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Abstract
In this paper, we study the fractional nonlinear Rayleigh–Stokes equation under
nonlocal integral conditions, and the existence and uniqueness of the mild solution
to our problem are considered. The ill-posedness of the mild solution to the problem
recovering the initial value is also investigated. To tackle the ill-posedness, a
regularized solution is constructed by the Fourier truncation method, and the
convergence rate to the exact solution of this method is demonstrated.
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1 Introduction
Most of fluids in the real world, such as in food products (mayonnaise, mustard, chocolate,
ketchup, butter, cheese, yogurt, etc.), in natural substances (honey, magma, lava, gums,
etc.), in biology (blood, semen, synovia, mucus, etc.), in industry (paint, glue, lubricant,
ink, molten polymer, etc.), in cosmetics (soap solution, toothpaste, cream, silicone, nail
polish, etc.) are treated as non-Newtonian fluids. Therefore, the study on non-Newtonian
fluids is a substantial subject in science and industrial applications. As the Rayleigh–Stokes
problem for an edge, the first problem of Stokes for a non-Newtonian fluid flow past an
impulsively started flat plate has received much attention because of its practical impor-
tance [1, 2]. For a second grade fluid, the equation of motion is of higher order than the
Navier–Stokes equation, because it exhibits all properties of viscoelastic fluids.

Recently, fractional calculus has encountered much success in the description of consti-
tutive relations of viscoelastic fluids. The starting point of the fractional derivative model
of a viscoelastic fluid is usually a classical differential equation which is modified by re-
placing the time derivative of an integer order with a fractional calculus operator. This
generalization allows one to define precisely noninteger order integrals or derivatives.

Moreover, there has currently been a considerable increase in examining fractional par-
tial differential equations (FPDEs). We can list several current remarkable research studies;
for instance, Abdolrazaghi and Razani [3], Behboudi et al. [4], Ding and Neito [5], Agarwal
et al. [6], Baleanu [7], Adiguzel et al. [8–10], Afshari et al. [11], Alqahtani et al. [12], Karap-
inar et al. [13], Abdeljawad et al. [14], Baitiche et al. [15], Ardjouni [16] and the references
therein.
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In this research study, we focus on the Rayleigh–Stokes problem as follows:

⎧
⎨

⎩

∂tu – �u – μ∂α
t �u = F(u), (x, t) ∈ � × (0, T),

u(x, t) = 0, x ∈ ∂�,
(1.1)

associated with the nonlocal integral condition

ξ1u(x, 0) + ξ2

∫ T

0
v(t)u(x, s) ds = g(x), x ∈ �, (1.2)

where ξ1, ξ2 > 0 and ξ 2
1 + ξ 2

2 > 0. Here, u(x, t) is fluid velocity, μ is viscosity, F is a source
function, � is the Laplacian, � ⊂ R

d (d = 1, 2, 3) is a smooth domain with the boundary
∂�, and T > 0 is a given time, g is the final data in L2(�), ∂t = ∂/∂t, and ∂α

t is the Riemann–
Liouville fractional derivative of order α ∈ (0, 1) defined in [17, 18]:

∂α
t u(x, t) =

1
�(1 – α)

∂

∂t

(∫ t

0

u(x, s)
(t – s)α

ds
)

,

where �(.) is the gamma function.
The forward problems for equation (1.1) have been examined in a plenty of studies. For

instance, Zierep and Fetecau [19] discussed the energetic balance in the Rayleigh–Stokes
problem for a Maxwell fluid for several initial and/or boundary conditions. Fetecau and
Zierep [20] found the exact solutions both for the Stokes’ problem and for the Rayleigh–
Stokes problem within the context of the fluids of second grade. Bazhlekova et al. [21] pre-
sented an introduction about an analysis of the Rayleigh–Stokes problem for a generalized
second-grade fluid. The exact solution of the Rayleigh–Stokes problem for a generalized
second grade fluid in a porous half-space with a heated flat plate was considered by Xue
et al. [22]. Exact solutions of the Rayleigh–Stokes equation in the case of homogeneous
initial and boundary conditions was considered by Zhao and Yang [23]. The backward
problems have currently been studied by many mathematicians. Ngoc et al. [24], for in-
stance, pondered the inverse problem for the nonlinear fractional Rayleigh–Stokes equa-
tions. Equation (1.1) associated with Gaussian random noise was examined by Triet et al.
[25], and so forth.

To the best of our knowledge, there are still very few studies on the Rayleigh–Stokes
equation accompanied with nonlocal integral conditions. In comparison with the initial
condition u(x, 0) = f (x) or the final condition u(x, T) = g(x), the nonlocal conditions are of
more significant complexity. Furthermore, it is emphasized that we cannot apply Parseval’s
equality to obtain stable estimates in the Lp space. To tackle this limitation, we need to
develop additional techniques and Sobolev embedding in our study.

This manuscript is structured as follows. An introduction of preliminary results is de-
scribed in Sect. 2; the regularity of the mild solution to the problem in a linear case is
illustrated in Sect. 3. In Sect. 4, the problem recovering the initial value and the conver-
gence of the regularized solution are detailed. The regularity of the mild solution to the
problem in the nonlinear case is mentioned in Sect. 5. Eventually, the conclusion is pre-
sented in Sect. 6.
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2 Preliminary results
We recall the spectral problem as follows:

⎧
⎨

⎩

�φn(x) = –λφn(x), x ∈ �,

φn(x) = 0, x ∈ ∂�,

admitting the eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . with λn → ∞ as n → ∞ (see [26]).
The corresponding eigenfunctions φn ∈ H1

0 (�). For all s ≥ 0, the operator As (here A = –�)
also possesses the following representation:

Ash =
∞∑

n=1

(h,φn)λs
nφn, h ∈ D

(
As) =

{

h ∈ L2(�) :
∞∑

n=1

∣
∣(h,φn)

∣
∣2

λ2s
n < ∞

}

.

Consider on D(As) the norm (noting that λ1 > 0)

‖h‖D(As) =

( ∞∑

n=1

∣
∣(h,φn)

∣
∣2

λ2s
n

) 1
2

, h ∈ D
(
As).

By duality, we can set D(A–s) = (D(As))∗ by identifying (L2(�))∗ = L2(�) and using the so-
called Gelfand triple (see [27]). Then D(A–s) is a Hilbert space with the following norm:

‖h‖D(A–s) =

( ∞∑

n=1

∣
∣〈h,φj〉

∣
∣2

λ–2s
n

) 1
2

,

wherein 〈·, ·〉 denotes the duality bracket between D(A–s) and D(A). For any p ≥ 0, we
define the space

Hp(�) =

{

v ∈ L2(�);
∞∑

n=1

λp
n
∣
∣
〈
v(x),φn(x)

〉∣
∣2 < +∞

}

,

where 〈·, ·〉 is the inner product in L2(�), then H(�) is a Hilbert space with the norm

‖v‖Hp(�) =

( ∞∑

n=1

λp
n
∣
∣
〈
v(x),φn(x)

〉∣
∣2

) 1
2

.

Suppose that problem (1.1) has a solution u which admits the form u(x, t) =
∑∞

n=1〈u(x, t),
φn(x)〉φn(x). From [21, 24], we deduce that the solution of problem (1.1) with the initial
condition u(x, 0) = u0(x) is given by

〈
u(x, t),φn(x)

〉
= Sn,α(t)

〈
u0(x),φn(x)

〉
+

∫ t

0
Sn,α(t – s)

〈
F
(
u(x, s)

)
,φn(x)

〉
ds,

where Sn,α(t) is given by

Sn,α(t) =
∫ ∞

0
e–ztK(n,α, z) dz, (2.1)
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K(n,α, z) =
μ

π

λj sin(απ )zα

(–z + λnμzα cosαπ + λj)2 + (λnμzα sinαπ )2 , (2.2)

and its Laplace transform is given by L(Sn,α(t)) = 1
t+μλntα+λn

. This implies that

u(x, t) =
∞∑

n=1

[

Sn,α(t)
〈
u0(x),φn(x)

〉
+

∫ t

0
Sn,α(t – s)

〈
F
(
u(x, s)

)
,φn(x)

〉
ds

]

φn(x). (2.3)

We can easily see that

un(t) = Sn,α(t)un(0) +
∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds, (2.4)

where Fn(u(s)) = 〈F(u(·, s)),φ(x)〉.
From the equation

ξ1u(x, 0) + ξ2

∫ T

0
v(t)u(x, s) ds = g(x), (2.5)

we have that

ξ1

∞∑

1

un(0)φn(x) + ξ2

∫ T

0
v(t)

( ∞∑

1

un(t)φn(x)

)

dt =
∞∑

1

gnφn(x), (2.6)

where gn = 〈g(·),φ(x)〉.
Thanks to the uniqueness of the Fourier expansion of a function in L2 space, we get

gn = ξ1un(0) + ξ2

∫ T

0
v(t)un(t) dt

= ξ1un(0) + ξ2

∫ T

0
v(t)Sn,α(t)un(0) dt

+ ξ2

∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds dt. (2.7)

By a straightforward computation, we obtain

un(0) =
gn – ξ2

∫ T
0 v(t)

∫ t
0 Sn,α(t – s)Fn(u(s)) ds dt

ξ1 + ξ2
∫ T

0 v(t)Sn,α(t) dt

=
1

ξ1 + ξ2
∫ T

0 v(t)Sn,α(t) dt

(

gn – ξ2

∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds dt

)

. (2.8)

Conjoining (2.4) and (2.8), we have

un(t) =
Sn,α(t)

ξ1 + ξ2
∫ T

0 v(t)Sn,α(t) dt

(

gn – ξ2

∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds dt

)

+
∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds. (2.9)
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As a result, we have the formula or the mild solution of problem (1.1)–(1.2)

u(x, t) =
∞∑

n=1

Sn,α(t)
ξ1 + ξ2

∫ T
0 v(t)Sn,α(t) dt

×
(

gn – ξ2

∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds dt

)

φn(x)

+
∞∑

n=1

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
dsφ(x). (2.10)

We posit the terms Aj=1,2,3(x, t) as follows:

A1(x, t) =
∞∑

n=1

Sn,α(t)
ξ1 + ξ2

∫ T
0 v(t)Sn,α(t) dt

gnφn(x),

A2(x, t) =
∞∑

n=1

Sn,α(t)
ξ1 + ξ2

∫ T
0 v(t)Sn,α(t) dt

(

ξ2

∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds dt

)

φn(x),

A3(x, t) =
∞∑

n=1

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
dsφ(x).

Then we have

u(x, t) = A1(x, t) – A2(x, t) + A3(x, t). (2.11)

Lemma 2.1 If α ∈ (0, 1), we have that the subsequent estimations hold

C2(μ,α, t)
λn

≤ Sn,α(t) ≤ C1(μ,α)
1 + λnt1–α

, 0 ≤ t ≤ T , (2.12)

where

C1(μ,α) =
�(1 – α)

μπ sin(απ )
+ 1, C2(μ,α, t) =

μ sin(απ )e–t

3π (α + 1)(μ2 + 1 + 1
λ2

1
)
.

Proof The detailed interpretation can be found in [24]. We briefly present some main steps
of the proof. We have

Sn,α(t) =
μ

π

∫ ∞

0

e–ztλn sin(απ )zα

(–z + λnμzα cos(απ ))2 + (λnμzα sin(απ ))2 dz. (2.13)

In terms of the left-hand side of inequality (2.12), we have

Sn,α(t) ≤ 1
μπ sin(απ )t1–αλn

∫ ∞

0
e–zz–α dz =

�(1 – α)
μπ sin(απ )t1–αλn

. (2.14)

It is worth noting that

∫ ∞

0
e–zz–α dz = �(1 – α).
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With regard to the right-hand side of inequality (2.12), we have

Sn,α(t) ≥ μ sin(απ )
3πλn

∫ ∞

0

e–ztzα

μ2z2α + 1 + z2

λ2
1

dz

≥ μ sin(απ )
3πλn

e–t

μ2 + 1 + 1
λ2

1

1
α + 1

. (2.15)

�

For the rest of paper, we give the definition of a mild solution to problem (1.1)–(1.2) in
the subsequent notion.

Definition 2.1 The function u is called a mild solution of problem (1.1)–(1.2) if
(i) u belongs to the Lm(0, T ; L2(�)) space;
(ii) u satisfies equality (2.9).

3 The regularity of the mild solution to problem (1.1)–(1.2) in the linear case
In this section, we consider the regularity of the mild solution of problem (1.1)–(1.2) under
the condition that the source term is linear.

Theorem 3.1 Suppose that there exist M, N such that Nt–γ ≤ v(t) ≤ Mt–θ for γ , θ < 1
2 .

(i) Let 1/2 < α < 1 and s > 0. If ξ1 > 0, ξ2 > 0 and g ∈ D(As), F ∈ L2(0, T ; D(As–1)), we rest
assured that

∥
∥u(·, t)

∥
∥

D(As) ≤ C1(μ,α)
ξ1

‖g‖D(As) + M2‖F‖L2(0,T ;D(As–1)) + M3‖F‖L2(0,T ;D(As–1)). (3.1)

(ii) Let 1/2 < α < 1 and s > 0. If ξ1 = 0, ξ2 > 0 and g ∈ D(As), F ∈ L2(0, T ; D(As–1)), then we
can conclude that

∥
∥u(·, t)

∥
∥

D(As) ≤ M4‖g‖D(As) + M5‖F‖2
L2(0,T ;D(As–1)) + M3‖F‖L2(0,T ;D(As–1)). (3.2)

Proof We will estimate the terms A1(x, t), A2(x, t), and A3(x, t) in two cases: ξ1, ξ2 > 0 and
ξ1 = 0, ξ2 > 0.

Part i: In the case of ξ1, ξ2 > 0. Thanks to Parseval’s equality, we have

∥
∥A1(·, t)

∥
∥2

D(As) =
∞∑

n=1

(
Sn,α(t)

ξ1 + ξ2
∫ T

0 v(t)Sn,α(t) dt

)2

λ2s
n |gn|2

≤ C2
1(μ,α)
ξ 2

1

∞∑

1

λ2s
n |gn|2

=
C2

1(μ,α)
ξ 2

1
‖g‖2

D(As). (3.3)

This implies

∥
∥A1(·, t)

∥
∥

D(As) ≤ C1(μ,α)
ξ1

‖g‖D(As). (3.4)
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Similarly, the term ‖A2(·, t)‖D(A2) can be assessed as follows:

∥
∥A2(·, t)

∥
∥2

D(As)

=
∞∑

n=1

(
Sn,α(t)

ξ1 + ξ2
∫ T

0 v(t)Sn,α(t) dt

)2

λ2s
(

ξ2

∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds dt

)2

≤
∞∑

n=1

λ2s–2
n

ξ 2
2

ξ 2
1

(∫ T

0
v2(t) dt

)(∫ T

0

(∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds

)2

dt
)

. (3.5)

Note that θ < 1
2 , we have

∫ T

0
v2(t) dt ≤

∫ T

0
M2t–2θ = Mθ . (3.6)

Put another way, the integral
∫ T

0 v2(t) dt is convergent

∫ T

0

(∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds

)2

dt

≤
∫ T

0

(∫ t

0
S2

n,α(t – s) ds
)(∫ t

0

∣
∣F

(
u(s)

)∣
∣2 ds

)

dt

≤ C2
1(μ,α)
λ2

n

∫ T

0

(∫ t

0
(t – s)2α–2 ds

)(∫ t

0

∣
∣F

(
u(s)

)∣
∣2 ds

)

dt

≤ C2
1(μ,α)
λ2

n

T2α

2α – 1

(∫ T

0

∣
∣F

(
u(s)

)∣
∣2 ds

)

. (3.7)

Conjoining (3.5), (3.6), and (3.7), we arrive at

∥
∥A2(·, t)

∥
∥2

D(As) ≤ Mθ C2
1(μ,α)

ξ 2
2

ξ 2
1

T2α

2α – 1

∫ T

0

∞∑

n=1

λ2s–4
n

∣
∣F

(
u(s)

)∣
∣2 ds

≤ Mθ C2
1(μ,α)

ξ 2
2

ξ 2
1

T2α

2α – 1
‖F‖2

L2(0,T ;D(As–2)). (3.8)

In other words, we have

∥
∥A2(·, t)

∥
∥

D(As) ≤
√

Mθ C2
1(μ,α)

ξ 2
2

ξ 2
1

T2α

2α – 1
‖F‖L2(0,T ;D(As–2)) = M2‖F‖L2(0,T ;D(As–2)). (3.9)

Using Parseval’s equality again, we can estimate the term A3(·, t) as follows:

∥
∥A3(·, t)

∥
∥2

D(AS) =
∞∑

n=1

λ2s
n

(∫ t

0
Sn(α, t – s)Fn

(
u(s)

)
ds

)2

≤ C2
1(μ,α)

∞∑

n=1

λ2s–2
n

(∫ t

0
(t – s)2α–2 ds

)(∫ t

0

∣
∣F

(
u(s)

)∣
∣2 ds

)

dt

≤ C2
1(μ,α)

T2α

2α – 2

(∫ T

0
λ2s–2

n
∣
∣F

(
u(s)

)∣
∣2 ds

)
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≤ C2
1(μ,α)

T2α

2α – 2
‖F‖2

L2(0,T ;D(As–1)). (3.10)

The latter estimation allows us to deduce that

∥
∥A3(·, t)

∥
∥

D(AS) ≤
√

C2
1(μ,α)

T2α

2α – 2
‖F‖L2(0,T ;D(As–2)) = M3‖F‖L2(0,T ;D(As–1)). (3.11)

Combining (3.4), (3.9), and (3.11) helps us rest assured that

∥
∥u(·, t)

∥
∥

D(As) ≤ C1(μ,α)
ξ1

‖g‖D(As) + M2‖F‖L2(0,T ;D(As–2)) + M3‖F‖L2(0,T ;D(As–1)). (3.12)

Part ii: In the case of ξ1 = 0, ξ2 > 0.
Paserval’s equality gives us

∥
∥A1(·, t)

∥
∥2

D(As) =
∞∑

n=1

(
Sn,α(t)

ξ2
∫ T

0 v(t)Sn,α(t) dt

)2

λ2s
n |gn|2. (3.13)

It should be noted that

Sn,α(t) ≥ C2(μ,α, t)
λn

and

v(t) ≥ Nt–γ .

We get

∥
∥A1(·, t)

∥
∥2

D(As) ≤ –2γ + 2
ξ 2

2 N2T–2γ +2
C2

1(μ,α)
C2

2(μ,α, t)
1

t2–2α

∞∑

n=1

λ2s
n |gn|2

≤ –2γ + 2
ξ 2

2 N2T–2γ +2
C2

1(μ,α)
C2

2(μ,α, t)
1

t2–2α
‖g‖2

D(As). (3.14)

Therefore, we immediately obtain that

∥
∥A1(·, t)

∥
∥

D(As) ≤ –γ + 1
ξ2NT–γ +1

C1(μ,α)
C2(μ,α, t)

1
t1–α

‖g‖D(As) = M4‖g‖D(As). (3.15)

In terms of A2(·, t), by computations similar to above, we have

∥
∥A2(·, t)

∥
∥2

D(As)

=
∞∑

n=1

(
Sn,α(t)

∫ T
0 v(t)Sn,α(t) dt

)2

λ2s
n

(∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds dt

)2

≤ –2γ + 2
N2T–2γ +2

C2
1(μ,α)

C2
2(μ,α, t)

1
t2–2α

×
∞∑

n=1

λ2s
n

(∫ T

0
v2(t) dt

)(∫ T

0

(∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds

)2

dt
)
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≤ Mθ (–2γ + 2)
N2T–2γ +2

C4
1(μ,α)

C2
2(μ,α, t)

T2α–2

t2–2α(2α – 1)

∞∑

n=1

λ2s–2
n

(∫ T

0

∣
∣F

(
u(s)

)∣
∣2 ds

)

≤ M2
5‖F‖2

L2(0,T ;D(As–1)). (3.16)

This implies

∥
∥A2(·, t)

∥
∥

D(As) ≤ M5‖F‖2
L2(0,T ;D(As–1)). (3.17)

Connecting (3.15), (3.16), and (3.17) allows us to come to a conclusion that

∥
∥u(·, t)

∥
∥

D(As) ≤ M4‖g‖D(As) + M5‖F‖2
L2(0,T ;D(As–1)) + M3‖F‖L2(0,T ;D(As–1)). (3.18)

�

4 The problem recovering the initial value
In this section, we are inclined to deliberate on the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂tu – �u – μ∂α
t �u = F(u), (x, t) ∈ � × (0, T),

u(x, t) = 0, x ∈ ∂�,

ξ2
∫ T

0 v(t)u(x, s) ds = g(x), x ∈ �.

(4.1)

Our primary aim in this part is to recover the initial data u(x, 0) = V (x). To achieve this
goal, we firstly go to prove the point that the problem is ill-posed in L2(0, T). For conve-
nience of readers, we presume that F = 0.

From the formula of the mild solution (2.10), we have that

V (x) = u(x, 0) =
∞∑

n=0

Sn,α(t)
ξ2

∫ T
0 v(t)Sn,α(t) dt

gnφn(x). (4.2)

Theorem 4.1 In the sense of Hadamard, problem (4.1) is ill-posed in the space L2(0, T)
with reference to the case of t = 0.

Proof We ponder on the linear operator K : L2(D) → L2(D) as follows:

KV (x) =
∞∑

n=0

ξ2
∫ T

0 v(t)Sn,α(t) dt
Sn,α(t)

〈
V (x),φn(x)

〉
φn(x)

=
∫

D
m(x, τ )V (τ ) dτ , (4.3)

where

m(x, τ ) =
∞∑

n=0

ξ2
∫ T

0 v(t)Sn,α(t) dt
Sn,α(t)

φn(x)φn(τ ).

It is worth mentioning that m(x, τ ) = m(τ , x). Therefore, the operator K is self-adjoint and
the compactness of K is presented as follows.
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We define the finite rank operator KL

KLV =
L∑

n=1

ξ2
∫ T

0 v(t)Sn,α(t) dt
Sn,α(t)

〈
V (x),φn(x)

〉
φn(x). (4.4)

From (4.3) and (4.4), we have

‖KLV – KV‖2
L2(D) =

∞∑

n=L+1

(
ξ2

∫ T
0 v(t)Sn,α(t) dt

Sn,α(t)

)2〈
V (x),φn(x)

〉2

≤ C2
1(μ,α)

C2
2(μ,α, t)

t2–2α M2T–2θ+2

(–θ + 1)2

∞∑

n=L+1

〈
V (x),φn(x)

〉2. (4.5)

In that

‖KLV – KV‖L2(D) ≤ C1(μ,α)
C2(μ,α, t)

t1–α MT–θ+1

(–θ + 1)
‖V‖L2(D). (4.6)

This allows us to conclude that K is a compact operator. In conjunction with (4.3), we have

KV (x) = g(x). (4.7)

Combining the latter conclusion and using Kirsch [28], we deduce that the problem of
recovering the initial value V from (4.7) is ill-posed. To ensure mathematical clarity, we
provide an example as follows. If we choose the input data gj(x) = φj(x)

λ1/2
j

, the L2 norm of gj

is

∥
∥gj∥∥

L2(D) =
1

λ1/2
j

→ 0 when j → +∞, (4.8)

and the initial data regarding gj is

V j(x) =
∞∑

n=1

Sj,α(t)
ξ2

∫ T
0 v(t)Sj,α(t) dt

〈
gj(x),φj(x)

〉
φj(x)

=
Sj,α(t)

ξ2
∫ T

0 v(t)Sj,α(t) dt
φj(x)
λ1/2

j
. (4.9)

In the next step, we assess the initial data V j in respect of L2 norm

∥
∥V j∥∥

L2(D) =
∥
∥
∥
∥

Sj,α(t)
ξ2

∫ T
0 v(t)Sj,α(t) dt

φj(x)
λ1/2

j

∥
∥
∥
∥

L2(D)

≥
C2(μ,α,t)

λ1

ξ2M1,β
C1(μ,α)

1+λjt1–α

1
λ1/2

j

≥ C2(μ,α, t)t1–α

ξ2M1,βλ1C1(μ,α)
λ1/2

j → +∞ when j → +∞. (4.10)
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Conjoining (4.8) with (4.10), we arrive at the conclusion that the solution of problem (4.1)
is instable. �

With the aim of putting forward the next theory, we give an assumption as follows. Pre-
sume that gε ∈ Lp(D) and Fε ∈ L∞(0, T ; Lp(D)) are noisy data, and presume

∥
∥g – gε

∥
∥

Lp(D) +
∥
∥F – Fε

∥
∥

L∞(0,T ;Lp(D)) ≤ ε. (4.11)

Using the Fourier truncation method, we provide a construction of regularized solution
to problem (4.1) as follows:

V ε(x) =
K∑

n=1

Sn,α(t)
ξ2

∫ T
0 v(t)Sn,α(t) dt

〈
gε(x),φn(x)

〉
φn(x),

+
K∑

n=1

Sn,α(t)
∫ T

0 v(t)Sn,α(t) dt

(∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fε

n
(
u(s)

)
ds dt

)

φn(x). (4.12)

Theorem 4.2 Let (gε , Fε) satisfy (4.11), and let b, δ be such that

–
d
4

< b ≤ min

(

0,
(q – 2)d

4q

)

, 0 ≤ δ <
d
4

. (4.13)

Suppose that there exists β such that

V ∈ D
(
Aβ

)
.

Choose K = K(ε) such that

lim
ε→0

λδ–b
K ε = 0, lim

ε→0
λk = +∞. (4.14)

Then we have that the following estimation holds:

∥
∥V – V ε

∥
∥

L
2d

d–4δ (�)
≤ C

∥
∥V – V ε

∥
∥

D(Aδ ) ≤ λδ–b
K ε + λδ–b

K ε + λ
–γ

K+1‖V‖D(Aδ+β ). (4.15)

Remark 4.1 On account of λK ∼ K2/d , we need to choose K such that

K
2
d (δ–b)ε → 0, when ε → 0.

In fact, we choose K = ε(r–1)d/2(δ–b) for 0 < r < 1, and then the error is of order

max
((

ε(r–1)d/2(η–b) + 1
) –2δ

d , εr).

Proof To begin with, we define the function W ε(x) in the following way:

W ε(x) =
K∑

n=1

Sn,α(t)
ξ2

∫ T
0 v(t)Sn,α(t) dt

〈
g(x),φn(x)

〉
φn(x),
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+
K∑

n=1

Sn,α(t)
∫ T

0 v(t)Sn,α(t) dt

(∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds dt

)

φn(x). (4.16)

As the next step, we ponder the term ‖V ε – V‖D(Aδ ) and present an estimation of it with
regard to the D(Aδ) norm for δ > 0. Thanks to the triangle inequality, we obtain

∥
∥V δ – V

∥
∥

D(Aη) ≤ ∥
∥W δ – V δ

∥
∥

D(Aη) +
∥
∥W δ – V

∥
∥

D(Aη). (4.17)

In terms of ‖W δ – V δ‖D(Aη), we have

∥
∥W ε – V ε

∥
∥2

D(Aδ )

≤ 2
K∑

n=1

∣
∣
∣
∣

Sn,α(t)
ξ2

∫ T
0 v(t)Sn,α(t) dt

∣
∣
∣
∣

2

λ2δ
n

〈
gε – g,φn

〉2

+
K∑

n=1

∣
∣
∣
∣

Sn,α(t)
∫ T

0 v(t)Sn,α(t) dt

∣
∣
∣
∣

2

λ2δ
n

×
(∫ T

0
v(t)

∫ t

0
Sn,α(t – s)

(
Fε

n
(
u(s)

)
– Fn

(
u(s)

))
ds dt

)2

. (4.18)

From the Sobolev embedding Lq(�) ↪→ D(Ab) for – d
4 ≤ b < 0 and q ≥ 2d

d–4b , it should be
noted that there exists a positive constant C(b, q) such that

∥
∥gε – g

∥
∥

D(Ab) ≤ C(b, q)
∥
∥gε – g

∥
∥

Lq(D) ≤ C(b, q)ε. (4.19)

We denote the two terms B1 and B2 as follows:

B1 =
K∑

n=1

∣
∣
∣
∣

Sn,α(t)
ξ2

∫ T
0 v(t)Sn,α(t) dt

∣
∣
∣
∣

〈
gε – g,φn

〉
φn(x),

B2 =
K∑

n=1

∣
∣
∣
∣

Sn,α(t)
∫ T

0 v(t)Sn,α(t) dt

×
∣
∣
∣
∣

(∫ T

0
v(t)

∫ t

0
Sn,α(t – s)

(
Fε

n
(
u(s)

)
– Fn

(
u(s)

))
ds dt

)

φn(x). (4.20)

It is worth noting that δ > b, the term B1 can be assessed in the following way:

‖B1‖D(Aδ ) =

√
√
√
√

K∑

n=1

∣
∣
∣
∣

Sn,α(t)
ξ2

∫ T
0 v(t)Sn,α(t) dt

∣
∣
∣
∣

2

λ2δ–2b
n λ2b

n
〈
gε – g,φn

〉2

≤ –γ + 1
ξ2NT–γ +1

C1(μ,α)
C2(μ,α, t)

1
t1–α

λδ–b
K

√
√
√
√

K∑

n=1

λ2b
n

〈
gε – g,φn

〉2

≤ –γ + 1
ξ2NT–γ +1

C1(μ,α)
C2(μ,α, t)

1
t1–α

λδ–b
K

∥
∥gε – g

∥
∥

D(Ab)

≤ –γ + 1
ξ2NT–γ +1

C1(μ,α)
C2(μ,α, t)

1
t1–α

C(b, q)λδ–b
K ε = M6λ

δ–b
K ε. (4.21)
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Similarly, the term B2 can be estimated as follows:

‖B2‖2
D(Aδ ) =

K∑

n=1

∣
∣
∣
∣

Sn,α(t)
∫ T

0 v(t)Sn,α(t) dt

∣
∣
∣
∣

2

λ2δ
n

×
(∫ T

0
v(t)

∫ t

0
Sn,α(t)

(
Fε

n
(
u(s)

)
– Fn

(
u(s)

))
ds dt

)2

≤ –2γ + 2
N2T–2γ +2

C2
1(μ,α)

C2
2(μ,α, t)

1
t2–2α

×
K∑

n=1

λ2δ–2b
n λ2b

n

(∫ T

0
v(t)

∫ t

0
Sn,α(t – s)

(
Fε

n
(
u(s)

)
– Fn

(
u(s)

))
ds dt

)2

≤ –2γ + 2
N2T–2γ +2

C2
1(μ,α)

C2
2(μ,α, t)

1
t2–2α

∥
∥Fε – F

∥
∥

L∞(0,T ;D(Ab))

×
K∑

n=1

λ2δ–2b
n

(∫ T

0
v(t)

∫ t

0
Sn,α(t – s) ds dt

)2

≤ –2γ + 2
N2T–2γ +1

C4
1(μ,α)

C2
2(μ,α, t)

1
t2–2α

∥
∥Fε – F

∥
∥

L∞(0,T ;D(Ab))

K∑

n=1

λ2δ–2b
n

(∫ T

0
v(t) dt

)2

≤ –2γ + 2
N2T–2γ +1

C4
1(μ,α)

C2
2(μ,α, t)

1
t2–2α

‖v‖2
L2(0,T)λ

2δ–2b–2
K

∥
∥Fδ – F

∥
∥

L∞(0,T ;D(Ab))

≤ M2
7λ

2δ–2b
K ε2. (4.22)

The latter estimation and the previous one allow us to have that

∥
∥W ε – V ε

∥
∥

D(Aδ ) ≤ ‖B1‖D(Aδ ) + ‖B2‖D(Aδ ) ≤ M6λ
δ–b
K ε + M7λ

δ–b
K ε. (4.23)

Regarding the term ‖W ε – V‖D(Aδ ), we have

∥
∥W ε – V

∥
∥

D(Aδ ) =

√
√
√
√

∞∑

n=K+1

λ2δ
n V 2

n =

√
√
√
√

∞∑

n=K+1

λ
–2β
n λ

2δ+2β
n Vn2 ≤ λ

–β

K+1‖V‖D(Aδ+β ). (4.24)

Conjoining (4.23) and (4.24), we come to the conclusion that

∥
∥V – V ε

∥
∥

D(Aδ ) ≤ ∥
∥W ε – V ε

∥
∥

D(Aδ ) +
∥
∥W ε – V

∥
∥

D(Aδ )

≤ M6λ
δ–b
K ε + M7λ

δ–b
K ε + λ

–β

K+1‖V‖D(Aδ+β ). (4.25)

The Sobolev embedding D(Aδ) ↪→ L
2d

d–4δ (�) allows us to rest assured that

∥
∥V – V ε

∥
∥

L
2d

d–4δ (�)
≤ C

∥
∥V – V ε

∥
∥

D(Aδ ) ≤ λδ–b
K ε + λδ–b

K ε + λ
–β

K+1‖V‖D(Aδ+β ). (4.26)
�
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5 The regularity of the mild solution to problem (1.1)–(1.2) in the nonlinear
case

In this section, we concentrate on examining the subsequent nonlinear problem

⎧
⎪⎪⎨

⎪⎪⎩

∂tu – �u – μ∂α
t �u = F(u), (x, t) ∈ � × (0, T),

u(x, t) = 0, x ∈ ∂�,

ξ1u(x, 0) + ξ2
∫ T

0 v(t)u(x, s) ds = g(x), x ∈ �.

(5.1)

Theorem 5.1 Suppose that there exists Nt–γ ≤ v(t) ≤ Mt–θ for θ < 1/2.
(i) Let 1/2 < α < 1, and presume 0 < s < 1. If ξ1, ξ2 > 0, g belongs to D(As), and F is a global

Lipschitz source function satisfying

∥
∥F(u) – F(v)

∥
∥

L2(D) ≤ KF‖u – v‖L2(D) (5.2)

for T is small enough, then problem (5.1) has a unique solution

u ∈ L∞(
0, T ; D

(
As)).

Furthermore, we have

‖u‖L∞(0,T ;D(As)) ≤ C2
1(μ,α)

ξ 2
1 (1 – M9

√
T – M10Tα–1)

‖g‖2
D(As).

(ii) Let 1/2 < α < 1, and presume 0 < s < 1. If ξ1 = 0, ξ2 > 0, g ∈ D(As+α), and F is a global
Lipschitz source function satisfying

∥
∥F(u) – F(v)

∥
∥

D(Aα ) ≤ KF‖u – v‖D(Aα ) (5.3)

for T is small enough, then problem (5.1) has a unique solution

u ∈ L∞(
0, T ; D

(
As)).

Moreover, we have

‖u‖L∞(0,T ;D(As)) ≤ M4

1 – M11
√

T – M10Tα–1
‖g‖2

D(As).

Proof Part i. Using (2.11) in Sect. 2, we obtain

u(x, t) = A1(x, t) – A2(u)(x, t) + A3(u)(x, t). (5.4)

For convenience of calculations in the next steps, we posit

A1(x, t) =
∞∑

n=1

Sn,α(t)
ξ1 + ξ2

∫ T
0 v(t)Sn,α(t) dt

gnφn(x),

A2(u)(x, t) =
∞∑

n=1

Sn,α(t)
ξ1 + ξ2

∫ T
0 v(t)Sn,α(t) dt
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×
(

ξ2

∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
s, u(s)

)
ds dt

)

φn(x),

A3(u)(x, t) =
∞∑

n=1

∫ t

0
Sn,α(t – s)Fn

(
s, u(s)

)
dsφ(x),

where

Fn
(
x, u(s)

)
=

〈
F
(
x, s, u(s)

)
,φn(x)

〉
. (5.5)

With the purpose of proving the point that nonlinear equation (5.4) has a unique solution
in L∞(0, T ; D(As)), we posit the following mapping:

I : L∞(
0, T ; D

(
As)) → L∞(

0, T ; D
(
As)),

Iw = A1(x, t) – A2(w)(x, t) + A3(w)(x, t). (5.6)

Using the triangle inequality again, we have

‖Iw1 – Iw2‖L∞(0,T ;D(As)) ≤ ∥
∥A2(w1) – A2(w2)

∥
∥

L∞(0,T ;D(As))

+
∥
∥A3(w1) – A3(w2)

∥
∥

L∞(0,T ;D(As)). (5.7)

We will show that the mapping I is a contraction mapping in L∞(0, T ; D(As)). Now, we give
estimations of the terms ‖A2(w1) –A2(w2)‖L∞(0,T ;D(As)) and ‖A3(w1) –A3(w2)‖L∞(0,T ;D(As))

as follows.
Step 1: In terms of the term ‖A2(w1) – A2(w2)‖L∞(0,T ;D(As)).
Firstly, we have

∥
∥A2(w1)(·, t) – A2(w2)(·, t)

∥
∥2

D(As)

=
∞∑

n=1

(
Sn,α(t)

ξ1 + ξ2
∫ T

0 v(t)Sn,α(t) dt

)2

λ2s
n

×
(

ξ2

∫ T

0
v(t)

∫ t

0
Sn,α(t – s)

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))
ds dt

)2

. (5.8)

It is noteworthy that Sn,α (t)
ξ1+ξ2

∫ T
0 v(t)Sn,α (t) dt

≤ C1(μ,α)
ξ1

, we obtain

≤
∞∑

n=1

ξ 2
2 C2

1(μ,α)
ξ 2

1
λ2s

n

∫ T

0
v2(t) dt

×
∫ T

0

(∫ t

0
Sn,α(t – s)

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))
ds

)2

dt

≤
∞∑

n=1

ξ 2
2 C2

1(μ,α)
ξ 2

1
λ2s

n Mθ

×
∫ T

0

(∫ t

0
Sn,α(t – s)

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))
ds

)2

dt. (5.9)
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Thanks to the inequality Sn,α(t) ≤ C1(μ,α)
1+λn(t–s)1–α (see Lemma (2.1)), we get

∫ T

0

(∫ t

0
Sn,α(t)

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))
ds

)2

dt

≤
∫ T

0

(∫ t

0
Sn,α(t – s) ds

)(∫ t

0

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds
)

dt

≤ C2
1(μ,α)T2α

2α – 1
λ–2

n

∫ T

0

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds. (5.10)

On account of s < 1, we have that

∥
∥A2(w1)(·, t) – A2(w2)(·, t)

∥
∥2

D(As)

≤
∞∑

n=1

ξ 2
2 C4

1(μ,α)T2αMθ

ξ 2
1 (2α – 1)

λ2s–2
n

∫ T

0

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds

≤ M8

∫ T

0

∞∑

n=1

λ2s–2
n

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds

≤ M8λ
2s–2
1

∫ T

0

∥
∥F

(
s, w1(s)

)
– F

(
s, w2(s)

)∥
∥2

L2(D) ds. (5.11)

Using the global Lipschitz property of F , we arrive at

∥
∥A2(w1)(·, t) – A2(w2)(·, t)

∥
∥2

D(As) ≤ M8λ
2s–2
1 K2

F

∫ T

0

∥
∥w1(s) – w2(s)

∥
∥2

L2(D) ds. (5.12)

The Sobolev embedding D(As) ↪→ L2(D) allows us to deduce that

∥
∥A2(w1)(·, t) – A2(w2)(·, t)

∥
∥2

D(As) ≤ M8λ
2s–2
1 K2

F C2
s

∫ T

0

∥
∥w1(s) – w2(s)

∥
∥2

D(As) ds. (5.13)

This implies that, for any t, 0 ≤ t ≤ T , we have

∥
∥A2(w1)(·, t) – A2(w2)(·, t)

∥
∥2

D(As) ≤ M8λ
2s–2
1 K2

F C2
s T‖w1 – w2‖2

L∞(0,T ;D(As)). (5.14)

In other words,

∥
∥A2(w1)(·, t) – A2(w2)(·, t)

∥
∥

D(As) ≤ M9
√

T‖w1 – w2‖L∞(0,T ;D(As)). (5.15)

We can see that the right-hand side of (5.14) is independent of t, as a result we reach the
conclusion that

∥
∥A2(w1) – A2(w2)

∥
∥

L∞(0,T ;D(As)) ≤ M9
√

T‖w1 – w2‖L∞(0,T ;D(As)). (5.16)

Step 2: In terms of the term ‖A3(w1)(·, t) – A3(w2)(·, t)‖L∞(0,T ;D(As)).
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Thanks to Parseval’s equality and Holder’s inequality, we can assess the term
‖A3(w1)(·, t) – A3(w2)(·, t)‖L∞(0,T ;D(As)) in the following way:

∥
∥A3(w1)(·, t) – A3(w2)(·, t)

∥
∥

D(As)

=
∞∑

n=1

λ2s
n

(∫ t

0
Sn,α(t – s)

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))
ds

)2

≤
∞∑

n=1

λ2s
n

∫ t

0
Sn,α(t – s) ds

∫ t

0

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds

≤ C2
1(μ,α)

∞∑

n=1

λ2s–2
n

∫ t

0
(t – s)2α–2 ds

∫ t

0

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds. (5.17)

It is worth noting that α > 1/2, we get

∥
∥A3(w1)(·, t) – A3(w2)(·, t)

∥
∥

D(As)

≤ C2
1(μ,α)

T2α–1

2α – 1

∞∑

n=1

λ2s–2
n

∫ T

0

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds

≤ C2
1(μ,α)

T2α–1

2α – 1

∫ T

0

∞∑

n=1

λ2s–2
n

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds. (5.18)

We can estimate the term
∫ T

0
∑∞

n=1 λ2s–2
n (Fn(s, w1(s)) – Fn(s, w2(s)))2 ds as follows:

∫ T

0

∞∑

n=1

λ2s–2
n

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds

≤ λ2s–2
1

∫ T

0

∥
∥Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

)∥
∥2

L2(D) ds

≤ λ2s–2
1 K2

F

∫ T

0

∥
∥w1(s)–, w2(s) ds

∥
∥2

L2(D) ds

≤ λ2s–2
1 K2

F T‖w1 – w2‖2
L∞(0,T ;D(As)), (5.19)

where we used the global Lipschitz property of F function and note that s < 1.
Conjoining the latter estimate and the previous one, we claim that

∥
∥A3(w1)(·, t) – A3(w2)(·, t)

∥
∥2

D(As) ≤ T2α–2

2α – 1
λ2s–2

1 K2
F ‖w1 – w2‖2

L∞(0,T ;D(As)).

Put another way,

∥
∥A3(w1)(·, t) – A3(w2)(·, t)

∥
∥

D(As) ≤ M10Tα–1‖w1 – w2‖L∞(0,T ;D(As)),

this implies that

∥
∥A3(w1) – A3(w2)

∥
∥

L∞(0,T ;D(As)) ≤ M10Tα–1‖w1 – w2‖L∞(0,T ;D(As)). (5.20)
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Combining (5.7), (5.16), and (5.20), we have that

‖Iw1 – Iw2‖L∞(0,T ;D(As)) ≤ (
M9

√
T + M10Tα–1)‖w1 – w2‖L∞(0,T ;D(As)). (5.21)

Suppose that T is small enough such that

M9
√

T + M10Tα–1 < 1,

we can claim that I is a contraction mapping in L∞(0, T ; D(As).
Furthermore, it should be noted that if w1 = 0, then

Iw1(x, t) = A1(x, t). (5.22)

This implies

∥
∥Iw1(·, t)

∥
∥2

D(As) =
∞∑

n=1

(
Sn,α(t)

ξ1 + ξ2
∫ T

0 v(t)Sn,α(t) dt

)2

λ2s
n |gn|2

≤ C2
1(μ,α)
ξ 2

1

∞∑

1

λ2s
n |gn|2

=
C2

1(μ,α)
ξ 2

1
‖g‖2

D(As). (5.23)

The latter estimation helps us assert that

Iw1 ∈ L∞(
0, T ; D

(
As)). (5.24)

On the basis of the Banach fixed point theorem, we claim that problem (5.1) has a unique
solution belonging to the L∞(0, T ; D(As)) space. In addition, if we take w = 0, we have that

‖u‖L∞(0,T ;D(As)) ≤ ‖Iu – Iw‖L∞(0,T ;D(As)) + ‖Iw‖L∞(0,T ;D(As))

≤ (
M9

√
T + M10Tα–1)‖u‖L∞(0,T ;D(As)) +

C2
1(μ,α)
ξ 2

1
‖g‖2

D(As). (5.25)

It is worth noting that M9
√

T + M10Tα–1 < 1, we get

‖u‖L∞(0,T ;D(As)) ≤ C2
1(μ,α)

ξ 2
1 (1 – M9

√
T – M10Tα–1)

‖g‖2
D(As). (5.26)

We break the back of the proof of Part i.
Part ii: From (2.11) in Sect. 2, we get

u(x, t) = B1(x, t) + B2(u)(x, t) + B3(u)(x, t), (5.27)

where Bj (j = 1, 2, 3) are defined as follows:

B1(x, t) =
∞∑

n=1

Sn,α(t)
ξ2

∫ T
0 v(t)Sn,α(t) dt

gnφn(x),
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B2(u)(x, t) =
∞∑

n=1

Sn,α(t)
∫ T

0 v(t)Sn,α(t) dt

(∫ T

0
v(t)

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
ds dt

)

φn(x),

B3(u)(x, t) =
∞∑

n=1

∫ t

0
Sn,α(t – s)Fn

(
u(s)

)
dsφ(x),

and

Fn
(
x, u(s)

)
=

〈
F
(
x, s, u(s)

)
,φn(x)

〉
.

Firstly, we posit the following function:

J : L∞(
0, T ; D

(
As)) → L∞(

0, T ; D
(
As)),

J w = B1(x, t) + B2(w)(x, t) + B3(w)(x, t). (5.28)

Similar to Part i, we go to prove the point thatJ is a contraction mapping in L∞(0, t; D(As)).
In view of the triangle inequality, we have

‖J w1 – J w2‖L∞(0,T ;D(As)) ≤ ∥
∥B2(w1) – B2(w2)

∥
∥

L∞(0,T ;D(As))

+
∥
∥B3(w1) – B3(w2)

∥
∥

L∞(0,T ;D(As)). (5.29)

The term ‖B2(w1) – B2(w2)‖L∞(0,T ;D(As)) can be estimated in the following way:

∥
∥B2(w1)(·, t) – B2(w2)(·, t)

∥
∥2

D(As)

=
∞∑

n=1

S2
n,α(t)

(
∫ T

0 v(t)Sn,α(t))2
λ2s

n

×
(∫ T

0
v(t)

∫ t

0
Sn,α(t – s)

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))
ds dt

)2

. (5.30)

It is important to note that Sn,α(t) ≥ C2(μ,α,t)
λn

and v(t) ≥ Nt–γ , we get

∥
∥B2(w1)(·, t) – B2(w2)(·, t)

∥
∥2

D(As)

≤ –2γ + 2
N2T–2γ +2

C2
1(μ,α)

C2
2(μ,α, t)

1
t2–2α

∞∑

n=1

λ2s
n

×
(∫ T

0
v2(t) dt

)(∫ T

0

(∫ t

0
Sn,α(t – s)

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))
ds

)2

dt
)

≤ M2
θ (–2γ + 2)

N2T–2γ +2
C2

1(μ,α)
C2

2(μ,α, t)
1

t2–2α

×
∞∑

n=1

λ2s
n

(∫ T

0

(∫ t

0
Sn,α(t – s)

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))
ds

)2

dt
)

≤ M2
θ (–2γ + 2)

N2T–2γ +2
C4

1(μ,α)
C2

2(μ,α, t)
T2α–1

t2–2α(2α – 1)
λ–2

1
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×
∞∑

n=1

λ2s
n

∫ T

0

(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds

≤ M2
θ (–2γ + 2)

N2T–2γ +2
C4

1(μ,α)
C2

2(μ,α, t)
T2α–1

t2–2α(2α – 1)
λ–2

1

×
∫ T

0

∞∑

n=1

λ2s
n
(
Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

))2 ds

≤ M2
θ (–2γ + 2)

N2T–2γ +2
C4

1(μ,α)
C2

2(μ,α, t)
T2α–1

t2–2α(2α – 1)
λ–2

1

×
∫ T

0

∥
∥Fn

(
s, w1(s)

)
– Fn

(
s, w2(s)

)∥
∥2

D(As) ds

≤ M2
θ (–2γ + 2)

N2T–2γ +2
C4

1(μ,α)
C2

2(μ,α, t)
T2α–1

t2–2α(2α – 1)
λ–2

1 K2
F

∫ T

0

∥
∥w1(s) – w2(s)

∥
∥2

D(As) ds

≤ M2
11T

∥
∥w1(s) – w2(s)

∥
∥2

L∞(0,T ;D(As)). (5.31)

In that,

∥
∥B2(w1) – B2(w2)

∥
∥

L∞(0,T ;D(As)) ≤ M11
√

T
∥
∥w1(s) – w2(s)

∥
∥2

L∞(0,T ;D(As)). (5.32)

With regard to the term ‖B3(w1) –B3(w2)‖L∞(0,T ;D(As)), by a similar calculation in Part i, we
immediately obtain

∥
∥B3(w1) – B3(w2)

∥
∥

L∞(0,T ;D(As)) ≤ M10Tα–1‖w1 – w2‖L∞(0,T ;D(As)). (5.33)

Conjoining (5.29), (5.32), and (5.33), we have

‖J w1 – J w2‖L∞(0,T ;D(As)) ≤ (
M11

√
T + M10Tα–1)‖w1 – w2‖L∞(0,T ;D(As)). (5.34)

Suppose that there exists T small enough such that

M11
√

T + M10Tα–1 < 1, (5.35)

we arrive at the conclusion that J is a contraction mapping in the space L∞(0, T ; D(As)).
Moreover, it is noteworthy that if w1 = 0, then

J w1(x, t) = B1(x, t).

In conjunction with (3.4), we have

∥
∥J w1(·, t)

∥
∥2

L∞(0,T ;D(As)) ≤ –2γ + 2
ξ 2

2 N2T–2γ +2
C2

1(μ,α)
C2

2(μ,α, t)
1

t2–2α
‖g‖2

D(As).

In other words,

∥
∥J w1(·, t)

∥
∥2

L∞(0,T ;D(As)) ≤ M4‖g‖2
D(As).
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The latter estimation allows us to deduce that if w1(x, t) ∈ L∞(0, T ; D(As)), then

J w1(x, t) ∈ L∞(
0, T ; D

(
As)).

Thanks to the Banach fixed point theorem, we come to the conclusion that J w = w has a
unique solution w ∈ L∞(0, T ; D(As)). Furthermore, in a similar way to Part i, we take w = 0,
and we immediately get

‖u‖L∞(0,T ;D(As)) ≤ ‖Iu – Iw‖L∞(0,T ;D(As)) + ‖Iw‖L∞(0,T ;D(As))

≤ (
M11

√
T + M10Tα–1)‖u‖L∞(0,T ;D(As)) + M4‖g‖2

D(As).

Put another way,

‖u‖L∞(0,T ;D(As)) ≤ M4

1 – M11
√

T – M10Tα–1
‖g‖2

D(As). (5.36)

We get the proof out of the way. �

6 Conclusion
In this paper, we examined the fractional nonlinear Rayleigh–Stokes equation under non-
local integral conditions. The existence and uniqueness are considered using the Fourier
truncation method. The convergence rate between the obtained solution and the regular-
ized solution is demonstrated.
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