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1 Introduction and main result
Discrete equations have been widely employed as mathematical models depicting the na-
ture phenomena in many practical problems including computer sciences, life sciences,
mathematical biology, and so on; see [1–5]. Among these discrete equations, discrete non-
linear Schrödinger (DNLS) equations are very important nonlinear lattice models in the
nonlinear science, ranging from condensed matter physics to biology [6–11]. Let N, Z,
and R stand for the sets of all natural numbers, integers, and real numbers, respectively.
For c, d ∈ Z with c ≤ d, we define Z[c] = {c, c + 1, . . .} and Z[c, d] = {c, c + 1, . . . , d}. It is
well known that by the standing wave assumptions DNLS equations can change into the
following nonlinear second-order difference equation [12–18]:

⎧
⎨

⎩

�2xn–1 + f (n, xn) = 0, ∀n ∈ Z,

f (n, xn) = ∂xn F(n, xn), ∀n ∈ Z,
(1.1)

where �xn–1 = xn – xn–1, �2 = �(�), F ∈ C1(R × R), and F(n + M, ·) = F(n, ·) for some
M ∈N.

As is known, the critical-point theory is an important tool when dealing with the exis-
tence of solutions of differential equations (see [19]), and for discrete system (1.1), there
are some results on the existence of periodic solutions in the last few years: especially, for
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F(n, X) with supquadratic growth condition with respect to X at infinity,

lim|X|→+∞
F(n, X)
|X|2 = +∞, (1.2)

Guo and Yu [18] developed a new approach to obtain the existence and multiplicity of
periodic solutions to discrete system (1.1). Later, for F(n, X) with subquadratic growth
condition with respect to X at infinity, Guo and Yu [20] proved the existence of nontrivial
periodic solutions. For the case of F(n, X) with quadratic–supquadratic growth condition
in X at infinity,

lim inf|X|→+∞
|F(n, X)|

|X|2 = κ > 0,

in 2004, under the assumption that κ depends on M (especially, κ(M) > 2 for even M),
Zhou, Yu, and Guo [21] improved the Guo–Yu method of [18] and obtained the existence
of two nontrivial M-periodic solutions for discrete system (1.1); for more details on the
existence of multiple nontrivial M-periodic solutions with quadratic–supquadratic con-
dition, we refer to [22, 23]. Moreover, the existence of one nontrivial solution for general
nonlinear difference equations, that is, discrete φ-Laplacian equations with quadratic–
supquadratic condition, is considered in [13, 15, 24]. For other related works, we refer to
[14, 16, 17, 25–31].

Note that in [21], for F with quadratic–supquadratic condition with respect to X at in-
finity, by introducing the smallest and largest eigenvalues of the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 –1 0 · · · 0 –1
–1 2 –1 · · · 0 0
0 –1 2 · · · 0 0
...

...
. . .

...
...

...
–1 0 0 · · · –1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

M×M

, (1.3)

that is,

λmin = 2
(

1 – cos
2π

M

)

, λmax =

⎧
⎨

⎩

4 when M is even,

2(1 + cos π
M ) when M is odd,

(1.4)

Zhou, Yu, and Guo obtained the existence of two nontrivial M-periodic solutions for sys-
tem (1.1). Four years later, Xue and Tang obtained the following more general result for F
with quadratic–supquadratic condition with respect to X at infinity.

Theorem 1.1 ([23, Theorem 2]) Suppose that F(n, X) satisfies
(F1) There are constants δ > 0 and k ∈ [0, [ M

2 ] – 1] ∩ Z such that for any |X| ≤ δ and
t ∈ Z[1, M],

1
2
μk|X|2 ≤ F(n, X) ≤ 1

2
μk+1|X|2,

where μk = 2 – 2 cos kw, w = 2π
M , M > 2, and [·] denotes the Gauss function;
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(F2) For t ∈ Z[1, M], there exists a constant β ∈ ( λmax
2 , +∞) such that

lim|X|→+∞ inf
F(n, X)
|X|2 ≥ β .

Then system (1.1) has at least two nontrivial M-periodic solutions.

In condition (F2), λmax is dependent on M; when M is even, β > 2, and when M ≥ 3 is odd,
β ≥ 1 + cosπ/M ≥ 3/2. Therefore the constant β is at least greater than 3/2. Moreover, in
condition (F1), if k = 0, then when M = 4, 0 ≤ F(n, X) ≤ 1 – cos(2π/4) = 1, and when M > 4,
0 ≤ F(n, X) ≤ 1–cos(2π/M) < 1. Clearly, the range of parameter values in (F1) and (F2) will
play a critical role in discrete model (1.1) when proving the existence of periodic solutions.
However, all parameters in Theorem 1.1 are limited. In this paper, we want to establish an
existence result for periodic solutions without this limitation. The main result of this paper
is the following:

Theorem 1.2 Let M ≥ 4, and let F(n, X) satisfy the following conditions:
(F ′

1) There exist constants δ > 0 and 0 < α < 1 such that

0 ≤ F(n, X) ≤ α|X|2 for n ∈N, X ∈R and |X| ≤ δ.

(F ′
2) For t ∈ Z[1, M], there exists a constant β ∈ (1, +∞) such that

lim|X|→+∞ inf
F(n, X)
|X|2 ≥ β .

Then system (1.1) has at least two nontrivial M-periodic solutions.

Remark 1.1 (i) Since M ≥ 4, the parameter β in Theorem 1.1 can only take values in (1 +
cos(π/5), +∞), but it can take any value in (1, +∞) in Theorem 1.2. Moreover, if M > 4
and k = 0, then the parameter α in Theorem 1.1 can only take values in (0, 1 – cos(2π/M)),
but in the present paper, we prove that this parameter can take any value in (0, 1). In this
sense, we extend the ranges of parameters.

(ii) In Theorem 1.1, if k 
= 0, then F(n, X) = O(|X|2) as |X| → 0, but in Theorem 1.2, as
|X| → 0, both F(n, X) = O(|X|2) and F(n, X) = o(|X|2) are admissible.

Remark 1.2 (i) In 2020, under the assumptions that M ≥ 5 and F(n, X) → –∞ as |X| →
+∞, by using an extended mountain pass theorem, we obtained the existence of two
nontrivial M-periodic solutions for quadratic–supquadratic vector field F(n, X) (see [22,
Theorem 1.1]) in X at infinity. Different from the method in [22, Theorem 1.1], now by
constructing a new functional J1(x), two new orthogonal direct sum decompositions, and
Linking theorem [19, Theorem 5.3], under the assumptions that M ≥ 4 and F(n, X) → +∞
as |X| → +∞, we also obtain the existence of two nontrivial M-periodic solutions for
quadratic–supquadratic condition in X at infinity.

(ii) The method improved here may be applied to the general difference equations [13,
15, 21, 24, 28, 29], and under general quadratic–supquadratic growth conditions at infinity,
we may also obtain the existence of multiple periodic solutions.
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Now we give three examples to explain Theorem 1.2. First, we give an example for com-
pletely quadratic condition with respect to X at infinity.

Example 1 Let F be given by

F(n, X) = a1|X|2(φ(n) + D
)
,

where a1 is an arbitrary constant that belongs to (0, 1), a constant D > 0, and φ(n) is a
continuous M-periodic function satisfying |φ(n)| < D for every n. Now F(n, X) satisfies all
assumptions in Theorem 1.2. Thus (1.1) has at least two nontrivial M-periodic solutions.

Second, we give an example for quadratic–supquadratic condition with respect to X at
infinity.

Example 2 Let F be given by

F(n, X) =
(
a4|X|2 – a5|X|4 + a6|X|6)(φ(n) + D

)
,

where a4, a5, a6 are arbitrary constants that belong to (0, 1), a constant D > 0, and φ(n) is
as in Example 1. Then F(n, X) satisfies all assumptions in Theorem 1.2. Thus (1.1) has at
least two nontrivial M-periodic solutions.

Remark 1.3 Since the constants a1 and a4 in Examples 1 and 2 are arbitrary, these exam-
ples cannot be solved by Theorem 1.1.

Finally, we give an example for completely supquadratic condition with respect to X at
infinity.

Example 3 Let F be given by

F(n, X) =
(
a2|X|4 + a3|X|6)(φ(n) + D

)
,

where a2 and a3 are arbitrary constants that belong to (0, 1), a constant D > 0, and φ(n) is
as in Example 1. Then F(n, X) satsifies all assumptions in Theorem 1.2. Thus (1.1) has at
least two nontrivial M-periodic solutions.

2 Some useful lemmas
To use the critical point theory to study the existence of periodic solutions to (1.1), we
introduce some notions and notations.

• Let S be the set of sequences, that is, S = {s = {sj} = (···, s–j,··· , s0,··· , sj,··· ), sj ∈R, j ∈ Z}.
When x, y ∈ S and a, b ∈R, ax + by is given by ax + by = {axj + byj}+∞

j=–∞. For any given
positive integer M, EM is a subspace of S defined as

EM =
{

x = {xj} ∈ S | xj+M = xj, j ∈ Z
}

.
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Then, with the common Euclid inner product (‖x‖ = (
∑M

j=1(xj)2) 1
2 ), EM is an

M-dimensional Hilbert space. Let

‖x‖α =

( M∑

k=1

|xk|α
) 1

α

, α ∈ (1,∞).

Then

1
M

‖x‖4 ≤ ‖x‖ ≤ M‖x‖4,
1
M

‖x‖ 3
2

≤ ‖x‖ ≤ M‖x‖ 3
2

, ∀x ∈ EM.

• Let H be a real Hilbert space. J ∈ C1(H) is said to satisfy the PS condition if any
sequence {x(j)} ⊂ H for which {J(x(j))} is bounded and J ′(x(j)) → 0 as j → ∞ possesses
a convergent subsequence in H .

• Different from the known literature used to study the existence of periodic solutions
for discrete system (1.1), the result of this paper is not related to the complicated
smallest and largest eigenvalues of matrix (1.3), that is, λmin and λmax in (1.4), and now
for any x ∈ EM and �x = (�x1,�x2, . . . ,�xM) ∈R

M , we let

M∑

j=1

(�xj)2 + 2�xn–1�xn = (�x1,�x2, . . . ,�xM)P(�x1,�x2, . . . ,�xM),

where

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · · · · · · · · · · · · · · · · · · · 0
0 1 0 · · · · · · · · · · · · · · · · · · 0
...

. . . . . . . . . · · · · · · · · · · · · · · · ...
... · · · . . . . . . 0 0 · · · · · · · · · ...
... · · · · · · 0 1 1 0 · · · · · · ...
... · · · · · · 0 1 1 0 · · · · · · ...
... · · · · · · ... 0 0

. . . 0 · · · ...
... · · · · · · ...

...
...

. . . . . . . . .
...

0 · · · · · · · · · · · · · · · · · · 0 1 0
0 · · · · · · · · · · · · · · · · · · · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

M×M

.

Remark 2.1 Obviously, the matrix P is different from (1.3), and it is easy to get that the
eigenvalues of P are 1, . . . , 1

︸ ︷︷ ︸
M–2

, 0, 2. Besides, we compute that the matrix P has M linearly

independent eigenvectors.
• To obtain the general existence of periodic solutions for second-order difference

equation (1.1) with new quadratic–supquadratic condition, we also let
H1 = {(x1, x2, . . . , xM) ∈ EM | �x1 = · · · = �xn–2 = �xn+1 = · · · = �xM = 0,�xn–1 =
–�xn = –w ∈R, M ≥ 4}, and H2 = H⊥

1 . Then we construct the first new orthogonal
direct sum decomposition, EM = H1 ⊕ H2.
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Remark 2.2 Most literatures used the method in [18, 21] and H1 is trivial, that is, H1 =
{(v, v, . . . , v)
︸ ︷︷ ︸

M

 | v ∈ R}, but in this paper, when M ≥ 4, H1 is nontrivial, and {(v, v, . . . , v)
︸ ︷︷ ︸

M

 |

v ∈R} ⊆ H1, but {(v, v, . . . , v)
︸ ︷︷ ︸

M

 | v ∈R} 
= H1.

Let M ≥ 4 be a integer, and let n ∈ Z[1, M]. To prove Theorem 1.2, we define the new
functional J1(x), related to the matrix P, on EM as follows:

J1(x) =
1
2
‖�x‖2 –

M∑

j=1

F(j, xj) – M4
[∑

j 
=n

|xj|4 +
1

16
|xn+1 + xn–1|4

]

+ M– 3
2

[∑

j 
=n

|xj| 3
2 +

1
2
√

2
|xn+1 + xn–1| 3

2

]

–
1
2

(�x)P(�x). (2.1)

Remark 2.3 We have the following identity:

∂[(�x)P(�x)]
∂xn

=
∂[

∑
j 
=n |xj|4 + 1

16 |xn+1 + xn–1|4]
∂xn

=
∂[

∑
j 
=n |xj| 3

2 + 1
2
√

2 |xn+1 + xn–1| 3
2 ]

∂xn
= 0.

Clearly, J1 ∈ C1(EM). For any x = {xj}j∈Z ∈ EM , according to Remark 2.3, we compute that

∂J1

∂xn
= –

[
�2xn–1 + f (n, xn)

]
, ∀n ∈ Z[1, M].

So, the existence of critical points of J1 on EM may imply the existence of periodic solutions
of system (1.1).

We now give some useful lemmas, which will serve us later.

Lemma 2.1 Let (F ′
2) be valid. Then there exists a constant γ ′ ∈ R such that F(n, X) ≥

β|X|2 – γ ′ for n ∈ Z, X ∈R.

Proof By (F ′
2), for β > 1, there exist constants ρ > 0 and γ > 0 such that

F(n, X) ≥ β|X|2 – γ for n ∈ Z, |X| ≥ ρ.

Then letting γ1 = max{|F(n, X) – β|X|2 + γ | : n ∈ Z, |X| ≤ ρ} and γ ′ = max{γ ,γ1 + γ }, we
obtain

F(n, X) ≥ β|X|2 – γ ′ for n ∈ Z, X ∈ R.

The proof is complete. �

Lemma 2.2 Let (F ′
2) be in force. Then J1(x) is bounded from above on EM .
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Proof Let J1 be given by (2.1). By Lemma 2.1, for all x ∈ EM , we have

J1(x) ≤ 1
2
‖�x‖2 –

M∑

j=1

(
β(xj)2 – γ ′) – M4

[∑

j 
=n

|xj|4 +
1

16
|xn+1 + xn–1|4

]

+ M– 3
2

[∑

j 
=n

|xj| 3
2 +

1
2
√

2
|xn+1 + xn–1| 3

2

]

–
1
2

(�x)P(�x)

=
1
2
‖�x‖2 – β‖x‖2 – M4

[∑

j 
=n

|xj|4 +
1

16
|xn+1 + xn–1|4

]

+ M– 3
2

[∑

j 
=n

|xj| 3
2 +

1
2
√

2
|xn+1 + xn–1| 3

2

]

+ Mγ ′

–
1
2

(�x)P(�x). (2.2)

The eigenvalues of P are 1, . . . , 1
︸ ︷︷ ︸

M–2

, 0, 2, and the matrix P has M linearly independent

eigenvectors. So we can construct the second new orthogonal direct sum decomposition
R

M = L0 ⊕ L1 ⊕ L2, where

L0 = span
{
�x ∈R

M | P�x = 0
}

, L1 = span
{
�x ∈R

M | P�x = �x
}

,

and

L2 = span
{
�x ∈R

M | P�x = 2�x
}

.

For difference cases, we have the following discussions.
• Case 1: �x ∈ L0. In this case, (�x)P(�x) = 0 and �xn–1 = –�xn. Then x1 =···= xn–1 =

xn+1 =···= xM . Thus by (2.2) we have

J1(x) ≤ x2
n + x2

n–1 + 2xn–1xn – β‖x‖2 – M4(M – 1)
(|x1|4 – |x1| 3

2
)

+ Mγ ′. (2.3)

By the Cauchy–Schwarz inequality, for β > 1, from (2.3) we have

J1(x) ≤ x2
n + x2

1 +
2

β – 1
x2

1 +
β – 1

2
x2

n – β‖x‖2 – M4(M – 1)
[|x1|4

– |x1| 3
2
]

+ Mγ ′

≤ β + 1
β – 1

x2
1 –

β – 1
2

‖x‖2 – M4(M – 1)
[|x1|4 – |x1| 3

2
]

+ Mγ ′. (2.4)

Since

lim
x1→∞

[
β + 1
β – 1

x2
1 – M4(M – 1)|x1|4 + M4(M – 1)|x1| 3

2

]

= –∞,

there exists a constant M1 such that J1(x) ≤ M1. So, when the eigenvalue of P is 0, the
functional J1(x) is bounded from above on EM .
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• Case 2: �x ∈ L2.
Now P(�x) = �x and �xn–1 = �xn = 0. Therefore xn = xn+1 = xn–1, and

J1(x) ≤ –β‖x‖2 – M4‖x‖4
4 + M– 3

2 ‖x‖ 3
2
3
2

+ Mγ ′

≤ –β‖x‖2 – ‖x‖4 + ‖x‖ 3
2 + Mγ ′. (2.5)

So there exists a constant M2 such that J1(x) ≤ M2.
• Case 3: �x ∈ L3.
Now P(�x) = 2�x, so �x1 =···= �xn–2 = �xn+2 =···= �xM = 0, �xn–1 = �xn. Thus 2xn =

xn+1 + xn–1, and

J1(x) ≤ –
1
2
‖�x‖2 – β‖x‖2 – ‖x‖4 + ‖x‖ 3

2 + Nγ ′ ≤ M2. (2.6)

Take M3 = max{M1, M2}. Then by Cases 1–3 we get J1(x) ≤ M3. Now the proof of
Lemma 2.2 is complete. �

Lemma 2.3 Let hypothesis (F ′
2) be in force. Then J1 satisfies the PS condition.

Proof Let {J1(x(j))} be a bounded sequence from bellow, that is, there exists a positive con-
stant M4 such that

J1
(
x(j)) ≥ –M4, ∀j ∈ N .

From (2.4)–(2.6) we have the following inequality:

J1
(
x(j)) ≤

⎧
⎪⎪⎨

⎪⎪⎩

β+1
β–1 |x(j)

1 |2 – β–1
2 ‖x(j)‖2 – M4(M – 1)[|x(j)

1 |4 – |x(j)
1 | 3

2 ]

+ Mγ ′ when �x(j) ∈ L0,

–β‖x(j)‖2 – ‖x(j)‖4 + ‖x(j)‖ 3
2 + Mγ ′ otherwise,

which implies

⎧
⎪⎪⎨

⎪⎪⎩

β–1
2 ‖x(j)‖2 + M4(M – 1)[|x(j)

1 |4 – |x(j)
1 | 3

2 ] – β+1
β–1 |x(j)

1 |2
≤ Mγ ′ + M4 when �x(j) ∈ L0,

β‖x(j)‖2 + ‖x(j)‖4 – ‖x(j)‖ 3
2 ≤ Mγ ′ + M4 otherwise.

(2.7)

From (2.7) it is not difficult to deduce that there exists a constant M5 such that ‖x(j)‖ ≤
M5, that is, {x(j)} is bounded in EM . Since EM is finite-dimensional, there exists a subse-
quence of {x(j)} (not labeled) convergent in EM , so the PS condition is satisfied. �

Lemma 2.4 ([19, Theorem 5.3]; Linking theorem) Let H be a real Hilbert space, H = H1 ⊕
H2, where H2 is a finite-dimensional subspace of H . Assume that J ∈ C1(H) satisfies the PS
condition and

(A1) there exist constants σ > 0 and ρ > 0 such that J|∂Bρ∩H1 ≥ σ ;
(A2) there are e ∈ ∂B1 ∩ H1 and a constant R1 > ρ such that J|∂Q ≤ 0,
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where Q = (BR1 ∩ H2) ⊕ {re | 0 < r < R1}, Bρ denotes the open ball in H with radius ρ and
centered at 0, and ∂Bρ is its boundary. Then J possesses a critical value c ≥ σ , where

c = inf
h∈�

max
u∈Q

J
(
h(u)

)
, � =

{
h ∈ C(Q, H) | h|∂Q = id

}
,

and id denotes the identity operator.

3 Proof of Theorem 1.2
Based upon Lemmas 2.2–2.4, we divide the proof into four steps.

Step 1. We show that (A1) in the Linking theorem holds.
When x ∈ H1 and �x ∈ L0, then by (F ′

1)

J1(x) ≥ 1
2
‖�x‖2 – α‖x‖2 – M4

[∑

j 
=n

|xj|4 +
1

16
|xn+1 + xn–1|4

]

+ M– 3
2

[∑

j 
=n

|xj| 3
2 +

1
2
√

2
|xn+1 + xn–1| 3

2

]

=
(
x2

n + x2
n–1 + 2xn–1xn

)
– α‖x‖2 – M4

[∑

j 
=n

|xj|4 +
1

16
|xn+1

+ xn–1|4
]

+ M– 3
2

[∑

j 
=n

|xj| 3
2 +

1
2
√

2
|xn+1 + xn–1| 3

2

]

. (3.1)

Using the Cauchy–Schwarz inequality 2xn–1xn ≤ 1–α
2 x2

n–1 + 2
1–α

x2
n and 0 < α < 1, from (3.1)

we arrive at

J1(x) ≥ 1 – α

2
x2

n –
1 + α

1 – α
x2

1 – (M – 1)αx2
1 – M5x4

1 + x
3
2
1 /

√
M. (3.2)

On the other hand, when ‖x‖ ≤ δ, (
∑

j 
=n x2
j )1/2 ≤ δ, so if we choose δ sufficiently small,

then from (3.2) we conclude

J1(x) ≥ 1 – α

2
x2

n +
1

2
√

M
x

3
2
1

≥ 1 – α

2
x2

n +
(1 – α)(M – 1)

2
x2

1 = (1 – α)‖x‖2. (3.3)

Taking σ = (1 – α)δ2, we have

J1(x) ≥ σ > 0, ∀x ∈ H1 ∩ ∂Bδ . (3.4)

Thus condition (A1) in Lemma 2.4 is satisfied.
Step 2. We show that (A2) holds.
By Lemma 2.3, J1(x) meets the PS condition. Taking e ∈ ∂B1 ∩ H1, for any z ∈ H2, r ∈R.

Let x = re + z. By (2.4)–(2.6)

J1(x) ≤
⎧
⎨

⎩

β+1
β–1 |x1|2 – β–1

2 ‖x‖2 – M4(M – 1)[|x1|4 – |x1| 3
2 ] + Mγ ′ when x ∈ H1,

–β‖x‖2 – ‖x‖4 + ‖x‖ 3
2 + Mγ ′ when x ∈ H2.

(3.5)
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Observing that as ‖x‖ → ∞, the right-hands in (3.5) are approaching to negative infinity,
and thus there exists a big enough constant R2 > 0 such that J1(x) ≤ 0 for all x ∈ ∂Q, where

Q = (BR2 ∩ H2) ⊕ {re | 0 < r < R2}.

Step 3. Existence of the first nontrivial N-periodic solution.
By Linking theorem (Lemma 2.4), J1 has a critical value c ≥ σ > 0, where

c = inf
h∈�

max
x∈Q

J1
(
h(x)

)
, � =

{
h ∈ C(Q, EM)|h|∂Q = id

}
.

Step 4. Existence of the second nontrivial N-periodic solution.
Inequalities (2.4)–(2.6) imply lim‖x‖→∞ J1(x) = –∞. Let c0 = supx∈EM J1(x). By the con-

tinuity of J1 on EM there exists x̄ ∈ EM such that J1(x̄) = c0 and x̄ is a critical point of J1.
Combining (3.4), we have J1(x̄) = c0 > 0. Note that when x1 = · · · = xM = 0, by (2.1) and
condition (F ′

1) we get J1(x) = –
∑M

j=1 F(j, xj) ≤ 0. So the critical point associated with the
critical value c0 of J1, is a nontrivial M-periodic solution of system (1.1).

The rest of the proof of the other nontrivial M-periodic solution is similar to that of [18,
Theorem 1.1], and we omit it.

By now the proof of Theorem 1.2 is complete, which means that discrete system (1.1)
has at least two nontrivial M-periodic solutions.
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