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Abstract
In this work, we modify the inertial hybrid algorithm with Armijo line search using a
parallel method to approximate a common solution of nonmonotone equilibrium
problems in Hilbert spaces. A weak convergence theorem is proved under some
continuity and convexity assumptions on the bifunction and the nonemptiness of
the common solution set of Minty equilibrium problems. Furthermore, we
demonstrate the quality of our inertial parallel hybrid algorithm by using image
restoration, as well as its superior efficiency when compared with previously
considered parallel algorithms.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and induced norm ‖ · ‖ and let F
be an open convex subset of H . In 1992, Muu and Oettli [25] introduced the equilibrium
problem associated with ψ , which is finding s ∈ C such that

ψ(s, t) ≥ 0 for all t ∈ C, (1.1)

where C is a nonempty closed and convex subset of F and ψ : F × F → R is a bifunc-
tion with ψ(s, s) = 0 for all s ∈ C. The set of solutions of the problem (1.1) is denoted by
EP(ψ , C). For the Minty equilibrium problem (MEP), it was introduced by Castellani and
Giuli [9] in 2013. This problem is associated with the equilibrium problem (1.1), which is
to find s ∈ C such that

ψ(t, s) ≤ 0 for all t ∈ C. (1.2)

The solution set of the Minty equilibrium problem is represented as SM.
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The equilibrium problem has been widely applied to study real world applications,
which were unified by including as particular cases in applied mathematics like vari-
ational inequality, Nash equilibria, fixed point problem, optimization problem, saddle-
point problems, complementarity problem; see, for instance, [1–3, 5, 15, 16]. When solv-
ing some problems in applications of engineering, economics, management science, and
other areas, one needs to formulate them in equilibrium form; see, for example, [4, 6–
8, 10, 12, 13, 18, 21, 22, 24, 25, 28].

In 2003, Dinh and Kim [11] introduced the projection algorithm with line search of a
bifunction which is not required to be pseudomonotone to solve the equilibrium problem.
A weak convergence theorem was proved under continuity and convexity assumptions on
the bifunction ψ , which is not required to have any monotonicity property, and assuming
the solution set of Minty equilibrium problem (1.2) is nonempty.

In 1964, the inertial extrapolation technique was introduced by Polyak [27] to speed
up the convergence of the algorithm. After that, many mathematicians have improved
it in many ways, see [19, 23, 26]. In 2018, Iyiola et al. [14] motivated the inertial-type
algorithms with the algorithm of Dinh and Kim [11], they obtained convergence theorems
and presented the following inertial-type iterative method with Armijo line search step-
size which is faster and more efficient than the algorithm by Dinh and Kim [11].

Algorithm 1.1 Step 1: Choose a sequence {εn}∞n=1 ∈ l1 and take σ ∈ (0, 1),ρ > 0. Select ar-
bitrary points s0 ∈ C0, s1 ∈ C1; C0 = C1 = C, and θ ∈ [0, 1). Set n := 1.

Step 2: Given the iterates sn–1 and sn, n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

⎧
⎨

⎩

min{θ , εn
‖sn–sn–1‖2 } sn 
= sn–1,

θ otherwise.

Step 3: Compute

tn = sn + θn(sn – sn–1).

Step 4: Compute

un = min

{

ψ(tn, v) +
ρ

2
‖v – tn‖2 : v ∈ C

}

,

if un = sn, then stop. Otherwise go to Step 5.
Step 5: Find mn as the smallest nonnegative integer m satisfying

⎧
⎪⎪⎨

⎪⎪⎩

vn,m = (1 – σ m)tn + σ mvn,

wn,m ∈ ∂2ψ(vn,m, vn,m),

〈wn,m, tn – un〉 ≥ ρ

2 ‖un – tn‖2.

(1.3)

Set σn := σ mn , vn = vm,n, wn = wn,mn .
Step 6: Compute

sn+1 = PCn+1 (tn), (1.4)
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where Cn+1 = Cn ∩ Hn, Hn = {x ∈ H : hn(x) ≤ 0}, and

hn(x) := 〈wn, x – un〉. (1.5)

Step 7: Set n ← n + 1 and go to Step 2.

In this work, we focus on the common equilibrium problem (CEP), which is to find s ∈ C
such that

ψi(s, v) ≤ 0 for all v ∈ C, (1.6)

where ψi : F × F → R is a bifunction with ψi(s, s) = 0 for all i = 1, 2, . . . , N . Denote the
solution set of the common Minty equilibrium problem (1.6) by CSM .

Very recently, the parallel method was used to solve common problems in many im-
proved algorithms. One of such is a parallel viscosity-type subgradient extragradient algo-
rithm (PVTSE) introduced by Suantai et al. [29] for solving common variational inequali-
ties. In this work, PVTSE algorithm was applied for solving image recovery problems with
common types of blur effects. Note the similarity with the modified parallel hybrid sub-
gradient extragradient (MHPSE), which is the algorithm that was used to solve common
variational inequalities, constructed by Kitisak et al. [17].

Inspired and encouraged by the previous works, in this paper we proposed an inertial-
type parallel monotone hybrid algorithm with Armijo line search for solving common
nonmonotone equilibrium problems. A weak convergence theorem is established under
some suitable conditions imposed on the bifunction ψi. In the last section, we apply our
algorithms for solving unconstrained image recovery problems and compare our main
algorithms with PVTSE [29] and MHPSE [17] algorithms. It is remarkable that our method
has a better convergence rate.

2 Preliminaries
This section contains some definitions and basic results that will be used in our subsequent
analyses. We next recall some properties of the projection, see [4] for more details. Let C
be a nonempty closed and convex subset of a real Hilbert space H . Let {xn} be a sequence
in H , we denote the weak convergence (strong convergence) of {xn} to a point x ∈ H by
xn ⇀ x (xn → x), respectively.

Lemma 2.1 Let h : H → R be a real-valued function and K be a subset of H defined by
K := {u ∈ H : h(u) ≤ 0}. If K is nonempty and h is Lipschitz continuous on C with modulus
θ > 0, then

d(u, K) ≥ θ–1 max
{

h(u), 0
}

for all u ∈ C.

Definition 2.2 Let C be a nonempty closed and convex subset of a Hilbert space H . A
function ψ : C → H is called Lipschitz continuous if there exists a real constant K ≥ 0
such that

∥
∥ψ(u) – ψ(v)

∥
∥ ≤ K‖u – v‖ for all u, v ∈ C.
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Definition 2.3 A bifunction ψ : C × C →R is called jointly weakly continuous on C × C
if for all s, t ∈ C and {sn}, {tn} being two sequences in C converging weakly to s and t,
respectively, ψ(sn, tn) converges to ψ(s, t).

We now state the following assumptions which will be required in the sequel:
(A1) ψ(u, ·) is convex on H for every s ∈ H ;
(A2) ψ is jointly weakly continuous on H × H .
For each s, t ∈ H , by ∂2ψ(s, t) we denote the subdifferential of the convex function ψ(s, ·)

at t, i.e.,

∂2ψ(s, t) :=
{

x ∈ H : ψ(s, v) ≥ ψ(s, t) + 〈x, v – t〉,∀v ∈ H
}

. (2.1)

In particular,

∂2ψ(s, s) =
{

x ∈ H : ψ(s, v) ≥ 〈x, v – s〉,∀v ∈ H
}

. (2.2)

In our main theorem, the following lemmas will be used in the convergence analysis.

Lemma 2.4 ([30]) Let ψ : H × H −→ R be a function satisfying conditions (A1) and (A2).
Let s, t ∈ H and {sn}, {tn} be two sequences in H converging weakly to s, t, respectively. Then,
for any ε > 0, there exist η > 0 and nε ∈N such that

∂2ψ(sn, tn) ⊂ ∂2ψ(s, t) +
ε

η
B,

for every n ≥ nε , where B denotes the closed unit ball in H .

Lemma 2.5 ([11]) Suppose the bifunction ψ satisfies the assumptions (A1) and (A2).
If {sn} ⊂ H is a sequence which converges strongly to s and a sequence {un}, with un ∈
∂2ψ(sn, sn), converges weakly to u, then u ∈ ∂2ψ(s, s).

Lemma 2.6 ([11]) Suppose the bifunction ψ satisfies the assumptions (A1) and (A2). If
{sn} ⊂ C is bounded, ρ > 0, and {tn} is a sequence such that

tn = arg min

{

ψ(sn, v) +
ρ

2
‖v – sn‖2 : v ∈ C

}

,

then {tn} is bounded.

Lemma 2.7 ([20]) Assume φn ∈ [0,∞) and δn ∈ φn ∈ [0,∞) satisfy:
1. φn+1 – φn ≤ θn(φn – φn–1) + δn,
2.

∑∞
n=1 δn < ∞,

3. {θn} ⊂ [0, θ ], where θ ∈ (0, 1).
Then the sequence {φn} is convergent with

∑∞
n=1[φn+1 – φn]+ < ∞, where [t]+ := max{t, 0}

(for any t ∈R).

3 Main results
In this section, we introduce a modified parallel method with line search rule for solv-
ing the common equilibrium problem (1.6) and provide some comments regarding the
iteration parameters.
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Algorithm 3.1 Step 1: Choose σ ∈ (0, 1),ρ > 0. Select arbitrary points s0 ∈ C0, s1 ∈ C1; C0 =
C1 = C and {θn} ⊂ [0, θ ] for some θ ∈ [0, 1). Set n := 1.

Step 2: Compute

tn := sn + θn(sn – sn–1).

Step 3: For each i = 1, 2, . . . , N , compute

ui
n := arg min

{

ψi(tn, v) +
ρ

2
‖v – tn‖2 : v ∈ C

}

,

if ui
n = tn, ∀i = 1, 2, . . . , N , then stop. Otherwise go to Step 4.

Step 4: Find mi
n as the smallest nonnegative integer mi satisfying

⎧
⎪⎪⎨

⎪⎪⎩

vi
n,mi = (1 – σ mi )tn + σ mi ui

n,

wi
n,mi ∈ ∂2ψi(vi

n,mi , vi
n,mi ),

〈wi
n,mi , tn – ui

n〉 ≥ ρ

2 ‖ui
n – tn‖2.

(3.1)

Set σ i
n = σ mi

n , vi
n = vi

n,m, wi
n = wi

n,mn .
Step 5: Compute

xi
n = PCi

n+1
(tn), (3.2)

where Ci
n+1 = Ci

n ∩ Hi
n, Hi

n = {x ∈ H : f i
n(x) ≤ 0}, and

f i
n(x) :=

〈
wi

n, x – ui
n
〉
. (3.3)

Step 6: Compute

sn+1 = argmax
{∥
∥xi

n – sn
∥
∥ : i = 1, . . . , N

}
.

Step 7: Set n ← n + 1 and go to Step 2.

Remark 3.2 (1) It is clear that if ui
n = tn for all i = 1, 2, . . . , N , then tn is a common solution

of equilibrium problem (1.6).
(2) If N = 1, then Algorithm 3.1 reduces to Algorithm 1.2 of Iyiola et al. [14].

Lemma 3.3 Suppose the solution set CSM of the Minty equilibrium problem is nonempty.
Then, the following hold:

(i) There exists an integer number mi > 0 satisfying the following inequality:

〈
wi

n,m, tn – ui
n
〉 ≥ ρ

2
∥
∥tn – ui

n
∥
∥2 for all wi

n,m ∈ ∂2ψi
(
vi

n,m, vi
n,m

)
;

(ii) The sequence {sn} generated by Algorithm 3.1 is well defined and belong to Ci
n for all

i = 1, . . . , N .
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Proof (i) We assume by contradiction that there exists i ∈ {1, . . . , N} and for every positive
integer mi and vi

n,m = (1 – σ mi )tn + σ mi ui
n, there exists wi

n,m ∈ ∂2ψi(vi
n,m, vi

n,m) such that

〈
vi

n,m, tn – ui
n
〉

<
ρ

2
∥
∥tn – ui

n
∥
∥2. (3.4)

Observe that vi
n,m → tn as m → ∞ and therefore, by Lemma 2.5, the sequence {wi

n,m}∞m=1
is bounded. Thus, we suppose that wi

n,m converges weakly to w̄ ∈ C. Taking the limit as
m → ∞ (noting that vi

n,m → tn and wi
n,m ⇀ w̄) and using Lemma 2.6, we get w̄ ∈ ∂2ψi(tn, tn)

and

〈
w̄, tn – ui

n
〉 ≤ ρ

2
∥
∥ui

n – tn
∥
∥2. (3.5)

Moreover, since w̄ ∈ ∂2ψi(tn, tn), we have

ψi
(
tn, ui

n
) ≥ ψi(tn, tn) +

〈
w̄, ui

n – tn
〉

=
〈
s̄, ui

n – tn
〉
. (3.6)

Combining with (3.5) yields

ψi
(
tn, ui

n
)

+
ρ

2
∥
∥ui

n – tn
∥
∥2 ≥ 0,

which contradicts the fact that

ψi
(
tn, ui

n
)

+
ρ

2
∥
∥ui

n – tn
∥
∥2 < 0.

Thus, the line search is well defined.
(ii) We first show that Ci

n is nonempty. Indeed, by the assumption CSM 
= ∅, for each x∗ ∈
CSM , we get ψi(y, x∗) ≤ 0,∀y ∈ C,∀i = 1, . . . , N . So, ψi(vi

n, x∗) ≤ 0,∀n. From the convexity
of ψi(vi

n, ·), we have

ψi
(
vi

n, y
) ≥ ψi

(
ui

n, ui
n
)

+
〈
wi

n, y – ui
n
〉
, ∀y ∈ C.

Therefore,

0 ≥ ψi
(
vi

n, x∗) ≥ 〈
wi

n, x∗ – ui
n
〉
.

This implies that for each i = 1, 2, . . . , N , there exists xi
n ∈ Ci

n+1. This means that {sn} is well
defined. �

Theorem 3.4 Suppose CSM 
= ∅ and let Assumptions (A1), (A2) hold. If

∞∑

n=1

θn‖sn – sn–1‖2 < ∞,

then the sequence {sn} generated by Algorithm 1.1 converges weakly to z ∈ EP(C,ψi) for all
i = 1, . . . , N .
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Proof We split our proof into four steps below for the sake of clarity.
Step 1. We first show that {sn} is bounded and there exists a weak cluster point of {sn}.

Let x∗ ∈ CSM . Then from Lemma 3.3, we have that x∗ ∈ Ci
n,

∥
∥xi

n – x∗∥∥2 =
∥
∥PCi

n+1
(tn) – x∗∥∥2 ≤ ∥

∥tn – x∗∥∥2. (3.7)

Also,

∥
∥tn – x∗∥∥2 =

∥
∥sn + θn(sn – sn–1) – x∗∥∥2

=
∥
∥sn – x∗∥∥2 + 2θn

〈
sn – x∗, sn – sn–1

〉
+ θ2

n‖sn – sn–1‖2. (3.8)

Observe that

2
〈
sn – x∗, sn – sn–1

〉
=

∥
∥sn – x∗∥∥2 –

∥
∥sn–1 – x∗∥∥2 + ‖sn – sn–1‖2. (3.9)

Thus, from (3.8) and (3.9), we have

∥
∥xi

n – x∗∥∥2 ≤ ∥
∥tn – x∗∥∥2

=
∥
∥sn – x∗∥∥2 + θn

(∥
∥sn – x∗∥∥2 –

∥
∥sn–1 – x∗∥∥2) +

(
θn + θ2

n
)‖sn – sn–1‖2

≤ ∥
∥sn – x∗∥∥2 + θn

(∥
∥sn – x∗∥∥2 –

∥
∥sn–1 – x∗∥∥2) + 2θn‖sn – sn–1‖2.

(3.10)

By the definition of {sn}, we have

∥
∥sn+1 – x∗∥∥2 ≤ ∥

∥sn – x∗∥∥2 + θn
(∥
∥sn – x∗∥∥2 –

∥
∥sn–1 – x∗∥∥2) + 2θn‖sn – sn–1‖2. (3.11)

Since
∑∞

n=1θn‖sn – sn–1‖2 < ∞, letting δn = 2θn‖sn – x‖2 and ψn = ‖sn – x∗‖2, we deduce
from Lemma 2.7 that the sequence {‖sn – x∗‖2} is convergent. Thus, {sn} is bounded and
∑∞

n=1[‖sn+1 – x∗‖2 – ‖sn – x∗‖2] < ∞. Furthermore, since {sn} is bounded, there exists a
subsequence {snk } of {sn} such that snk ⇀ p ∈ H .

Step 2. We now show that for each i = 1, . . . , N , any weak accumulation point p of the
sequence {sn} belongs to Ci

n for all n. Suppose that {snj} ⊂ {sn}, snj ⇀ p as j → ∞, and
there exists n0 such that p /∈ Ci

n0 . Then by the closedness and convexity of Ci
n0 , Ci

n0 is also
weakly closed. Hence, there exists nj0 > n0 such that snj /∈ Ci

n0 for all nj ≥ nj0 , in particular
snj0

/∈ Ci
n0 . This contradicts the fact that snj0

∈ Ci
nj0

– 1 ⊂ · · · ⊂ Ci
n0+1 ⊂ Ci

n0 . Therefore,
p ∈ Ci

n,∀n or p ∈ ⋂∞
n=0 Ci

n. Since Ci
n ⊂ Bi

n,∀n, this implies that p ∈ ⋂∞
n=0 Bi

n.
Step 3. Show that p ∈ EP(C,ψi) for all i = 1, . . . , N .
Using Algorithm 3.1, we have

∥
∥xi

n – x∗∥∥2 =
∥
∥PCi

n+1
(tn) – x∗∥∥2

=
∥
∥
(
PCi

n+1
(tn) – tn

)
+

(
tn – x∗)∥∥2

=
∥
∥tn – x∗∥∥2 +

(∥
∥PCi

n+1
(tn) – tn

∥
∥2 + 2

〈
PCi

n+1
(tn) – tn, tn – x∗〉)

=
∥
∥tn – x∗∥∥2 +

(∥
∥PCi

n+1
(tn) – tn

∥
∥2 + 2

〈
PCi

n+1
(tn) – tn, tn – PCi

n+1
(tn)

〉

+ 2
〈
PCi

n+1
(tn) – tn, PCi

n+1
(tn) – x∗〉).

(3.12)
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Hence,

∥
∥xi

n – x∗∥∥2 =
∥
∥tn – x∗∥∥2 –

(‖PCi
n+1

tn – tn‖2 + 2
〈
PCi

n+1
tn – tn, PCi

n+1
tn – x∗〉). (3.13)

This implies that

∥
∥sn+1 – x∗∥∥2 =

∥
∥tn – x∗∥∥2 –

(‖PCi
n+1

tn – tn‖2 + 2
〈
PCi

n+1
tn – tn, PCi

n+1
tn – x∗〉). (3.14)

From (3.10) and (3.14), we have

‖PCi
n+1

tn – tn‖2 ≤ ∥
∥tn – x∗∥∥2 –

∥
∥sn+1 – x∗∥∥2 + 2

〈
PCi

n+1
tn – tn, PCi

n+1
tn – x∗〉

≤ ∥
∥sn – x∗∥∥2 –

∥
∥sn+1 – x∗∥∥2 + θn

(∥
∥sn – x∗∥∥2 –

∥
∥sn–1 – x∗∥∥2)

+ 2θn‖sn – sn–1‖2 + 2
〈
PCi

n+1
tn – tn, PCi

n+1
tn – x∗〉.

(3.15)

Clearly, from PCs ∈ C and 〈s – PCs, PCs – y〉 ≥ 0,∀y ∈ C, we get 〈PCi
n+1

tn – tn, PCi
n+1

tn – x∗〉 ≤
0, and limn→∞ θn‖sn – sn–1‖2 = 0 from the assumption

∑∞
n=1 θn‖sn – sn–1‖2 < ∞. Thus from

(3.15), we conclude that

lim
n→∞‖PCi

n+1
tn – tn‖ = 0, ∀i = 1, . . . , N . (3.16)

From tn = sn + θn(sn – sn–1), we get

‖tn – sn‖2 ≤ θn‖sn – sn–1‖2 → 0,

and hence

‖tn – sn‖ → 0, n → ∞. (3.17)

Since snj ⇀ p, it follows from (3.17) that tnj ⇀ p. Observe that hi
n is Lipschitz continuous

with modulus Mi > 0 for all i = 1, . . . , N . It follows from Lemmas 2.1 and 3.3 that

∥
∥xi

n – x∗∥∥2 =
∥
∥PCn+1 tn – x∗∥∥2

≤ ∥
∥tn – x∗∥∥2 – ‖PCi

n+1
tn – tn‖2

=
∥
∥tn – x∗∥∥2 – dist2(tn, Ci

n+1
)

≤ ∥
∥tn – x∗∥∥2 –

(
1

Mi
hi

n(tn)
)2

≤ ∥
∥tn – x∗∥∥2 –

(
1

2Mi
ρσ i

n
∥
∥tn – ui

n
∥
∥2

)2

.

(3.18)

From (3.17) and (3.18), we obtain that

(
1

2Mi
ρσ i

n
∥
∥tn – ui

n
∥
∥2

)2

≤ ∥
∥tn – x∗∥∥2 –

∥
∥xi

n – x∗∥∥2. (3.19)

It follows from (3.16) that σ i
n‖tn – ui

n‖2 → 0 as n → ∞ for all i = 1, . . . , N .
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Case I. Suppose that for each i = 1, . . . , N ,

lim inf
n→∞ σ i

n > 0.

Then

0 ≤ ∥
∥tn – ui

n
∥
∥2 =

σ i
n‖tn – ui

n‖2

σ i
n

,

which implies that

lim sup
n→∞

∥
∥tn – ui

n
∥
∥2 ≤ lim sup

n→∞
(
σ i

n
∥
∥tn – ui

n
∥
∥2)

(

lim sup
n→∞

1
σ i

n

)

= lim sup
n→∞

(
σ i

n
∥
∥tn – ui

n
∥
∥2)

(
1

lim infn→∞ σ i
n

)

= 0.
(3.20)

Thus,

lim
n→∞

∥
∥tn – ui

n
∥
∥ = 0, (3.21)

for all i = 1, . . . , N . From (3.17) and (3.21), we get

∥
∥tn – ui

n
∥
∥ ≤ ‖tn – sn‖ +

∥
∥tn – ui

n
∥
∥ → 0, n → ∞. (3.22)

Since snj ⇀ p and due to (3.22), it follows that ui
nj

⇀ p as j → ∞ for all i = 1, . . . , N . By the
definition of ui

nj
, we have

0 ∈ ∂2ψi
(
tnj , ui

nj

)
+ ρ

(
ui

nj
– tnj

)
+ NC

(
ui

nj

)
.

So, there exist

vi
nj

∈ ∂2ψi
(
tnj , ui

nj

)
and vi

nj
∈ NC

(
ui

nj

)
.

This implies that

〈
vi

nj
, ui

nj
– y

〉
=

〈
vi

nj
, y – ui

nj

〉
+ ρ

〈
ui

nj
– tnj , y – ui

nj

〉
.

Combining with

ψi(tnj , y) – ψi
(
tnj , ui

nj

) ≥ 〈
vi

nj
, y – ui

nj

〉
, ∀y ∈ C,

we have

ψi(tnj , y) – ψi
(
tnj , ui

nj

)
+ ρ

〈
ui

nj
– tnj , y – ui

nj

〉 ≥ 0, ∀y ∈ C. (3.23)

Taking j → ∞, by the jointly weak continuity of ψi, (3.17) and (3.21), we obtain that

ψi(p, y) – ψi(p, p) ≥ 0.
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Hence

ψi(p, y) ≥ 0, ∀y ∈ C,

which implies that p ∈ EP(C,ψi) for all i = 1, . . . , N .
Case II. Suppose limn→∞ σ i

n = 0 for all i = 1, 2, . . . , N .
Then from the boundedness of {ui

n}, there exists {ui
nk

} ⊂ {ui
n} such that ui

nk
⇀ ui as

k → ∞. Replacing y by tnk in (3.23), we have

ψi
(
tnk , ui

nk

)
+ ρ

∥
∥ui

nk
– tnk

∥
∥2 ≤ 0. (3.24)

Moreover, by the Armijo line search rule (3.1), for mi
nk –1, there exists wi

nk ,mi
nk –1

∈
∂2ψi(vi

nk ,mi
nk –1

, vi
nk ,mi

nk –1
) such that

〈
wi

nk ,mi
nk –1

, tnk – ui
nk

〉
<

ρ

2
∥
∥ui

nk
– tnk

∥
∥2. (3.25)

By the convexity of ψi(vi
nk ,mi

nk –1
, ·) and due to (3.25), for

wi
nk ,mi

nk –1
∈ ∂2ψi

(
vi

nk ,mi
nk –1

, vi
nk ,mi

nk –1

)
,

we have

ψi
(
vi

nk
,mi

nk –1
, ui

nk

) ≥ ψi
(
vi

nk
,mi

nk –1
, vi

nk
,mi

nk –1

)
+

〈
wi

nk
,mi

nk –1
, ui

nk
– vi

nk
,mi

nk –1

〉

=
(
1 – σ

mi
nk –1

)〈
wi

nk
,mi

nk –1
, ui

nk
– tnk

〉

> –
(
1 – σ

mi
nk –1

)ρ

2
∥
∥ui

nk
– tnk

∥
∥2.

(3.26)

From (3.24) and (3.26), we obtain

ψi
(
vi

nk ,mi
nk –1

, ui
nk

) ≥ –
(
1 – σ

mi
nk –1

)ρ

2
∥
∥ui

nk
– tnk

∥
∥2

≥ 1
2
(
1 – σ i

nk –1
)
ψi

(
tnk – ui

nk

)
.

(3.27)

By (3.1), since vi
nk ,mi

nk –1
= (1 – σ

mi
nk –1 )tnk + σ

mi
nk –1 ui

nk
,σmi

nk –1
→ 0, and tnk converges weakly

to p, ui
nk

converges weakly to ui for all i = 1, 2, . . . , N , this implies that vi
nk ,mi

nk –1
⇀ p as

k → ∞. Since {‖ui
nk

– tnk ‖2} is bounded, without loss of generality, we may assume
that limk→∞ ‖ui

nk
– tnk ‖2 exists for all i = 1, . . . , N . Hence, we get in the limit (3.27)

that

ψi
(
p, ui) ≥ 0 ≥ 1

2
ψ

(
p, ui). (3.28)

Therefore, ψi(p, ui) = 0, ui = p,∀i = 1, . . . , N and limk→∞ ‖ui
nk

– tnk ‖2 = 0. By Case I, it is
immediate that p ∈ EP(C,ψi) for all i = 1, . . . , N .
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Step 4. We show that {sn} converges weakly to a point p ∈ EP(C,ψi). Now, let x∗ and p
be two accumulation points of {sn}. Then there exists {snj} ⊂ {sn} such that snj ⇀ p and
{snk } ⊂ {sn} such that snk ⇀ x∗. Using similar arguments as in Step 2 above, we can show
that x∗, p ∈ ⋂∞

n=0 Ci
n. Let limn→∞ ‖sn – x∗‖2 = α. Then

α = lim
n→∞

∥
∥sn – x∗∥∥2 = lim

j→∞
∥
∥snj – x∗∥∥2

= lim
j→∞

[‖snj – p‖2 + 2
〈
snj – p, p – x∗〉 +

∥
∥p – x∗∥∥2]

= lim
j→∞

[‖snj – p‖2 +
∥
∥p – x∗∥∥2]

= lim
n→∞

[‖sn – p‖2 +
∥
∥p – x∗∥∥2]

= lim
n→∞

[∥
∥sn – x∗∥∥2 + 2

∥
∥p – x∗∥∥2].

Therefore, ‖p – x∗‖ = 0, and so {sn} converges weakly to p. This completes the proof. �

4 Application to image restoration problems
The image restoration problem can be modeled by the linear equation system which is
equivalent to a matrix equation of the form

b = As + υ, (4.1)

where s ∈R
n×1 is the original image, b ∈R

n×1 is the observed image, υ ∈ R
n×1 is additive

noise, and A ∈ R
n×n is the blurring operation. In order to solve problem (4.1), we aim to

approximate the original image, vector s, by minimizing the additive noise, which is known
as the following least squares (LS) problem:

min
s

1
2
‖b – As‖2

2, (4.2)

where ‖ · ‖ is the �2-norm defined by ‖s‖2 =
√∑n

i=1 |si|2. The solution of (4.2) can be esti-
mated by many well-known iteration methods.

Blur is an unsharp image area caused by camera or subject movement, inaccurate focus-
ing, or the use of an aperture that gives a shallow depth of field. The blur effects are filters
that smooth transitions and decrease contrast by averaging the pixels next to hard edges of
defined lines and areas where there is significant color transition. In a digital image there
are many types of blur effects, i.e., Gaussian blur, out of focus blur, and motion blur. In
image restoration problems, the goal is to deblur an image without knowing the blurring
operator. So, we define this goal to the following problem:

min
s∈Rn

1
2
‖A1s – b1‖2

2, min
x∈Rn

1
2
‖A2s – b2‖2

2, . . . min
s∈Rn

1
2
‖AN s – bN‖2

2, (4.3)

where s is the original true image, Ai is the blurring matrix, bi is the blurred image obtained
by using the blurring matrix Ai for all i = 1, 2, . . . , N . The set of common solutions of the
problem (4.3) is denoted by �, which is nonempty. We can apply the proposed algorithm
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Figure 1 The original RGB image of size 289× 448

(Algorithm 3.1) to solve the problem (4.3) by setting ψi(s, t) = 〈AT
i (Ais – bi), t – s〉 for all

s, t ∈R
n×1. Both theoretical and experimental results demonstrate the convergence prop-

erties of the proposed algorithm in this section. However, for showing the effectiveness of
the proposed algorithm, the PVTSE [29] and MHPSE [17] algorithms are also applied to
compare.

The Cauchy error of PVTSE, MHPSE, and the proposed algorithm is defined as ‖sn –
sn–1‖∞ < 10–8. The performance of the compared algorithms at sn on the image restoring
process is measured quantitatively by the means of the peak signal-to-noise ratio (PSNR),
which is defined by

PSNR(sn) = 20 log10

(
2552

MSE

)

,

where MSE = ‖sn – s‖2
2.

Next, we will present the restoration of images that have been corrupted by the following
blur types:

Type I. Gaussian blur of filter size 9×9 with standard deviation σ = 4 (the original image
has been degraded by the blurring matrix A1).

Type II. Out of focus blur (disk) with radius r = 6 (the original image has been degraded
by the blurring matrix A2).

Type III. Motion blur specified with motion length of 21 pixels (len = 21) and motion
orientation 11◦ (θ = 11) (the original image has been degraded by the blurring matrix
A3).

The RGB format for the color image shown in Fig. 1 is used to demonstrate the ef-
fectiveness and practicality of our algorithm compared with PVTSE and MHPSE algo-
rithms.

The three different types of the original RGB image degraded by the blurring matrices
A1, A2, and A3 are shown in Fig. 2.

We choose η = 0.1 and ρ = 0.5, and θn can be chosen such that 0 ≤ θn ≤ θ̄n and

θ̄n =

⎧
⎨

⎩

min{ 1
n2‖sn–sn–1‖2 , 0.25} if sn 
= sn–1,

0.25 otherwise.

After that, we apply PVTSE, MHPSE, and the proposed algorithms to get the solution of
the deblurring problem with one of the three blurring matrices A1, A2, and A3. The results
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Figure 2 The original RGB image degraded by blurring matrices A1, A2, and A3, respectively

Figure 3 The reconstructed RGB image with its PSNR (decimal cutting) for all cases with the PVTSE algorithm
being used, after 500 iterations

of the PVTSE, MHPSE, and the proposed algorithms are demonstrated on the following
cases:

Case I. Inputting A1 to PVTSE, MHPSE, and the proposed algorithms.
Case II. Inputting A2 to PVTSE, MHPSE, and the proposed algorithms.
Case III. Inputting A3 to PVTSE, MHPSE, and the proposed algorithms.
Case IV. Inputting A1 and A2 to PVTSE, MHPSE, and the proposed algorithms.
Case V. Inputting A1 and A3 to PVTSE, MHPSE, and the proposed algorithms.
Case VI. Inputting A2 and A3 to PVTSE, MHPSE, and the proposed algorithms.
Case VII. Inputting A1, A2, and A3 to the PVTSE, MHPSE, and the proposed algorithms.

Next, the common solutions of the deblurring problem for all cases under the three blur-
ring matrices A1, A2, and A3 by using PVTSE, MHPSE, and the proposed algorithms are
presented. The restored images using these three algorithms after 500 iterations for all
seven cases are shown in Figs. 3–5.

From Figs. 3–5, we see that the common solution of the deblurring problem with (N > 1)
improves the quality of the considered image. And when all blurring matrices are used in
finding the common solution of the deblurring problem, we get the best quality of the re-
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Figure 4 The reconstructed RGB image with its PSNR (decimal cutting) for all cases with the MHPSE
algorithm being used, after 500 iterations

Figure 5 The reconstructed RGB image with its PSNR (decimal cutting) for all cases with the proposed
algorithm being used, after 500 iterations

covered RGB image. Moreover, it has been found that the recovered RGB image obtained
by the proposed algorithm has the highest PSNR compared with the PVTSE and MHPSE
algorithms.

Next, the behavior of Cauchy error, the peak signal-to-noise ratio (PSNR), and the num-
ber of line search steps per each iteration for recovering processes of the degraded RGB
image by using the PVTSE, MHPSE, and the proposed algorithms with 20,000 iterations
are demonstrated.

The quality improvements of the reconstructed RGB images based on PSNR being used
are also illustrated for these three algorithms in Fig. 6. Their PSNR are also increased as the
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Figure 6 PSNR quality plots of PVTSE, MHPSE, and the proposed algorithms in all cases of RGB images

number of iterations is increased. The proposed method always gives a maximum value
of PSNR when more than one blurring matrix is used in finding the common solution of
the deblurring problem compared with PVTSE and MHPSE methods.

The Cauchy error plots show the validity and confirm the convergence of PVTSE, MH-
PSE, and the proposed methods. It is remarkable that the Cauchy error plot of MH-
PSE is decreased as the number of iterations is increased. There was an oscillation on
the Cauchy error plot throughout the iterations of the PVTSE algorithm. And a gen-
tle oscillation has occurred at the beginning of the iteration for the proposed algo-
rithm. After that the Cauchy error plot of the proposed algorithm is also decreased as
the number of iterations is increased. Moreover, it can be seen that the proposed algo-
rithms always give the smallest number of line search steps on each iteration compared
with PVTSE and MHPSE algorithms. Through these results, it is shown that the pro-
posed algorithm produces excellent efficiency compared with PVTSE and MHPSE algo-
rithms.

5 Conclusion
In this work, we use a parallel method combining inertial hybrid algorithm with Armijo
line search for solving common nonmonotone equilibrium problems. A weak convergence
theorem is established under some suitable conditions imposed on the bifunction ψi.
Moreover, we apply our algorithms for solving unconstrained image recovery problems
and show superior efficiency of our proposed algorithm when the number of subprob-
lems are increased; see Fig. 5. Finally, we compare our main algorithms with PVTSE [29]
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Figure 7 Cauchy error plots of PVTSE, MHPSE, and the proposed algorithms in all cases of RGB images

and MHPSE [17] algorithms. It is remarkable that our proposed algorithm has a better
convergence rate; see Figs. 6–7.

Acknowledgements
S. Suantai would like to thank Chiang Mai University, Thailand. W. Cholamjiak would like to thank Thailand Science
Research and Innovation under the project IRN62W0007 and University of Phayao, Thailand. D. Yambangwai would like to
thank the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF64-UoE002).

Funding
Chiang Mai University, Thailand.

Availability of data and materials
Contact the authors for data requests.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors equally conceived the study, participated in its design and coordination, drafted the manuscript, participated
in the sequence alignment, and read and approved the final manuscript.

Author details
1Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai
University, Chiang Mai, 50200, Thailand. 2Data Science Research Center, Department of Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai, 50200, Thailand. 3School of Science, University of Phayao, Phayao, 56000, Thailand.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 June 2021 Accepted: 23 August 2021



Suantai et al. Advances in Difference Equations        (2021) 2021:410 Page 17 of 17

References
1. Attouch, H., Czarnecki, M.O.: Asymptotic control and stabilization of nonlinear oscillators with nonisolated equilibria.

J. Differ. Equ. 179(1), 278–310 (2000)
2. Attouch, H., Goudon, X., Redont, P.: The heave ball with friction. I. The continuous dynamical system. Commun.

Contemp. Math. 2(1), 1–34 (2000)
3. Attouch, H., Peypouquet, J., Redont, P.: A dynamic approach to an inertial forward–backward algorithm for convex

minimization. SIAM J. Optim. 24(1), 232–256 (2014)
4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in

Mathematics. Springer, New York (2011)
5. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging

Sci. 2(1), 183–202 (2009)
6. Bigi, G., Pappalardo, M., Passacantando, M.: Existence and solution methods for equilibria. Eur. J. Oper. Res. 227(1),

1–11 (2013)
7. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems problems. Math. Stud.

63(1–4), 123–145 (1994)
8. Bot, R.I., Csetnek, E.R.: An inertial forward–backward–forward primal–dual splitting algorithm for solving monotone

inclusion problems. Numer. Algorithms 71(3), 519–540 (2016)
9. Castellani, M., Giuli, M.: Refinements of existence results for relaxed quasi-monotone equilibrium problems. J. Glob.

Optim. 57(4), 1213–1227 (2013)
10. Daniele, P., Gannessi, F., Maugeri, A. (eds.): Equilibrium Problems and Variational Models, Nonconvex Optimization and

Its Application, vol. 68. Kluwer, Norwell (2003)
11. Dinh, B.V., Kim, D.S.: Projection algorithms for solving nonmonotone equilibrium problems in Hilbert space. J.

Comput. Appl. Math. 302, 106–117 (2016)
12. Giannessi, F., Maugeri, A., Pardalos, P.M. (eds.): Equilibrium Problems: Nonsmooth Optimization and Variational

Inequality Models Kluwer, Dordrecht (2001)
13. Iusem, A.N., Sosa, W.: Iterative algorithm for equilibrium problems. Optimization 52(3), 301–316 (2003)
14. Iyiola, O.S., Ogbuisi, F.U., Shehu, Y.: An inertial type iterative method with Armijo linesearch for nonmonotone

equilibrium problems. Calcolo 55, 52 (2018)
15. Jleli, M., Karapinar, E., Petruiel, A., Samet, B., Vetro, C.: Optimization problems via best proximity point analysis. Abstr.

Appl. Anal. 2014, 178040 (2014)
16. Karapinar, E., Sintunavarat, W.: The existence of optimal approximate solution theorems for generalized α-proximal

contraction non-self-mappings and applications. Fixed Point Theory Appl. 2013, 323 (2013)
17. Kitisak, P., Cholamjiak, W., Yambangwai, D., Jaidee, R.: A modified parallel hybrid subgradient extragradient method for

finding common solutions of variational inequality problems. Thai J. Math. 18(1), 261–274 (2020)
18. Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)
19. Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51,

311–325 (2015)
20. Mainge, P.E.: Convergence theorem for inertial KM-type algorithms. J. Comput. Appl. Math. 219(1), 223–236 (2008)
21. Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.)

Equilibrium Problems and Variational Models, pp. 289–298. Kluwer, Dordrecht (2003)
22. Moudafi, A.: Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 15(l–2), 91–100 (1999)
23. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl.

Math. 155, 447–454 (2003)
24. Muu, L.D.: Stability property of a class of variational inequalities. Math. Oper.forsch. Stat., Ser. Optim. 15(3), 347–353

(1984)
25. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal.

18(12), 1159–1166 (1992)
26. Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate O(1/k2). Dokl. Akad.

Nauk SSSR 269, 543–547 (1983) (in Russian)
27. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys.

4(5), 1–17 (1964)
28. Reich, S., Sabach, S.: Three convergence theorems regarding iterative methods for solving equilibrium problems in

reflexive Banach spaces. Contemp. Math. 568, 225–240 (2012)
29. Suantai, S., Peeyada, P., Yambangwai, D., Cholamjiak, W.: A parallel-viscosity-type subgradient extragradient-line

method for finding the common solution of variational inequality problems applied to image restoration problems.
Mathematics 8, 248 (2020). https://doi.org/10.3390/math8020248

30. Voung, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms for solving Ky Fan
inequalities and fixed point problems. J. Optim. Theory Appl. 155(2), 605–627 (2012)

https://doi.org/10.3390/math8020248

	Solving common nonmonotone equilibrium problems using an inertial parallel hybrid algorithm with Armijo line search with applications to image recovery
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Application to image restoration problems
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


