 0,

u|∂B1 = 0.

(51)

Case (10) with |x|2eu
∫

B1
|x|2eu dx was left to the reader.

5 Proof of Theorem 4 and some applications
At first we shall mention that the nonlocal BVP (14) is reduced to the local Cauchy problem
(13) after the standard change μj = λj

∫
B1

eκju dx
, j = 1, . . . , n.

We are looking for radially symmetric solution u(r) of (13). After the polar change in
R2 :

∣
∣ x1 = r cosϕ

x2 = r sinϕ, r ≥ 0, ϕ ∈ [0, 2π ), we transform (13) into

r2urr + rur +
n∑

j=1

μjrρj+2eκju = 0. (52)

The Euler change r = et , t = log r, t ∈ (–∞,∞) enables us to obtain from (52) the Cauchy
problem

utt +
n∑

j=1

μje(ρj+2)t+κju = 0 for t ∈ (–∞, 0],

u(0) = u0,

ut(0) = urr|r=1 = u1,

(53)

as ∂
∂r = e–t ∂

∂t , ∂2

∂r2 = e–2t( ∂2

∂t2 – ∂
∂t ), u(r) = u(et) ≡ u(t).

Evidently,
∫

B1
eκju dx = 2π

∫ 1
0 reκju(r) = 2π

∫ 0
–∞ eκju(t)+2t dt. Therefore, μj = λj

2π
∫ 0

–∞ eκju+2t dt
,

1 ≤ j ≤ n.
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Put u = w(t) + At, where the constant A is given by (i), Theorem 4 (a). Then (53) is
rewritten as

wtt +
n∑

1

μje(ρj+2)t+κjw(t)+Aκjt = 0, t ≤ 0,

w(0) = u(0) = u0,

w′(0) = u′(0) – A = u1 – A.

(54)

We shall write down w(0) = w0, w′(0) = u1 – A = w1 for simplicity. Condition (i) of Theo-
rem 4 (a) and the notation Bj = μj

λj
> 0 imply: eκju(t)+2t = eκjw(t)–ρjt , t ≤ 0. Therefore,

d
dt

(
w′)2 + 2

n∑

j=1

Bj
d
dt

eκjw(t) = 0,

i.e.,

(
w′)2(t) + 2

n∑

j=1

Bjeκjw(t) = 2C = const,

where 2C = w2
1 + 2

∑n
j=1 Bjeκjw0 > 0 (C = C(w0, w1,μ), μ = (μ1, . . . ,μn)). Consequently,

w′(t) = ±√
2

√
√
√
√C –

n∑

1

Bjeκjw(t), (55)

which implies that

t = ± 1√
2

∫ w(t)

w0

dz
√

C –
∑n

1 Bjeκjz
. (56)

We shall consider in (56) the case with sign “+” in front of the integral. Thus, put

F(y) =
1√
2

∫ y

w0

dz
√

C –
∑n

1 Bjeκjz
, δ = F(0) < 0, if w0 > 0. (57)

Obviously, F ′(y) > 0, F(w0) = 0. The function g(z) = C –
∑n

1 Bjeκjz has the following prop-
erties: g(–∞) = C, g(∞) = –∞, and therefore g(z) has a unique zero at some point z0.
Certainly, w0 < z0 and F(z0) = l =

∫ z0
w0

dz√
2
√

g(z)
> 0 as that integral is convergent for y = z0

and divergent for y = –∞. The mapping F : (–∞, z0] → (–∞, l] is diffeomorphism. More-
over, g(z) ∼ C for y → –∞ implies that t = F(y) ∼ y√

2C for y → –∞. On the other hand, if
z < z0, z ≈ z0, the following relation holds:

F(y) – F(z0) =
∫ y

z0

dz
√

2g(z)
≈

∫ y

z0

=
dz√

2
√

(z0 – z)|g ′(z0)|

= –
√

2(z0 – y)1/2
√|g ′(z0)| , y < z0, F ′(z0) = ∞, F(z0) = l > 0.
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Figure 2 Graphs of F and F–1

The identity t = F(y) implies that there exists a smooth inverse function F–1 of F such
that y = F–1(t), i.e., w(t) = F–1(t), F–1 : (–∞, l] → (–∞, z0], (F–1)′(l) = 0, F(w0) = 0 ⇒ w0 =
F–1(0), y ∼ √

2Ct ⇒ y = F–1(t) ∼ √
2Ct for t → –∞ and y < z0, y ∼ z0 ⇒ F(y) – l ∼

–
√

2
|g′(z0)| (z0 – y)1/2. Thus, y ∼ z0 – |g′(z0)|

2 (t – l)2 near z0.
We can continue smoothly the function F–1(t) in an even way with respect to the point

l, i.e., F–1(l + τ ) = F–1(l – τ ) for each τ ≥ 0. Certainly, the continuation of F–1 satisfies (55).
A geometrical visualization of F , F–1 is given in Fig. 2.

This way we found out the solution w = F–1(t), t ∈ (–∞,∞), w(t) = u(t) – At, w(0) = w0,
w′(0) = w1. Then the solution of (53) we are looking for is u(r,μ, w0, w1):

u = w(t) + At = F–1(log r) + A log r, A < 0, w(r) ∼ √
2C log r, r → 0;

w(r) ∼ –
√

2C log r, r → ∞.

In some cases the integral F(y) can be rewritten in a more appropriate form after the
change ez = γ :

1√
2

∫ y

w0

dz
√

C –
∑n

1 Bjeκjz
=

1√
2

∫ ey

ew0

dγ

γ

√
C –

∑n
1 Bjγ

κj
.

If κj ∈ N or κj
κ1

∈ N, we have polynomial under the integral sign.

Remark 2

∫

B1

eκ1u dx = 2π

∫ 0

–∞
eκ1w+κ1At+2t dt = 2π

∫ 0

–∞
eκ1w(t)–ρ1t dt < ∞

if κ1
√

2C > ρ1, as w(t) ∼ √
2Ct, t → –∞. u is bounded at r = 0 ⇐⇒ √

2C = |A|.

Example 4 Consider the case κ1
κ2

= 2 = ρ1+2
ρ2+2 . The simplest case is κ2 = 1/2, κ1 = 1, ρ1 = 2,

ρ2 = 0, A = –4. Then the solution u of (13) is given by the formula

u = log r–4
[

4Ch(w0)r 1
2
√

2C

(4CB1 + B2
2)r

√
2C + h2(w0) + 2B2h(w0)r

√
2C
2

]2

, (58)
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where h(w0) = 2
√

C
√

Ce–w0 – B1 – B2e– 1
2 w0 + 2Ce– 1

2 w0 – B2; B1, B2 are the coefficients of
the quadratic polynomial participating in

F(y) =
1√
2

∫ y

w0

dz
√

C – B1ez – B2ez/2
,

2C = w2
1 + B1ew0 + B2e

w0
2 . The change p = e z

2 reduces the computation of F(y) to the com-
putation of

∫ dp
p
√

C–B1p2–B2p
(see [8], 380.11, [5]).

The proof of Theorem 4 is completed.
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