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Abstract
In this paper, we propose two new contractions via simulation function that involves
rational expression in the setting of partial b-metric space. The obtained results not
only extend, but also generalize and unify the existing results in two senses: in the
sense of contraction terms and in the sense of the abstract setting. We present an
example to indicate the validity of the main theorem.
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1 Introduction and preliminaries
The origin of the fixed point theory goes back a century, to the pioneer work of Banach.
Since the first study of Banach, researchers have been extended, improved, and general-
ized this very simple stated but at the same time very powerful theorem. For this purpose,
the terms of the contraction inequality and the abstract structure of Banach’s theorem
have been investigated. In this paper, we shall combine these two trends and introduce
two new type contraction via simulation functions involving rational terms in the more
general setting, partial-b-metric space.

For the sake of the completeness of the manuscript, we shall recall some basic results
and concepts here.

Theorem 1 ([1]) Let (A, δ) be a complete metric space and O : A → A be a mapping. If
there exist k1, k2 ∈ [0, 1), with κ1 + κ2 < 1 such that

δ(Ov , Oω) ≤ κ1 · δ(ω, Oω)
1 + δ(v , Ov)
1 + δ(v ,ω)

+ κ2 · δ(v ,ω), (1.1)

for all v ,ω ∈A, then O has a unique fixed point u ∈A and the sequence {Onx} converges to
the fixed point u for all x ∈A.
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Theorem 2 ([2]) Let (A, δ) be a complete metric space and O : A → A be a continuous
mapping. If there exist κ1,κ2 ∈ [0, 1), with κ1 + κ2 < 1 such that

δ(Ov , Oω) ≤ k1 · δ(v , Ov)δ(ω, Oω)
δ(v ,ω)

+ k2 · δ(v ,ω), (1.2)

for all distinct v ,ω ∈A, then O possesses a unique fixed point in A.

We mention that over the last few years many interesting and different generalizations
for rational contractions have been provided; see, for example [3–8].

Let � be the set of all non-decreasing and continuous functions ψ : [0, +∞) → [0, +∞).
such that ψ(0) = 0.

Definition 1 ([9]) A function η : R+
0 × R

+
0 → R is a ψ-simulation function if there exists

ψ ∈ � such that the following conditions hold:
(η1) η(r, t) < ψ(t) – ψ(r) for all r, t ∈R

+;
(η2) if {rn}, {tn} are two sequences in [0, +∞) such that limn→+∞ rn = limn→+∞ tn > 0, then

lim sup
n→+∞

η(rn, tn) < 0. (1.3)

We will denote by Zψ the family of all ψ-simulation functions; see e.g. [10–22]. It is clear,
due to the axiom (η1), that

σ (r, r) < 0 for all r > 0. (1.4)

Definition 2 ([23]) On a non-empty set A, a function ρ : A×A→R
+
0 is a partial metric

if the following conditions:
(ρ1) v = ω iff ρ(v , v) = ρ(v ,ω) = ρ(ω,ω);
(ρ2) ρ(v , v) ≤ ρ(v ,ω);
(ρ3) ρ(v ,ω) = ρ(ω, v);
(ρ4) ρ(v ,ω) ≤ ρ(v , z) + ρ(z,ω) – ρ(z, z);

hold for all v ,ω, z ∈A.
The pair (A,ρ) is called a partial-metric space.

Every partial metric ρ on A generates a T0 topology on A, that has a base of the set of
all open balls Bρ(v), where an open ball for a partial metric ρ on A is defined [23] as

Be
ρ(v) =

{
ω ∈A : ρ(v ,ω) < ρ(v , v) + e

}
,

for each v ∈A and e > 0.
If (A,ρ) is a partial-metric space and {vm} a sequence in A, then:
• {vm} is convergent to a limit u ∈A, if limm→+∞ ρ(vm, u) = ρ(u, u);
• {vm} is a Cauchy sequence if limm,q→+∞ ρ(vm, vq) exists and is finite.

Moreover, we say that the partial-metric space (A,ρ) is complete if every Cauchy sequence
{vm} in A converges to a point u ∈A, that is,

lim
m→+∞ρ(vm, u) = ρ(u, u) = lim

m,q→+∞ρ(vm, vq).
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Remark 1 The limit in a partial metric space may not be unique. For a sequence {vm} on
(A,ρ), we denote by L({vm}) the set of limit points (if there exist any),

L
({vm}) =

{
u ∈A : lim

m→+∞ρ(vm, u) = ρ(u, u)
}

.

We recall some results in the context of partial-metric spaces, necessary in our following
considerations.

Lemma 1 Let (A,ρ) be a partial-metric space and {vm} be a sequence in A such that
limm→+∞ ρ(vm, vm+1) = 0. If limm,q→+∞ ρ(vm, vq) �= 0, then there exist e > 0 and subsequences
{vml }, {vql } of {vm} such that

lim
l→+∞

ρ(vml , vql ) = lim
l→+∞

ρ(vml , vql+1) = lim
l→+∞

ρ(vml+1, vql )

= lim
l→+∞

ρ(vml+1, vql+1) = e. (1.5)

Lemma 2 ([24]) Let {vm} be a Cauchy sequence on a complete partial-metric space (A,ρ).
If there exists x ∈ L({vm}) with ρ(x , x ) = 0, then x ∈ L({vml}), for every subsequence {vml }
of {vm}.

Lemma 3 ([25]) If {vm}, {ωm} are two sequences in a partial-metric space (A,ρ) such that

lim
m→+∞ρ(vm, x ) = lim

m→+∞ρ(vm, vm) = ρ(x , x ),

lim
m→+∞ρ(ωm, y) = lim

m→+∞ρ(ωm,ωm) = ρ(y , y),

then limm→+∞ ρ(vm,ωm) = ρ(x , y). Moreover, limm→+∞ ρ(vm, u) = ρ(x , u), for each u ∈A.

On a partial-metric space (A,ρ), a mapping O : A→A is continuous at v0 if and only if
for every e > 0, there exists δ > 0 such that

O
(
Bδ

ρ(v0)
) ⊆ Be

ρ

(
O(v0)

)
.

(O is continuous if it is continuous at every point v ∈A.)

Lemma 4 ([24]) On a complete partial-metric space (A,ρ), let O be a continuous mapping
and {vm} be a Cauchy sequence in A. If there exists x ∈ L({vm}) with ρ(x , x ) = 0, then
Ox ∈L({Ovm}).

Definition 3 ([26]) Let A be a non-empty set and s ≥ 1. A function ρb : A×A→R
+
0 is a

partial b-metric with a coefficient s if the following conditions hold for all v ,ω, z ∈A
(ρb1) v = ω iff ρb(v , v) = ρb(v ,ω) = ρb(ω,ω);
(ρb2) ρb(v , v) ≤ ρb(v ,ω);
(ρb3) ρb(v ,ω) = ρb(ω, v);
(ρb4) ρb(v ,ω) ≤ s[ρb(v , z) + ρb(z,ω)] – ρb(z, z).

In this case, we say that (A,ρb, s) is a partial b-metric space.

Example 1 ([26]) Let A be a non-empty set and v ,ω ∈A.
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• if ρ is a partial metric on A, then the function ρb defined as

ρb(v ,ω) =
[
ρ(v ,ω)

]λ (1.6)

is a partial b-metric on A, with s = 2λ–1, for λ > 1.
• if b is a b-metric and ρ is a partial metric on A, then the function

ρb(v ,ω) = ρ(v ,ω) + b(v ,ω) (1.7)

is a partial b-metric on A.

A sequence {vm} in a partial b-metric space (A,ρb, s) is said to be ρb-convergent to a
point u ∈A if

lim
m→+∞ρb(vm, u) = ρb(u, u). (1.8)

If the limit limm,q→+∞ ρb(vm, vq) exists and it is finite, the sequence {vm} is said to be ρb-
Cauchy. Moreover, if every ρb-Cauchy sequence in A is ρb-convergent to u ∈A, that is

lim
m,q→+∞ρb(vm, vq) = lim

m→+∞ρb(vm, u) = ρb(u, u), (1.9)

we say that the partial b-metric space (A,ρb, s) is ρb-complete.

Remark 2 In [27] it is proved that a partial b-metric induces a b-metric, say δb, with

δb(v ,ω) = 2ρb(v ,ω) – ρb(v , v) – ρb(ω,ω), (1.10)

for all v ,ω ∈A.

On the other hand, in [28], the notion of 0-ρb-completeness was introduced and the
relation between 0-ρb-completeness and ρb-completeness of a partial b-metric was es-
tablished.

Definition 4 ([28]) A sequence {vm} on a partial b-metric space (A,ρb, s) is 0-ρb-Cauchy
if limm,q→+∞ ρb(vm, vq) = 0. Moreover, the space (A,ρb, s) is said to be 0-ρb-complete if for
each 0-ρb-Cauchy sequence in A, there is u ∈A, such that

lim
m,q→+∞ρb(vm, vq) = lim

m→+∞ρb(vm, u) = ρb(u, u) = 0. (1.11)

Lemma 5 ([28]) If the partial b-metric space (A,ρb, s) is ρb-complete, then it is 0-ρb-
complete.

Lemma 6 ([29]) Let (A,ρb, s) be a partial b-metric space. If ρb(v ,ω) = 0 then v = ω and
ρb(v ,ω) > 0 for all v �= ω.

The next result is important in our future considerations.
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Lemma 7 ([30]) Let (A,ρb, s ≥ 1) be a partial b-metric space, O : A → A a mapping and
a number κ ∈ [0, 1). If {vm} is a sequence in A, where vm = Ovm–1 and

ρb(vm, vm+1) ≤ κρb(vm–1, vm), (1.12)

for each m ∈N, then the sequence {vm} is 0-ρb-Cauchy.

2 Main results
We start with the definition of simulation function for partial b-metric spaces.

Definition 5 Let (A,ρb, s ≥ 1) be a partial b-metric space. A b-ψ-simulation function is
a function ηb : [0, +∞) × [0, +∞) →R satisfying:

(ηb1) ηb(r, t) < ψ(t) – ψ(r) for all r, t ∈R
+;

(ηb2) if {rn}, {tn} are two sequences in [0, +∞), such that for p > 0

lim sup
n→+∞

tn = sp lim
n→+∞ rn > 0, (2.1)

then

lim sup
n→+∞

ηb
(
sprn, tn

)
< 0. (2.2)

We shall denote by Zψb the family of all b-ψ-simulation functions.

Example 2 Let ψ ∈ � and γ : [0, +∞) → [0, +∞) be a function such that lim supt→t0 γ (t) <
1 for every t0 > 0 and φ(t) = 0 if and only if t = 0. Then ηb(r, t) = γ (t)ψ(t) – ψ(r), for r, t ≥ 0
is a b-ψ-simulation function.

Example 3 Let ψ ∈ � and φ : [0, +∞) → [0, +∞) be a function such that limt→t0 φ(t) > 0
for every t0 > 0 and φ(t) = 0 if and only if t = 0. Then ηb(r, t) = ψ(t) – φ(t) – ψ(r), for r, t ≥ 0
is a b-ψ-simulation function.

Obviously, (ηb1) holds. Now, considering two sequences {rn} and {tn} in (0, +∞) such
that (2.1) holds, we have

lim
n→+∞ηb

(
sprn, tn

)
= lim

n→+∞ψ(tn) – φ(tn) – ψ
(
sprn

) ≤ –φ(tn) < 0.

Thus, also (ηb2) holds, that is ηb ∈Zψb .

Definition 6 Let (A,ρb, s ≥ 1) be a partial b-metric space. A mapping O : A→A is called
(ηb)-rational contraction of type A if there exists a function ηb ∈Zψb such that

1
2s

min
{
ρb(v , Ov),ρb(ω, Oω)

} ≤ ρb(v ,ω), which implies

η
(
spρb(Ov , Oω),DA(v ,ω)

) ≥ 0, (2.3)

for every v ,ω ∈A, where DA is defined as

DA(v ,ω) = max

{
δ(v ,ω), δ(v , Ov), δ(ω, Oω),

δ(ω, Oω)[1 + δ(v , Ov)]
1 + δ(v ,ω)

}
. (2.4)
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With the purpose to simplify the demonstrations, we prefer in the sequel, to discuss
separately, the cases

Theorem 3 Let (A,ρb, s > 1) be a ρb-complete partial b-metric space and O : A→A be a
(ηb)-rational contraction of type A. Then O admits exactly one fixed point.

Proof Let v0 ∈A be an arbitrary but fixed point and {vm} be the sequence in A defined as
follows:

vm = Ovm–1, ∀ ∈N. (2.5)

Thus, we can assume that vm–1 �= vm for every m ∈ N. Indeed, if we suppose that there
exists m0 ∈ N such that vm0–1 = vm0 . Taking into account (2.5) we get vm0–1 = Ovm0–1, that
is, vm0–1 is a fixed point of O . Therefore, substituting v = vm–1 and ω = vm in (2.4), we have

DA(vm–1, vm) = max

{
ρb(vm–1, vm),ρb(vm–1, Ovm–1),ρb(vm, Ovm),

ρb(vm ,Ovm)[1+ρb(vm–1,Ovm–1)]
1+ρb(vm–1,vm)

}

= max

{
ρb(vm–1, vm),ρb(vm–1, vm),ρb(vm, vm+1),

ρb(vm ,vm+1)[1+ρb(vm–1,vm)]
1+ρb(vm–1,vm)

}

= max
{
ρb(vm–1, vm),ρb(vm, vm+1)

}
.

Moreover, by (2.3) we get

1
2s

min
{
ρb(vm–1, Ovm–1),ρb(vm, Ovm)

}

=
1
2s

min
{
ρb(vm–1, vm),ρb(vm, vm+1)

}

≤ ρb(vm–1, vm), for all m ∈N,

which implies

ηb
(
spρb(Ovm–1, Ovm),DA(vm–1, vm)

) ≥ 0.

Now, taking into account (ηb1), the above inequality yields

0 < ψ
(
DA(vm–1, vm)

)
– ψ

(
spρb(Ovm–1, Ovm)

)
,

or, equivalently,

ψ
(
spρb(vm, vm+1)

)
< ψ

(
DA(vm–1, vm)

)
= ψ

(
max

{
ρb(vm–1, vm),ρb(vm, vm+1)

})
.

Consequently, due to the monotony of the function ψ , we obtain

spρb(vm, vm+1) < max
{
ρb(vm–1, vm),ρb(vm, vm+1)

}
. (2.6)
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If there exists m1 ∈ N such that max{ρb(vm1–1, vm1 ),ρb(vm1 , vm1+1)} = ρb(vm1 , vm1+1), (2.6)
becomes spρb(vm1 , vm1+1) < ρb(vm1 , vm1+1), which is a contradiction (because s > 1). There-
fore, for any m ∈N we have

spρb(vm, vm+1) < ρb(vm–1, vm),

or

ρb(vm, vm+1) <
1
sp ρb(vm–1, vm). (2.7)

Denoting 1
sp by κ , we have ρb(vm, vm+1) < κρb(vm–1, vm), with 0 ≤ κ < 1. Thus, by Lemma 7

we see that the sequence{vn} is a 0-ρb-Cauchy sequence on the ρb-complete partial b-
metric space. Since by Lemma 5, the space is also 0-ρb-complete, it follows that there
exists u ∈A such that

lim
m,q→+∞ρb(vm, vq) = lim

m→+∞ρb(vm, u) = ρb(u, u) = 0. (2.8)

Now, we claim that

1
2s

ρb(vm, vm+1) ≤ ρb(vm, u) or
1
2s

ρb(vm+1, vm+2) ≤ ρb(vm+1, u).

Assuming the contrary, we can find m0 ∈N such that

ρb(vm0 , vm0+1) ≤ s
[
ρb(vm0 , u) + ρb(u, vm0+1)

]
– ρb(u, u)

< s
[

1
2s

ρb(vm0 , vm0+1) +
1
2s

ρb(vm0+1, vm0+2)
]

=
1
2
[
ρb(vm0 , vm0+1) + ρb(vm0+1, vm0+2)

] (
taking (2.7) into account

)

< ρb(vm0 , vm0+1),

which is a contradiction. Thus, there exists a subsequence {vm(l)} of {vm} such that

1
2s

min
{
ρb(vm(l), Ovm(l)),ρb(u, Ou)

}
=

1
2s

ρb(vm(l), vm(l)+1) ≤ ρb(vm(l), u),

which implies

ηb
(
spρb(Ovm(l), Ou),DA(vm(l), u)

) ≥ 0,

where

ρb(u, Ou) ≤DA(vm(l), u)) = max

{
ρb(vm(l), u),ρb(vm(l), Ovm(l)),ρb(u, Ou),

ρb(u,Ou)[1+ρb(vm(l),Ovm(l))
1+ρb(vm(l),u)

}

= max

{
ρb(vm(l), u),ρb(vm(l), vm(l)+1),ρb(u, Ou),

ρb(u,Ou)[1+ρb(vm(l),vm(l)+1)]
1+ρb(vm(l),u) .

}
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Therefore, letting l → +∞ and keeping (2.8) in mind we get

lim
l→+∞

DA(vm(l), u)) = ρb(u, Ou). (2.9)

On one hand, without loss of generality, we assume that vm �= u, for infinitely many m ∈N.
Thus,

ηb
(
spρb(Ovm, Ou),DA(vm, u)

) ≥ 0,

which by (ηb1) leads us to

ψ
(
spρb(Ovm, Ou)

)
< ψ

(
DA(vm, u)

)
.

Taking into account the non-decreasing property of ψ

spρb(Ovm, Ou) < DA(vm, u).

On the other hand,

ρb(u, Ou) ≤ s
[
ρb(u, Ovm) + ρb(Ovm, Ou)

]
– ρb(Ovm, Ovm)

≤ sρb(u, Ovm) + spρb(Ovm, Ou) – ρb(vm+1, vm+1)

< sρb(u, Ovm) + DA(vm, u).

Letting m → +∞ in the above inequality and keeping in mind (2.8) and (2.9) we get

ρb(u, Ou) ≤ sp lim
m→+∞ρb(Ovm, Ou) < lim

m→+∞DA(vm, u) = ρb(u, Ou).

Therefore, sp limm→+∞ ρb(Ovm, Ou) = ρb(u, Ou). Thus, letting rm = ρb(Ovm, Ou) and tm =
DA(vm, u), by (ηb2) it follows lim supm→+∞ ηb(sprm, tm) < 0, which is a contradiction. Then
ρb(u, Ou) = 0 = ρb(u, u), that is, u is a fixed point of O .

As a last step, we establish uniqueness of the fixed point. Indeed, if we can find another
point, z ∈A, z �= u such that z = Oz,

0 =
1
2s

min
{
ρb(z, Oz),ρb(u, Ou)

} ≤ ρb(z, u),

which implies

0 ≤ ηb
(
spρb(Oz, Ou),DA(z, u)

)
< ψ

(
DA(z, u)

)
– ψ

(
spρb(Oz, Ou)

)

= ψ
(
ρb(z, u)

)
– ψ

(
spρb(z, u)

)
,

which is a contradiction. Thus, u = z. �

Example 4 Let the set A = {10, 11, 12, 13} and ρb be the partial b-metric on A
(s = 2), where ρb(v ,ω) =

{ 0.000002 for v = ω = 13,
|v – ω|2 otherwise . We define the mapping O : A → A, Ov =

{ 10 for v ∈ {10, 11, 12},
11 for v = 13, and we choose φ ∈ �, φ(t) = t

2 and ηb(r, t) =
15
16 t–r

2 . It is easy to see that
ηb ∈Zψb (by taking γ (t) = 15

16 in Example 2). We have
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v Ov ρb(v , Ov)

10 10 0
11 10 1
12 10 4
13 11 4

and shall consider the following cases:
1. For v ,ω ∈ {10, 11, 12}, we have ρb(Ov , Oω) = 0, and then

1
2s

min
{
ρb(v , Ov),ρb(ω, Oω)

} ≤ 1 ≤ ρb(v ,ω),

which implies

2ρb(Ov , Oω) = 0 ≤ 15
16

DB(v ,ω).

2. For v = 10,ω = 13 we have ρb(v ,ω) = 9, ρb(10, O10 = 0, ρb(13, O13) = ρb(13, 11) = 4,
ρb(O10, O13) = ρb(10, 11) = 1 and then

1
4

min
{
ρb(10, aT10),ρb(13, O13)

}
= 0 < 9 = ρb(v ,ω),

which implies

2ρb(O10, O13) = 2 ≤ 135
16

=
15
16

· ρb(10, 13).

3. For v = 11,ω = 13 we have ρb(v ,ω) = 4, ρb(11, O11) = 1, ρb(13, O13) = ρb(13, 11) = 4,
ρb(O11, O13) = ρb(10, 11) = 1 and then

1
4

min
{
ρb(11, aT11),ρb(13, O13)

}
=

1
4

< 4 = ρb(v ,ω),

which implies

2ρb(O11, O13) = 2 ≤ 15
4

=
15
16

· ρb(11, 13).

4. For v = 12,ω = 13 we have ρb(v ,ω) = 1, ρb(12, O12) = 4, ρb(13, O13) = ρb(13, 11) = 4,
ρb(O12, O13) = ρb(10, 11) = 1 and then

1
4

min
{
ρb(12, aT12),ρb(13, O13)

}
= 1ρb(v ,ω),

which implies

2ρb(O12, O13) = 2 ≤ 75
16

=
15
16

· ρb(12, O12)(1 + ρb(13, O13))
1 + ρb(12, 13)

≤ 15
16

DA(12, 13).

Thus, the hypothesis of Theorem 3 are satisfied and v = 10 is the fixed point of the
mapping O .



Karapınar et al. Advances in Difference Equations        (2021) 2021:409 Page 10 of 20

Definition 7 Let (A,ρb, s > 1) be a partial b-metric space. The mapping O : A→A is said
to be a (ηb)-rational contraction of type B if there exists ηb ∈Zψb such that

1
2s

min
{
ρb(v , Ov),ρb(ω, Oω)

} ≤ ρb(v ,ω), which implies

ηb
(
spρb(Ov , Oω),DB(v ,ω)

) ≥ 0, (2.10)

for all v ,ω ∈A, ρb(v ,ω) > 0, where

DB(v ,ω) = max

{
ρb(v ,ω),ρb(v , Ov),ρb(ω, Oω), ρb(v ,Oω)+ρb(ω,Ov)

2s ,
ρb(ω,Oω)ρb(v ,Ov)

ρb(v ,ω) .

}

(2.11)

Theorem 4 On a ρb-complete partial b-metric space (A,ρb, s > 1) any continuous (ηb)-
rational contraction of type B, O : A→A admits exactly one fixed point.

Proof Let the sequence {vm} be defined by (2.5). Since vm–1 �= vm, for each m ∈ N (by similar
reasoning as in the proof of Theorem 3), we have

1
2s

min
{
ρb(vm, Ovm),ρb(vm+1, Ovm+1)

}
=

1
2s

min
{
ρb(vm, vm+1),ρb(vm+1, vm+2)

}

≤ ρb(vm, vm+1),

which implies

0 ≤ ηb
(
spρb(Ovm, Ovm+1),DB(vm, vm+1)

)

< ψ
(
DB(vm, vm+1)

)
– ψ

(
spρb(Ovm, Ovm+1)

)
, (2.12)

where

DB(vm, vm+1) = max

{
ρb(vm, vm+1),ρb(vm+1, vm+2), ρb(vm ,vm+2)+ρb(vm+1,vm+1)

2s ,
ρb(vm ,vm+1)ρb(vm+1,vm+2)

ρb(vm ,vm+1)

}

≤ max

{
ρb(vm, vm+1),ρb(vm+1, vm+2),

s[ρb(vm ,vm+1)+ρb(vm+1,vm+2)]–ρb(vm+1,vm+1)+ρb(vm+1,vm+1)
2s

}

≤ max
{
ρb(vm, vm+1),ρb(vm+1, vm+2)

}
.

Therefore

ψ
(
spρb(vm+1, vm+2)

)
< ψ

(
DB(vm, vm+1)

) ≤ ψ
(
max

{
ρb(vm, vm+1),ρb(vm+1, vm+2)

})

and since the function ψ is non-decreasing, we get, for any m ∈N,

spρb(vm+1, vm+2) < max
{
ρb(vm, vm+1),ρb(vm+1, vm+2)

}
.

Moreover, if max{ρb(vm, vm+1),ρb(vm+1, vm+2)} = ρb(vm+1, vm+2) we get a contradiction, and
then it follows that

ρb(vm+1, vm+2) <
1
sp ρb(vm, vm+1)
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and by Lemma (7), we conclude that {vm} is a 0-ρb-Cauchy on a ρb-complete b-partial-
metric space, and there exists u ∈A such that limm→+∞ vm = u.

Taking into account the continuity of the mapping O , we have

u = lim
m→+∞ vm+1 = lim

m→+∞ O
(

lim
m→+∞ vm

)
= Ou,

that is, u is a fixed point of the mapping O .
We claim that the fixed point of O is unique. Let u, z ∈A be two different fixed point of

O . Then

0 =
1
2s

min
{
ρb(u, Ou),ρb(z, Oz)

}
< ρb(u, z),

which implies

0 ≤ ηb
(
spρb(Ou, Oz),Db(u, z)

)
< ψ

(
Db(u, z)

)
– ψ

(
spρb(Ou, Oz)

)

= ψρb(u, z) – ψ
(
spρb(u, z)

)
,

which is a contradiction. Therefore, ρb(u, z) = 0, that is (by Lemma 6), u = z. �

Example 5 Let the set A = [0, 1], and ρb : A × A → [0, +∞), ρb(v ,ω) = (max{v ,ω})2 be
a partial b-metric on A. Let the continuous mapping O : A → A be defined by Ov =
{ v2 for v ∈ [0, 2

3 ],
4
9 for v ∈ ( 2

3 , 1], and the functions ψ ∈ �, ηb ∈Zψb , where ψ(t) = t
2 and ηb(r, t) = 8

9 ( t
2 ) – r

2 .
We verify that O is a (ηb)-ψ-rational contraction of type B.
1. For v ,ω ∈ [0, 2/3], if v > ω, (the case v ≤ ω is similar), we have

ρb(v ,ω) =
(
max{v ,ω})2 = v2, ρb(v , Ov) =

(
max

{
v , v2})2 = v2,

ρb(ω, Oω) = ω2, ρb(Ov , Oω) =
(
max

{
v2,ω2})2 = v4.

Therefore,

1
4

min
{
ρb(v , Ov),ρb(ω, Oω)

}
=

1
4

v2 ≤ v2 = ρb(v ,ω),

which implies

2ρb(Ov , Oω) = 2v4 ≤ 8
9

v2 ≤ 8
9
DB(v ,ω)).

2. For v ,ω ∈ (2/3, 1], if v > ω, (the case v ≤ ω is similar), we have

ρb(v ,ω) =
(
max{v ,ω})2 = v2, ρb(v , Ov) =

(
max

{
v ,

4
9

})2

= v2,

ρb(ω, Oω) = ω2, ρb(Ov , Oω) =
16
81

.

Therefore,

1
4

min
{
ρb(v , Ov),ρb(ω, Oω)

}
=

1
4

v2 ≤ v2 = ρb(v ,ω),
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which implies

2ρb(Ov , Oω) =
32
81

≤ 8
9

v2 ≤ 8
9
DB(v ,ω)).

3. For v ∈ [0, 2/3],ω ∈ (2/3, 1], we have

ρb(v ,ω) =
(
max{v ,ω})2 = ω2, ρb(v , Ov) = v2,

ρb(ω, Oω) = ω2, ρb(Ov , Oω) =
16
81

.

Therefore,

1
4

min
{
ρb(v , Ov),ρb(ω, Oω)

}
=

1
4
ω2 ≤ ω2 = ρb(v ,ω),

which implies

2ρb(Ov , Oω) =
32
81

≤ 8
9
ω2 =

8
9
ρb(ω, Oω) ≤ 8

9
DB(v ,ω)).

Therefore, all the hypotheses of Theorem 2.10 are satisfied and v = 0 is the unique
fixed point of O .

Removing the condition 1
2s min{ρb(v , Ov),ρb(ω, Oω)} ≤ ρb(v ,ω) in Theorem 3, respec-

tively, Theorem 4, we immediately obtain the next results.

Corollary 1 Let (A,ρb, s > 1) be a ρb-complete partial b-metric space and O : A → A be
a mapping such that there exists ηb ∈Zψb such that

ηb
(
spρb(Ov , Oω),DA(v ,ω)

) ≥ 0

for all v ,ω ∈A, where DA is defined by (2.4). Then O has a unique fixed point.

Corollary 2 Let (A,ρb, s > 1) be a ρb-complete partial b-metric space and O : A → A be
a continuous mapping such that there exists ηb ∈Zψb such that

ηb
(
spρb(Ov , Oω),DB(v ,ω)

) ≥ 0

for all distinct v ,ω ∈A, where DB is defined by (2.11). Then O has a unique fixed point.

Corollary 3 Let O : A → A be a mapping on a ρb-complete partial b-metric space
(A,ρb, s > 1). Suppose that ψ ∈ � and φ : [0, +∞) → [0, +∞) is a function such that
lim inft→t0 φ(t) > 0, for t0 > 0 and φ(t) = 0 ⇔ t = 0. If for every r, t ∈A

1
2s

min
{
ρb(v , Ov),ρb(ω, Oω)

} ≤ ρb(v ,ω),

which implies

ψ
(
spρb(Ov , Oω)

) ≤ ψ
(
DA(v ,ω)

)
– φ

(
DA(v ,ω)

)

then O admits a unique fixed point.
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Proof Let ηb(r, t) = ψ(t) – φ(t) – ψ(r) in Theorem 3 and take into account Example 2. �

Corollary 4 Let O : A → A be a continuous mapping on a ρb-complete partial b-metric
space (A,ρb, s > 1). Suppose that ψ ∈ � and φ : [0, +∞) → [0, +∞) is a function such that
lim inft→t0 φ(t) > 0, for t0 > 0 and φ(t) = 0 ⇔ t = 0. If for every distinct r, t ∈A

1
2s

min
{
ρb(v , Ov),ρb(ω, Oω)

} ≤ ρb(v ,ω),

which implies

ψ
(
spρb(Ov , Oω)

) ≤ ψ
(
DB(v ,ω)

)
– φ

(
DB(v ,ω)

)

then O admits a unique fixed point.

Proof Let ηb(r, t) = ψ(t) – φ(t) – ψ(r) in Theorem 4 and take into account Example 3. �

Corollary 5 Let O : A → A be a mapping on a ρb-complete partial b-metric space
(A,ρb, s > 1). Suppose that ψ ∈ � and γ : [0, +∞) → [0, 1) is a function such that
lim supt→t0 γ (t) < 1, for t0 > 0 and γ (t) = 0 ⇔ t = 0. If for every r, t ∈A

1
2s

min
{
ρb(v , Ov),ρb(ω, Oω)

} ≤ ρb(v ,ω),

which implies

ψ
(
spρb(Ov , Oω)

) ≤ γ
(
DA(v ,ω)

)
ψ

(
DA(v ,ω)

)

then O admits a unique fixed point.

Proof Let ηb(r, t) = γ (t)ψ(t) – ψ(r) in Theorem 3 and take into account Example 2. �

Corollary 6 Let O : A → A be a continuous mapping on a ρb-complete partial b-metric
space (A,ρb, s > 1). Suppose that ψ ∈ � and γ : [0, +∞) → [0, 1) is a function such that
lim supt→t0 γ (t) < 1, for t0 > 0 and γ (t) = 0 ⇔ t = 0. If for every r, t ∈A, with ρb(v ,ω) > 0,

1
2s

min
{
ρb(v , Ov),ρb(ω, Oω)

} ≤ ρb(v ,ω),

which implies

ψ
(
spρb(Ov , Oω)

) ≤ ψ
(
DB(v ,ω)

)
– φ

(
DB(v ,ω)

)

then O admits a unique fixed point.

Proof Let ηb(r, t) = γ (t)ψ(t) – ψ(r) in Theorem 4 and take into account Example 2. �

We will prove below results similar to those stated in Theorems 3, 4 that can be formu-
lated for the case s = 1.
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Theorem 5 Let (A,ρ) be a ρb-complete partial-metric space and O : A → A be a map-
ping. If there exists a function η ∈Zψ such that

1
2

min
{
ρ(v , Ov),ρ(ω, Oω)

} ≤ ρ(v ,ω), which implies

η
(
ρ(Ov , Oω),D1

A(v ,ω)
) ≥ 0, (2.13)

for every distinct v ,ω ∈A, where D1
A is defined as

D1
A(v ,ω) = max

{
ρ(v ,ω),ρ(v , Ov),ρ(ω, Oω),

ρ(ω, Oω)[1 + ρ(v , Ov)]
1 + ρ(v ,ω)

}
, (2.14)

then O admits exactly one fixed point.

Proof For v0 ∈A, let {vn} be the sequence defined by (2.5), ρ(vm, vm+1) > 0, for any m ∈N.
First of all, we claim that limn→+∞ ρ(vm, vm+1) = 0. From (2.13), we have

1
2

min
{
ρ(vm–1, Ovm–1),ρ(vm, Ovm

}
=

1
2

min
{
ρ(vm–1, vm),ρ(vm, vm+1

} ≤ ρ(vm–1, vm),

which implies

0 ≤ η
(
ρ(Ovm–1, Ovm),D1

A(vm–1, vm)
)

< ψ
(
D1

A(vm–1, vm)
)

– ψ
(
ρ(Ovm–1, Ovm)

)
.

Consequently, we get

ψ
(
ρ(Ovm–1, Ovm)

)
< ψ

(
D1

A(vm–1, vm)
)
,

which, since ψ is non-decreasing, implies

ρ(vm, vm+1) = ρ(Ovm–1, Ovm) < D1
A(vm–1, vm) = max

{
ρ(vm–1, vm),ρ(vm, vm+1)

}
.

Therefore, the sequence {ρ(vm, vm+1)} is decreasing, so, we can find θ ≥ 0 such that
limm→+∞ ρ(vm, vm+1) = θ . On the other hand, it is easy to see that limm→+∞ D1

A(vm–1, vm) =
θ , as well. Assuming that θ > 0, from (η2) and (2.13) it follows that

0 ≤ lim sup
m→+∞

η
(
ρ(vm, vm+1),D1

A(vm–1, vm)
)

< 0,

which is a contradiction. So, we found that

θ = lim
m→+∞ρ(vm, vm+1) = 0. (2.15)

We claim that {vm} is a Cauchy sequence. If we suppose that limm,q→+∞ ρ(vm, vq) �= 0,
there exist two subsequences {vml }, {vql } of the sequence {vm} and a number e > 0 such
that ρ(vml , vql ) > e.

Moreover, by Lemma 1, we have

lim
l→+∞

ρ(vml , vql–1) = e = lim
l→+∞

ρ(vml+1, vql ). (2.16)
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Looking on the definition of the function D1
A, we have

ρ(vml , vql–1) ≤D1
A(vml , vql–1) = max

{
ρ(vml , vql–1),ρ(vml , vml+1),ρ(vql–1, vql ),

ρ(vql–1,vql )[1+ρ(vml ,vml+1)]
1+ρ(vml ,vql–1)

}

(2.17)

and keeping in mind (2.15) and (2.16) we get

lim
l→+∞

D1
A(vml , vql–1) = e. (2.18)

Now, letting rl = ρ(vml+1, vql ) and tl = D1
A(vml , vql–1), by (η2) we get

lim sup
l→+∞

η
(
ρ(Ovml , Ovql–1),D1

A(vml , vql–1)
)

< 0. (2.19)

On the other hand, by (2.15), we have

ρ(vml , vml+1) <
e
2

and ρ(vql–1, vql ) <
e
2

. (2.20)

Thus, by the triangle inequality and taking into account (2.20), we get

e < ρ(vml , vql ) ≤ ρ(vml , vql–1) + ρ(vql–1, vql ) – ρ(vql–1, vql–1) < ρ(vml , vql–1) +
e
2

and then e
2 < ρ(vml , vql–1). Therefore,

1
2

min
{
ρ(vml , Ovml ),ρ(vql–1, Ovql–1)

}
=

1
2

min
{
ρ(vml , vml+1),ρ(vql–1, vql )

}

<
e
4

<
e
2

< ρ(vml , vql–1),

which implies

0 ≤ η
(
ρ(Ovml , Ovql–1),D1

A(vml , vql–1)
)
,

which contradicts (2.19). Thus,

lim
m,q→+∞ρ(vm, vq) = 0

and {vm} is a Cauchy sequence in the complete partial-metric space (A,ρ). This implies
that there exists u ∈A such that

lim
m,q→+∞ρ(vm, vq) = 0 = lim

m→+∞ρ(vm, u) = ρ(u, u). (2.21)

We shall prove that u = Ou. By (ρb2), we get

1
2

min
{
ρ(vm, Ovm),ρ(u, Ou)

} ≤ ρ(vm, u),
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which implies

0 ≤ η
(
ρ(Ovm, Ou),D1

A(vm, u)
)

< ψ
(
D1

A(vm, u)
)

– ψ
(
ρ(Ovm), Ou

)
)

= ψ
(
max

{
ρ(vm, u),ρ(vm, vm+1),ρ(u, Ou)

}
– ψ

(
ρ(vm+1), Ou

))
.

Thus, by the non-decreasing property of ψ , we obtain

ρ(u, Ou) ≤ ρ(u, vm+1) + ρ(vm+1, Ou) – ρ(vm+1, vm+1)

< ρ(u, vm+1) + D1
A(vm, u) – ρ(vm+1, vm+1)

< ρ(u, vm+1) + max

{
ρ(vm, u),ρ(vm, vm+1),ρ(u, Ou),

ρ(u,Ou)[1+ρ(vm,vm+1)]
1+ρ(vm ,u)

}

– ρ(vm+1, vm+1)

and using (2.21) we get ρ(u, Ou) = 0. Thus, u = Ou and u is a fixed point of O .
In order to show the uniqueness of the fixed point, let u, z ∈ A such that u = Ou and

z = Oz. We have

0 =
1
2

minρ(u, Ou), ρ(z, Oz) ≤ ρ(u, z),

which implies

0 ≤ η
(
ρ(Ou, Oz),D1

A(u, z)
)

< ψ

(
max

{
ρ(u, z),ρ(u, Ou),ρ(z, Oz),

ρ(z, Oz)[1 + ρ(u, Ou)]
1 + ρ(u, z)

})

– ψ(ρ(Ou, Oz)

= ρ(u, z) – ρ(u, z),

which is a contradiction. Thus, we conclude that u is the unique fixed point of O . �

Theorem 6 Let (A,ρ) be a ρb-complete partial-metric space and O : A→A be a contin-
uous mapping. If there exists a function η ∈Zψ such that

1
2

min
{
ρ(v , Ov),ρ(ω, Oω)

} ≤ ρ(v ,ω), which implies

η
(
ρ(Ov , Oω),D1

B(v ,ω)
) ≥ 0, (2.22)

holds for every v ,ω ∈A, ρ(v ,ω) > 0 where D1
A is defined as

D1
B(v ,ω) = max

{
ρ(v ,ω),ρ(v , Ov),ρ(ω, Oω), ρ(v ,Oω)+ρ(ω,Ov)

2 ,
ρ(ω,Oω)ρ(v ,Ov)

ρ(v ,ω)

}

, (2.23)

then O admits exactly one fixed point.
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Proof Let v0 ∈ A and consider the sequence {vm}, with vm = Ovm–1. We assume that
ρ(vm, vm=1) > 0 for each m ∈ N because we remark that, on the contrary, if there exits l0

such that vl0 = vl0+1 = Ovl0 , that is vl0 is a fixed point for the mapping O , then by (2.23), for
any terms v = vm and ω = vm+1 we have

D1
B(vm, vm+1) = max

⎧
⎪⎨

⎪⎩

ρ(vm, vm+1),ρ(vm, Ovm),ρ(vm+1, Ovm+1),
ρ(vm ,Ovm+1)+ρ(vm+1,Ovm)

2 ,
ρ(vm+1,Ovm+1)ρ(vm ,Ovm)

ρ(vm ,vm+1)

⎫
⎪⎬

⎪⎭

= max

{
ρ(vm, vm+1),ρ(vm+1, vm+2), ρ(vm ,vm+2)+ρ(vm+1,vm+1)

2 ,
ρ(vm+1,vm+2)ρ(vm ,vm+1)

ρ(vm ,vm+1)

}

≤ max

{
ρ(vm, vm+1),ρ(vm+1, vm+2),

ρ(vm ,vm+1)+ρ(vm+1,vm+2)–ρ(vm+1,vm+1)+ρ(vm+1,vm+1)
2

}

= max
{
ρ(vm, vm+1),ρ(vm+1, vm+2)

}

On the other hand, by (2.22),

1
2

min
{
ρ(vm, Ovm),ρ(vm+1, Ovm+1)

}
=

1
2

min
{
ρ(vm, vm+1),ρ(vm+1, vm+2)

} ≤ ρ(vm, vm+1),

which implies

0 ≤ η
(
ρ(Ovm, Ovm+1),D1

B(vm, vm+1)
)

< ψ
(
D1

B(vm, vm+1)
)

– ψ
(
ρ(vm+1, vm+2)

)
.

But ψ ∈ � and then

ρ(vm+1, vm+2) < D1
B(vm, vm+1) ≤ max

{
ρ(vm, vm+1),ρ(vm+1, vm+2)

}
. (2.24)

If for some m, max{ρ(vm+1, vm+2),ρ(vm, vm+1)} = ρ(vm+1, vm+2) then (2.24) becomes
ρ(vm+1, vm+2) < ρ(vm+1, vm+2), which is a contradiction. Then, for each m ≥ 0, max{ρ(vm+1,
vm+2),ρ(vm, vm+1)} = ρ(vm, vm+1), the inequality (2.24) yields

ρ(vm+1, vm+2) < ρ(vm, vm+1).

Thus, the sequence {ρ(vm, vm+1)} is decreasing, so it is convergent (being bounded from
below). In this case, we can find a real number u ≥ 0 such that limm→+∞ ρ(vm, vm+1) = u .
Assume that u > 0, let rm = ρ(vm+1, vm+2) and tm = D1

B(vm, vm+1. Since

lim
m→+∞ rm = lim

m→+∞ tm = u ,

from (η2) we have

0 ≤ lim sup
m→+∞

η(rm, tm) < 0.

This is a contradiction, so that

lim
m→+∞ρ(vm, vm+1) = 0. (2.25)
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As a next step, we claim that {vm} is a Cauchy sequence in (A,ρ). Reasoning by contra-
diction, we suppose that limm,q→+∞ ρ(vm, vq) �= 0. Then, by Lemma 1, there exist the sub-
sequences {vml }, {vql } of the sequence {vm}, with ql > ml > l, and a number e > 0 such that
ρ(vml , vql ) ≥ e and

lim
l→+∞

ρ(vml , vql+1) = e = lim
l→+∞

ρ(vml–1, vql ).

Now, according to (2.25), there exists n1 ∈N, such that

ρ(vml–1, vml ) <
e
2

, for any l > n1

and n2 ∈N, such that

ρ(vql , vql+1) <
e
2

, for any l > n2.

Therefore, for l > max{n1, n2} we have

e ≤ ρ(vml , vql ) ≤ ρ(vml , vml–1) + ρ(vml–1, vql ) – ρ(vml–1, vml–1)

≤ ρ(vml–1, vql ) +
e
2

– ρ(vml–1, vml–1)

and we can conclude e
2 ≤ ρ(vml–1, vql ). Thus,

1
2

min
{
ρ(vml–1, vml ),ρ(vql , vql+1)

}
<

e
4

<
e
2

≤ ρ(vml–1, vql ),

which implies

0 ≤ lim sup
l→+∞

η
(
ρ(Ovml–1, Ovql ),D1

B(vml–1, vql )
)
. (2.26)

On the other hand,

lim
l→+∞

D1
B(vml–1, vql ) = lim

l→+∞
max

⎧
⎪⎪⎨

⎪⎪⎩

ρ(vml–1, vql ),ρ(vml–1, vml ),ρ(vql , vql+1),
ρ(vml–1,vql+1)+ρ(vml ,vql )

2 ,
ρ(vml–1,vml )ρ(vql ,vql+1)

ρ(vml–1,vql )

⎫
⎪⎪⎬

⎪⎪⎭
= e

and (η2) implies

lim sup
l→+∞

η
(
ρ(Ovml–1, Ovql ),D1

B(vml–1, vql )
)

< 0,

which contradicts (2.26). Therefore, {vm} is a Cauchy sequence in a ρ-complete partial-
metric space (A,ρ) and there exists u ∈A such that

ρ(u, u) = lim
m→+∞ρ(vm, u) = lim

m,q→+∞ρ(vm, vq) = 0. (2.27)

On the other hand, due to the continuity of the mapping O , we get

lim
m→+∞ρ(vm+1, Ou) = lim

m→+∞ρ(Ovm, Ou) = 0. (2.28)
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Consequently, from (2.27), (2.28), on account of Lemma 3, we see that u is a fixed point of
O . The uniqueness of the fixed point follows immediately as in the previous theorem. �
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13. Radenović, S., Chandok, S.: Simulation type functions and coincidence point results. Filomat 32(1), 141–147 (2018)
14. Alsubaie, R., Alqahtani, B., Karapınar, E., Hierro, A.F.R.L.: Extended simulation function via rational expressions.

Mathematics 8, 710 (2020)
15. Alqahtani, O., Karapınar, E.: A bilateral contraction via simulation function. Filomat 33(15), 4837–4843 (2019)
16. Alghamdi, M.A., Gulyaz-Ozyurt, S., Karapınar, E.: A note on extended Z-contraction. Mathematics 8, 195 (2020)
17. Agarwal, R.P., Karapınar, E.: Interpolative Rus–Reich–Ciric type contractions via simulation functions. An. Ştiinţ. Univ.
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