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Abstract
In this article, we are interested in studying the asymptotic behavior of fourth-order
neutral differential equations. Despite the growing interest in studying the oscillatory
behavior of delay differential equations of second-order, fourth-order equations have
received less attention. We get more than one criterion to check the oscillation by the
generalized Riccati method and the integral average technique. Our results are an
extension and complement to some results published in the literature. Examples are
given to prove the significance of new theorems.
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1 Introduction
In this paper, we investigate the oscillation properties of solutions to the fourth-order neu-
tral differential equations:

(
z(x)ςr1

(
δ′′′(x)

))′ + ω̃(x)ςr2

(
β
(
θ (x)

))
= 0, (1)

where ςri [s] = |s|ri–1s, δ(x) = β(x) + ỹ(x)β(θ̃ (x)). Throughout this paper, we suppose that:
(S1) r1 and r2 are quotients of odd positive integers,
(S2) z, ỹ, ω̃ ∈ C[x0,∞), z(x) > 0, z′(x) ≥ 0, ω̃(x) > 0, 0 ≤ ỹ(x) ≤ ỹ0 < 1, θ̃ , θ ∈ C[x0,∞),

θ̃ (x) ≤ x, limx→∞ θ̃ (x) = limx→∞ θ (x) = ∞,
and under the assumption

∫ ∞

x0

1
z1/r1 (s)

ds = ∞. (2)

Definition 1.1 ([1]) Let

D =
{

(x, s) ∈R
2 : x ≥ s ≥ x0

}
and D0 =

{
(x, s) ∈R

2 : x > s ≥ x0
}

.

The function Gi ∈ C(D,R) fulfills the following conditions:
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(i) Gi(x, s) = 0 for x ≥ x0, Gi(x, s) > 0, (x, s) ∈ D0;
(ii) The functions h,υ ∈ C1([x0,∞), (0,∞)) and gi ∈ C(D0,R) such that

∂

∂s
G1(x, s) +

α′(s)
α(s)

G(x, s) = g1(x, s)Gr1/(r1+1)
1 (x, s) (3)

and

∂

∂s
G2(x, s) +

h′(s)
h(s)

G2(x, s) = g2(x, s)
√

G2(x, s). (4)

Theory of oscillation of differential equations is a fertile study area and has attracted
the attention of many authors recently. This is due to the existence of many important
applications of this theory in neural networks, biology, social sciences, engineering, etc.,
see [2–10]. Very recently, a great development was found in the study of oscillation of
solutions to neutral differential equations, see [11–20]. In particular, quasilinear/Emden–
Fowler differential equations have numerous applications in physics and engineering (e.g.,
quasilinear/Emden–Fowler differential equations arise in the study of p-Laplace equa-
tions, porous medium problems, and so on); see, e.g., the papers [5, 21–24] for more de-
tails, the papers [5, 6, 25–28] for the oscillation of quasilinear/Emden–Fowler differential
equations, and the papers [4, 24, 29–35] for the oscillation and asymptotic behavior of
quasilinear/Emden–Fowler differential equations with different neutral coefficients.

Xing et al. [33] presented criteria for oscillation of the equation

(
z(x)

(
δ(n–1)(x)

)r1)′ + ω̃(x)βr1
(
θ (x)

)
= 0

under the conditions

(
θ–1(x)

)′ ≥ θ0 > 0, θ̃ ′(x) ≥ θ̃0 > 0, θ̃–1(θ (x)
)

< x

and

lim inf
x→∞

∫ x

θ̃–1(θ (x))

̂̃ω(s)
z(s)

(
sn–1)r1 ds >

(
1
θ0

+
ỹr1

0

θ0θ̃0

)
>

((n – 1)!)r1

e
,

where 0 ≤ ỹ(x) < ỹ0 < ∞ and ̂̃ω(x) := min{ω̃(θ–1(x)), ω̃(θ–1(θ̃ (x)))}.
Bazighifan et al. [18], Li and Rogovchenko [25], and Zhang et al. [26, 28] presented os-

cillation results for fourth-order equation

(
z(x)

(
δ′′′(x)

)r1)′ + ω̃(x)βr1
(
θ (x)

)
= 0

under the condition
∫ ∞

x0

1
z1/r1 (s)

ds < ∞,

and they used the Riccati technique.
Zhang et al. [36] established oscillation criteria for the equation

(
z(x)

(
δ(n–1)(x)

)r1)′ + ω̃(x)f
(
β
(
θ (x)

))
= 0
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and under the condition

∫ ∞

x0

(
kρ(x)E(x) –

1
4λ

(
ρ ′(x)
ρ(x)

)2

η(x)
)

dz = ∞.

By using the Riccati transformation technique, Chatzarakis et al. [19] established asymp-
totic behavior for the neutral equation

(
z(x)

(
δ′′′(x)

)r1)′ +
∫ b

a
ω̃(x, s)f

(
β
(
θ (x, s)

))
ds = 0.

In this work, a new oscillation condition is created for fourth-order differential equa-
tions with a canonical operator. We use the Riccati technique and the integral averaging
technique to prove our results.

Here are the notations used for our study:

E1(x) = α(x)ω̃(x)(1 – ỹ0)r2 Ar2–r1
1

(
θ (x)

x

)3r2

,

(x) = (1 – ỹ0)r2/r1 h(x)Ar2/r1–1
2 (x)

∫ ∞

x

(
1

z(u)

∫ ∞

u
ω̃(s)

θ r2 (s)
sr2

ds
)1/r1

du

and

�(x) = r1μ1
x2

2z1/r1 (x)α1/r1 (x)
.

2 Oscillation criteria
We next present the lemmas needed for the proof of the original results.

Lemma 2.1 ([37]) If β (i)(x) > 0, i = 0, 1, . . . , n, and β (n+1)(x) < 0, then

n!
β(x)
xn ≥ (n – 1)!

β ′(x)
xn–1 .

Lemma 2.2 ([20]) Let β ∈ Cn([x0,∞), (0,∞)). Assume that β (n)(x) is of a fixed sign and
not identically zero on [x0,∞) and that there exists x1 ≥ x0 such that β (n–1)(x)β (n)(x) ≤ 0
for all x ≥ x1. If limx→∞ β(x) �= 0, then for every μ ∈ (0, 1) there exists xμ ≥ x1 such that

β(x) ≥ μ

(n – 1)!
xn–1∣∣β (n–1)(x)

∣∣ for x ≥ xμ.

Lemma 2.3 ([27]) Let a ≥ 0. Then

Xβ – Yβ (a+1)/a ≤ aa(a + 1)–(a+1)Y –aXa+1,

where Y > 0 and X are constants.

Lemma 2.4 ([38])

Assume that βis an eventually positive solution of (1). (5)



Althubiti et al. Advances in Difference Equations        (2021) 2021:401 Page 4 of 11

Then

Case (N1) : δ(j)(x) > 0 for j = 0, 1, 2, 3,

Case (N2) : δ(j)(x) > 0 for j = 0, 1, 3 and δ′′(x) < 0,

for x ≥ x1, where x1 ≥ x0 is sufficiently large.

Lemma 2.5 Let (5) hold. Then

(
z(x)

(
δ′′′(x)

)r1)′ ≤ –G(x)
(
δ′′′(θ (x)

))r2 , (6)

where

G(x) = ω̃(x)(1 – ỹ0)r2

(
μ

6
θ3(x)

)r2

.

Proof Let (5) hold. From the definition of δ, we get

β(x) ≥ δ(x) – ỹ0β
(
θ̃ (x)

)

≥ δ(x) – ỹ0δ
(
θ̃ (x)

)

≥ (1 – ỹ0)δ(x),

which with (1) gives

(
z(x)

(
δ′′′(x)

)r1)′ + ω̃(x)(1 – ỹ0)r2δr2
(
θ (x)

) ≤ 0. (7)

Using Lemma 2.2, we see that

δ(x) ≥ μ

6
x3δ′′′(x). (8)

Combining (7) and (8), we find

(
z(x)

(
δ′′′(x)

)r1)′ + ω̃(x)(1 – ỹ0)r2

(
μ

6
θ3(x)

)r2(
δ′′′(θ (x)

))r2 ≤ 0.

Thus, (6) holds. This completes the proof. �

Lemma 2.6 Let (5) hold. If δ satisfies (N1), then

B′(x) ≤ α′(x)
α(x)

B(x) – E1(x) – r1μ1
x2

2z1/r1 (x)α1/r1 (x)
B

r1+1
r1 (x), (9)

if δ satisfies (N2), then

A′(x) ≤ –(x) +
h′(x)
h(x)

A(x) –
1

h(x)
A2(x), (10)
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where

B(x) := α(x)
z(x)(δ′′′(x))r1

δr1 (x)
> 0 (11)

and

A(x) := h(x)
δ′(x)
δ(x)

, x ≥ x1. (12)

Proof Let (5) and (N1) hold. From (11) and (7), we find

B′(x) ≤ α′(x)
α(x)

B(x) – α(x)ω̃(x)(1 – ỹ0)r2
δr2 (θ (x))
δr1 (x)

– r1α(x)
z(x)(δ′′′(x))r1

δr1+1(x)
δ′(x). (13)

Using Lemma 2.1, we find

δ(x) ≥ x
3
δ′(x),

and hence

δ(θ (x))
δ(x)

≥ θ3(x)
x3 . (14)

It follows from Lemma 2.2 that

δ′(x) ≥ μ1

2
x2δ′′′(x) (15)

for all μ1 ∈ (0, 1) and every sufficiently large x. Thus, by (13), (14), and (15), we get

B′(x) ≤ α′(x)
α(x)

B(x) – α(x)ω̃(x)(1 – ỹ0)r2δr2–r1 (x)
(

θ (x)
x

)3r2

– r1μ1
x2

2z1/r1 (x)α1/r1 (x)
B

r1+1
r1 (x).

Since δ′(x) > 0, there exist x2 ≥ x1 and A1 > 0 such that

δ(x) > A1. (16)

Thus, we obtain

B′(x) ≤ α′(x)
α(x)

B(x) – α(x)ω̃(x)(1 – ỹ0)r2 Ar2–r1

(
θ (x)

x

)3r2

– r1μ1
x2

2z1/r1 (x)α1/r1 (x)
B

r1+1
r1 (x),

which yields

B′(x) ≤ α′(x)
α(x)

B(x) – E1(x) – r1μ1
x2

2z1/r1 (x)α1/r1 (x)
B

r1+1
r1 (x).

Thus, (9) holds.
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Let (N2) hold. Integrating (7) from x to u, we find

z(u)
(
δ′′′(u)

)r1 – z(x)
(
δ′′′(x)

)r1 ≤ –
∫ u

x
ω̃(s)(1 – ỹ0)r2δr2

(
θ (s)

)
ds. (17)

From Lemma 2.1, we obtain

δ(x) ≥ xδ′(x),

and hence

δ
(
θ (x)

) ≥ θ (x)
x

δ(x). (18)

For (17), letting u → ∞ and using (18), we get

z(x)
(
δ′′′(x)

)r1 ≥ (1 – ỹ0)r2δr2 (x)
∫ ∞

x
ω̃(s)

θ r2 (s)
sr2

ds. (19)

Integrating (19) from x to ∞, we find

δ′′(x) ≤ –(1 – ỹ0)r2/r1δr2/r1 (x)
∫ ∞

x

(
1

z(u)

∫ ∞

u
ω̃(s)

θ r2 (s)
sr2

ds
)1/r1

du. (20)

From the definition of A(x), we see that A(x) > 0 for x ≥ x1, and using (16) and (20), we
find

A′(x) =
h′(x)
h(x)

A(x) + h(x)
δ′′(x)
δ(x)

– h(x)
(

δ′(x)
δ(x)

)2

≤ h′(x)
h(x)

A(x) –
1

h(x)
A2(x)

– (1 – ỹ0)r2/r1 h(x)δr2/r1–1(x)
∫ ∞

x

(
1

z(u)

∫ ∞

u
ω̃(s)

θ r2 (s)
sr2

ds
)1/r1

du.

Since δ′(x) > 0, there exist x2 ≥ x1 and A2 > 0 such that

δ(x) > A2.

Thus, we obtain

A′(x) ≤ –(x) +
h′(x)
h(x)

A(x) –
1

h(x)
A2(x).

Thus, (10) holds. The proof of the theorem is completed. �

Now, we present some Philos-type oscillation criteria for (1).

Theorem 2.7 Let (25) hold. If α, h ∈ C1([x0,∞),R) such that

lim sup
x→∞

1
G(x, x1)

∫ x

x1

G(x, s)E1(s) –
gr1+1

1 (x, s)Gr1
1 (x, s)

(r1 + 1)r1+1
2r1 z(s)α(s)

(μ1s2)r1
ds = ∞ (21)
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for all μ2 ∈ (0, 1), and

lim sup
x→∞

1
G2(x, x1)

∫ x

x1

(
G2(x, s)(s) –

h(s)g2
2 (x, s)
4

)
ds = ∞, (22)

then (1) is oscillatory.

Proof Let β be a nonoscillatory solution of (1), we see that β > 0. Assume that (N1) holds.
Multiplying (9) by G(x, s) and integrating the resulting inequality from x1 to x; we obtain

∫ x

x1

G(x, s)E1(s) ds ≤ B(x1)G(x, x1) +
∫ x

x1

(
∂

∂s
G(x, s) +

α′(s)
α(s)

G(x, s)
)

B(s) ds

–
∫ x

x1

�(s)G(x, s)B
r1+1

r1 (s) ds.

From (3), we get

∫ x

x1

G(x, s)E1(s) ds ≤ B(x1)G(x, x1) +
∫ x

x1

g1(x, s)Gr1/(r1+1)
1 (x, s)B(s) ds

–
∫ x

x1

�(s)G(x, s)B
r1+1

r1 (s) ds. (23)

Using Lemma 2.3 with V = �(s)G(x, s), U = g1(x, s)Gr1/(r1+1)
1 (x, s), and β = B(s), we get

g1(x, s)Gr1/(r1+1)
1 (x, s)B(s) – �(s)G(x, s)B

r1+1
r1 (s)

≤ gr1+1
1 (x, s)Gr1

1 (x, s)
(r1 + 1)r1+1

2r1 z(x)α(x)
(μ1x2)r1

,

which with (23) gives

1
G(x, x1)

∫ x

x1

(
G(x, s)E1(s) –

gr1+1
1 (x, s)Gr1

1 (x, s)
(r1 + 1)r1+1

2r1 z(s)α(s)
(μ1s2)r1

)
ds ≤ B(x1),

which contradicts (21).
Assume that (N2) holds. Multiplying (10) by G2(x, s) and integrating the resulting in-

equality from x1 to x, we find

∫ x

x1

G2(x, s)(s) ds ≤ A(x1)G2(x, x1)

+
∫ x

x1

(
∂

∂s
G2(x, s) +

h′(s)
h(s)

G2(x, s)
)

A(s) ds

–
∫ x

x1

1
h(s)

G2(x, s)A2(s) ds.

Thus,

∫ x

x1

G2(x, s)(s) ds ≤ A(x1)G2(x, x1) +
∫ x

x1

g2(x, s)
√

G2(x, s)A(s) ds
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–
∫ x

x1

1
h(s)

G2(x, s)A2(s) ds

≤ A(x1)G2(x, x1) +
∫ x

x1

h(s)g2
2 (x, s)
4

ds,

and so

1
G2(x, x1)

∫ x

x1

(
G2(x, s)(s) –

h(s)g2
2 (x, s)
4

)
ds ≤ A(x1),

which contradicts (22). The proof of the theorem completed. �

Corollary 2.8 Let (25) hold. If α, h ∈ C1([x0,∞),R) such that

∫ ∞

x0

(
E1(s) –

2r1

(r1 + 1)r1+1
z(s)(α′(s))r1+1

μ
r1
1 s2r1αr1 (s)

)
ds = ∞ (24)

and

∫ ∞

x0

(
(s) –

(h′(s))2

4h(s)

)
ds = ∞ (25)

for some μ1 ∈ (0, 1) and every A1, A2 > 0, then (1) is oscillatory.

Example 2.9 Consider the equation

(
β +

1
2
β

(
1
3

x
))(4)

+
ω̃0

x4 β

(
1
2

x
)

= 0, x ≥ 1, ω̃0 > 0. (26)

Let r1 = r2 = 1, z(x) = 1, ỹ(x) = 1/2, θ̃ (x) = x/3, θ (x) = x/2, and ω̃(x) = ω̃0/x4. Hence, it is easy
to see that

∫ ∞

x0

1
z1/r1 (s)

ds = ∞, E1(x) =
ω̃0

16s

and

(x) :=
ω̃0

24
.

If we put α(s) := x3 and h(x) := x2, then we find

∫ ∞

x0

(
E1(s) –

2r1

(r1 + 1)r1+1
z(s)(α′(s))r1+1

μ
r1
1 s2r1αr1 (s)

)
ds

=
∫ ∞

x0

(
ω̃0

16s
–

9
2μ1s

)
ds

and

∫ ∞

x0

(
(s) –

(h′(s))2

4h(s)

)
ds
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=
∫ ∞

x0

(
ω̃0

24
– 1

)
ds.

Thus,

ω̃0 > 72 (27)

and

ω̃0 > 24. (28)

From Corollary 2.8, equation (26) is oscillatory if ω̃0 > 72.

Example 2.10 Consider the equation

(
x
(
β + ỹ0β(γ x)

)′′′)′ +
ω̃0

x3 β(ηx) = 0, x ≥ 1, (29)

where ỹ0 ∈ [0, 1),γ ,η ∈ (0, 1), and ω̃0 > 0. Let r1 = r2 = 1, z(x) = x, ỹ(x) = ỹ0, θ̃ (x) = γ x,
θ (x) = ηx, and ω̃(x) = ω̃0/x3. Hence, if we set α(s) := x2 and h(x) := x, then we get

E1(x) =
ω̃0(1 – ỹ0)η3

x
, (x) =

ω̃0(1 – ỹ0)η
4x

.

Thus, (24) and (25) become

∫ ∞

x0

(
E1(s) –

2r1

(r1 + 1)r1+1
z(s)(α′(s))r1+1

μ
r1
1 s2r1αr1 (s)

)
ds

=
∫ ∞

x0

(
ω̃0(1 – ỹ0)η3

s
–

2
μ1s

)
ds

and

∫ ∞

x0

(
(s) –

(h′(s))2

4h(s)

)
ds

=
∫ ∞

x0

(
ω̃0(1 – ỹ0)η

4s
–

1
4s

)
ds.

So,

ω̃0 >
2

(1 – ỹ0)η3 (30)

and

ω̃0 >
1

(1 – ỹ0)η
.

From Corollary 2.8, equation (26) is oscillatory if (30) holds.



Althubiti et al. Advances in Difference Equations        (2021) 2021:401 Page 10 of 11

3 Conclusion
In this work, we proved some new oscillation theorems for (1). New oscillation results
are established that complement related contributions to the subject. We used the Riccati
technique and the integral averages technique to get some new results to oscillation of
equation (1) under the condition

∫ ∞
x0

1
z1/r1 (s)

ds = ∞. We may say that, in future work, we
will study this type of equation under the condition

∫ ∞

x0

1
z1/r1 (s)

ds < ∞.

Also we will try to introduce some important oscillation criteria of differential equations
of fourth-order and under

δ(x) = β(x) + ỹ(x)
j∑

i=1

βi
(
θ̃ (x)

)
.
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