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Abstract
In this work, we solve the system of integro-differential equations (in terms of
Caputo–Fabrizio calculus) using the concepts of the best proximity pair (point) and
measure of noncompactness. We first introduce the concept of cyclic (noncyclic)
�-condensing operator for a pair of sets using the measure of noncompactness and
then establish results on the best proximity pair (point) on Banach spaces and strictly
Banach spaces. In addition, we have illustrated the considered system of
integro-differential equations by three examples and discussed the stability,
efficiency, and accuracy of solutions.
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1 Introduction and preliminaries
In the last three decades, numerous physical problems have been presented employing the
notion of fractional calculus. This theory becomes very attractive for researchers because
of its flexibility, accuracy, and effectiveness in science. Moreover, it becomes a way of re-
formulation and reconstruction depending of the nature of the problem. Straightforward
applications of fractional calculus can be observed in different areas. The critical differ-
ences among the arbitrary derivatives are their varied kernels, which can fit the structure
of various applications. For example, the main variations between the Caputo fractional
derivative, the Caputo–Fabrizio derivative [6], and others are that the Caputo calculus is
expressed employing a power law, the Caputo–Fabrizio derivative is presented operating
an exponential growth performance. Some of the recent work on fractional differential
equations can be found in [2, 17] and the references cited therein.

One of the central problems in approximation theory is to determine points that min-
imize the distance to a given point or subset. Operator T on a nonempty subset A of a
metric space X has a fixed point (FP) if A ∩ T (A) �= ∅. If T is FP-free then we try to find
z ∈ A such that z and T z have the smallest possible distance. The point z is a best ap-
proximant for T . The best approximation has always attracted analysts because it carries
enough potential to be extended especially with the functional analytic approach in non-
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linear analysis. In the mid-20th century, it was found that the existence of a fixed point has
its relevance in proving the existence of the best approximation. The best approximation is
termed as an invariant approximation in the case of self-mappings. When A is mapped by
T into B ⊆X , the problem extends to that of finding a point which estimates the distance
between these two subsets; this was handled by Ky Fan in 1969.

If A and B are nonempty subsets of a normed linear space (NLS, for short) X and if
T : A → B is a mapping, then the pair (ϑ∗,T ϑ∗) is called a best proximal pair of T if
ϑ∗ ∈A satisfies the condition d(ϑ∗,T ϑ∗) = dist(A,B). Define

A0 =
{

w ∈A : ∃� ∈ B,‖w – �‖ = dist(A,B)
}

,

B0 =
{

ẑ ∈ B : ∃� ∈A,‖� – ẑ‖ = dist(A,B)
}

.

If (A,B) is a pair of nonempty, convex, and weakly compact subsets of X , then the respec-
tive pair (A0,B0) is of the same kind. If A0 = A and B0 = B, then the pair (A,B) is said to
be proximinal.

A mapping T : A ∪ B → A ∪ B is said to be cyclic if T (A) ⊆ B and T (B) ⊆ A; it is
called noncylic if T (A) ⊆A and T (B) ⊆ B. Also T is said to be relatively nonexpansive if
‖T p–T q‖ ≤ ‖p– q‖ for all p ∈A, q ∈ B. A point z ∈A∪B satisfying ‖z –T z‖ = dist(A,B)
is called a best proximity point (BPP, for short) of a cyclic mapping T . If the mapping T is
noncyclic, a pair (q, p) ∈ (A,B) is called a best proximity pair (BPPR, for short), if q = T q,
p = T p and ‖q – p‖ = dist(A,B). The previous notions were introduced by Eldred et al. in
[10], where some related results were established.

The collection of all nonempty, closed, bounded, and convex sets (NBCC, for short) in
an NLS X will be denoted by �(X ). A map T : A ∪ B → A ∪ B is called compact if the
pair (T (A),T (B)) is compact. Gabeleh [11] proved the following results.

Theorem 1.1 ([11]) LetX be a Banach space(BS) and let T : A∪B →A∪B be a compact,
relatively nonexpansive cyclic mapping with A0 �= ∅. Then T has a BPP.

A Banach space X is strictly convex if for u, v, x ∈X and τ > 0,

[‖u – x‖ ≤ τ ,‖v – x‖ ≤ τ , u �= v
] ⇒

∥∥∥∥
u + v

2
– x

∥∥∥∥ < τ

holds. The Lp space (1 < p < ∞) and Hilbert space are strictly convex Banach spaces.

Theorem 1.2 ([11]) Let X be a strictly convex Banach space and let T : A ∪ B → A ∪ B
be a relatively nonexpansive noncyclic mapping, where A,B ∈ �(X ). Then T has a BPPR.

The MNC is coined by Kuratowski [19].
Let (X ,‖ · ‖) represents BS, and by θ̄ we denote zero element; B(ϑ̄ , ζ̄ ) = {κ ∈ X : ‖κ –

ϑ̄‖ ≤ ζ̄ } and Bζ̄ denotes B(θ̄ , ζ̄ ). Also, MX represents the family of nonempty bounded
subsets of X and NX its subfamily consisting of all relatively compact sets.

Definition 1.3 ([4, 5]) A function χ : MX →R
+ is called an MNC inX if (K1,K2 ∈MX ):

(1◦) kerχ := {K1 ∈MX : χ (K1) = 0} �= ∅ and kerχ ⊂NX ,
(2◦) K1 ⊆K2 ⇒ χ (K1) ≤ χ (K2),
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(3◦) χ (K1) = χ (K1),
(4◦) χ (convK1) = χ (K1),
(5◦) χ (μK1 + (1 – μ)K2) ≤ μχ (K1) + (1 – μ)χ (K2) for μ ∈ [0, 1],
(6◦) χ (K1 ∪K2) = max{χ (K1),χ (K2)},
(7◦) If {Kn}∞n=1 is a sequence such that for all n ∈ N,Kn ⊇ Kn+1, and Kn(�= φ) are closed

sets in MX , and if limn→∞ χ (Kn) = 0, then K∞ =
⋂∞

n=1 Kn(�= φ) is compact.

For some of the work in this direction, one can be referred in the papers [9, 16, 18, 20–
23]. Very recently (see [12–15, 24]), the concept of a BP point has been associated with
MNC, and some results have been obtained. In this paper, we discuss best proximity point
results using MNC for cyclic and noncyclic �-condensing operator. Further we solve a
system of IDEs (in terms of Caputo–Fabrizio calculus)

Dμx(ς ) = ϒ1

(
ς , x(ς ),

∫ τ1+τ2

τ1

φ1
(
ς , τ̂ , x(τ̂ )

)
dτ̂ ,

∫ ς

τ1

ψ1
(
ς , τ̂ , x(τ̂ )

)
dτ̂

)
, x(τ1) = x1,

Dμy(ς ) = ϒ2

(
ς , y(ς ),

∫ τ1+τ2

τ1

φ2
(
ς , τ̂ , y(τ̂ )

)
dτ̂ ,

∫ ς

τ1

ψ2
(
ς , τ̂ , y(τ̂ )

)
dτ̂

)
, y(τ1) = y1,

where I = [τ1 – τ2, τ1 + τ2], Ix = [x1 – ε, x1 + ε], Iy = [y1 – ε, y1 + ε], and Iε = [τ1 – ε, τ1 + ε],
using the established result. Our results extend the works [12, 24].

2 Main results
Definition 2.1 ([7]) A continuous mapping Υ : R2

+ → R is said to be a C-class function
if:

(1) Υ (ζ , ξ ) ≤ ζ ,
(2) Υ (ζ , ξ ) = ζ gives either ζ = 0 or ξ = 0, for all ζ , ξ ∈R+.

Definition 2.2 ([7]) A C-class function is said to have the CΥ property, if we can find a
CΥ ≥ 0 such that

(1) Υ (ζ , ξ ) > CF ⇒ ζ > ξ ,
(2) Υ (ξ , ξ ) ≤ CΥ , for all ζ , ξ ∈ R+.

Definition 2.3 ([7]) Let �(�1,CΥ ) be the family of extended CΥ -simulation functions �1 :
R

2
+ → R, satisfying
(�1) �1(ζ , ξ ) < Υ (ξ , ζ ) for all ζ , ξ > 0, where Υ ∈ C has the CΥ property;
(�2) if {ζn}, {ξn} ∈R+ are such that limn→∞ ζn = limn→∞ ξn = �, where � ∈R+ and ξn > �,

n ∈N, then lim supn→∞ �1(ζn, ξn) < CΥ ;
(�3) if {ζn} ∈R+ is such that limn→∞ ζn = � ∈ R+, �1(ζn,�) ≥ CF implies � = 0.

In this section, A �= ∅, B �= ∅ will be fixed convex subsets of a Banach space X . We define
a new notion of cyclic (noncyclic) �-condensing operators.

Definition 2.4 A cyclic (noncyclic) operator T : A ∪ B → A ∪ B is said to be �-
condensing if there exist � ∈ �(�,CF ) such that χ (T K1),χ (T K2) > 0 implies

�
(
χ (T K1 ∪ T K2),χ (K1 ∪K2)

) ≥ CF



Das et al. Advances in Difference Equations        (2021) 2021:414 Page 4 of 13

for every proximinal and T -invariant pair � � (K1,K2) ⊆ (A,B) with dist(K1,K2) =
dist(A,B) where χ is the Kuratowski MNC.

Theorem 2.5 Let X be a Banach space and T : A∪B →A∪B be a relatively nonexpan-
sive cyclic �-condensing operator. Then T has a best proximity point, provided A0 �= ∅.

Proof FromA0 �= ∅, (A0,B0) �= ∅. Using the conditions on T , it is easy to show that (A0,B0)
is convex, closed, T -invariant, and proximinal pair. For p ∈A0, there is a q ∈ B0 such that
‖p – q‖ = dist(A,B). Since T is relatively nonexpansive,

‖T p – T q‖ ≤ ‖p – q‖ = dist(A,B),

which gives T p ∈ B0, that is, T (A0) ⊆ B0. Likewise, T (B0) ⊆ A0 and so T is cyclic on
A0 ∪B0.

We start denoting P0 = A0 and Q0 = B0 and define a sequence pair {(Pn,Qn)} as Pn =
conv(T (Pn–1)) and Qn = conv(T (Qn–1)), n ≥ 1. We claim that Pn+1 ⊆ Qn and Qn ⊆ Pn–1

for all n ∈N. We have Q1 = conv(T (Q0)) = conv(T B0) = conv(A0) ⊆A0 = G0. Therefore,

T (Q1) ⊆ T (P0), Q2 = conv
(
T (Q1)

) ⊆ conv
(
T (P0)

)
= P1.

Continuing this process, we get Qn ⊆ Pn–1 by using induction. Similarly, Pn+1 ⊆ Qn for
all n ∈ N. Thus Pn+2 ⊆Qn+1 ⊆Pn ⊆Qn–1 for all n ∈N. Consequently, {(P2n,Q2n)} �= ∅ is a
decreasing sequence of closed and convex pairs in A0 ×B0. Moreover,

T (Q2n) ⊆ T (P2n–1) ⊆ conv
(
T (P2n–1)

)
= P2n

and

T (P2n) ⊆ T (Q2n–1) ⊆ conv
(
T (Q2n–1)

)
= Q2n.

Thus the pair (P2n,Q2n) is T -invariant for all n ∈N,
Next, if (ν,ϑ) ∈A0 ×B0 is a proximinal pair then

dist(P2n,Q2n) ≤ ∥∥T 2nν – T 2nϑ
∥∥ ≤ ‖ν – ϑ‖ = dist(A,B).

We next show, using mathematical induction, that the pair (Pn,Qn) is proximinal. Trivially,
for n = 0, the pair (P0,Q0) is proximinal. Suppose that (Pk ,Qk) is proximinal. Let ζ be an
arbitrary member in Pk+1 = conv(T (Pk)). Then ζ =

∑m
�=1 λ�T (x�) with ϑ� ∈ Pk , m ∈ N,

λ� ≥ 0 and
∑m

�=1 λ� = 1. Due to proximinality of the pair (Pk ,Qk), there exists ξ� ∈ Qk

for 1 ≤ � ≤ m such that ‖ξ� – ξ�‖ = dist(Pk ,Qk) = dist(A,B). Take ξ =
∑m

�=1 λ�T (ξ�). Then
ξ ∈ conv(T (Qk)) = Qk+1 and

‖ζ – ξ‖ =

∥∥∥∥∥

m∑

�=1

λ�T (x�) –
m∑

�=1

λ�T (ξ�)

∥∥∥∥∥
≤

m∑

�=1

λ�‖ζ� – ξ�‖ = dist(A,B).

Therefore the pair (Pk+1,Qk+1) is proximinal and thus (Pn,Qn) is proximinal for all n ∈N.
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Next, if max{χ (P2n0 ),χ (Q2n0 )} = 0 for some natural number n0 ∈ N, then T : P2n0 ∪
Q2n0 →P2n0 ∪Q2n0 is compact, and the result follows from Theorem 1.1.

So we assume max{χ (Pn),χ (Qn)} > 0 for all n ∈ N. As P2n+1 ⊆ T (P2n) and Q2n+1 ⊆
T (Q2n), we have

�
(
χ (P2n+1 ∪Q2n+1),χ (P2n ∪Q2n)

)

= �
(
max

{
χ (P2n+1),χ (Q2n+1)

}
,χ (P2n ∪Q2n)

)

= �
(
max

{
χ

(
conv

(
T (P2n)

))
,χ

(
conv

(
T (Q2n)

))}
,χ (P2n ∪Q2n)

)

= �
(
max

{
χ

(
T (P2n)

)
,χ

(
T (Q2n)

)}
,χ (P2n ∪Q2n)

)

= �
(
χ

(
T (P2n) ∪ T (Q2n)

)
,χ (P2n ∪Q2n)

)

≥ CF ,

that is,

CF ≤ �
(
χ (P2n+1 ∪Q2n+1),χ (P2n ∪Q2n)

)

≤ F(χ (P2n ∪Q2n),χ (P2n+1 ∪Q2n+1),

χ (P2n ∪Q2n) > χ (P2n+1 ∪Q2n+1),

for n ∈N, i.e., {χn = χ (P2n ∪Q2n)} is such that χn ≥ χn+1 ≥ 0 and so we can find � ≥ 0 such
that χn → � as n → ∞. Let � > 0. Applying Definition 2.3 on sequences ζn = χ (P2n+1 ∪
Q2n+1) and ξn = χ (P2n ∪Q2n), we get ζn, ξn → γ and for ξn > �, we have

lim sup
n→∞

�
(
χ (P2n+1 ∪Q2n+1),χ (P2n ∪Q2n)

)
= lim sup

n→∞
χ (ζn, ξn) < CF ,

a contradiction. Thus, � = 0 and χn = χ (P2n ∪ Q2n) → 0 as n → ∞. In other words,
limn→∞ χ (P2n ∪Q2n) = max{limn→∞ χ (P2n), limn→∞ χ (Q2n)} = 0.

Now, let P∞ =
⋂∞

n=0 P2n and Q∞ =
⋂∞

n=0 Q2n. Using property (70) of Definition 1.3, the
pair (P∞,Q∞) �= ∅ is convex, compact, and T -invariant with dist(P∞,Q∞) = dist(A,B).
Therefore, T admits a best proximity point. �

Theorem 2.6 Let X be a strictly convex Banach space and a pair (A,B) ∈ � in X such
that A0 is nonempty. Let T : A ∪ B → A ∪ B be a relatively nonexpansive noncyclic FG-
contractive operator. Then T has a best proximity pair.

Proof Following the proof of Theorem 2.5, we define a pair (Pn,Qn) asPn = conv(T (Pn–1))
and Qn = conv(T (Qn–1)), n ≥ 1 with P0 = A0 and Q0 = B0. We have Q1 = conv(T (Q0)) =
conv(T (B0)) ⊆ B0 = Q0. Therefore, T (Q1) ⊆ T (Q0). Thus Q2 = conv(T (Q1)) ⊆
conv(T (Q0)) = Q1. Continuing, we get Qn ⊆Qn–1 by using induction. Likewise Pn+1 ⊆ Gn

for all n ∈ N. Hence {(Pn,Qn)} is a decreasing sequence of nonempty, closed, and con-
vex pairs in A0 × B0. Also, T (Qn) ⊆ T (Qn–1) ⊆ conv(T (Qn–1)) = Qn and T (Pn) ⊆
T (Pn–1) ⊆ conv(T (Pn–1)) = Pn. Therefore for all n ∈ N, the pair (Pn,Qn) is T -invariant.
Following as in the proof of Theorem 2.5, we have (Pn,Qn) is a proximinal pair with
dist(Pn,Qn) = dist(A,B) for all n ∈N∪ {0}.
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Next, if max{χ (Pn0 ),χ (Qn0 )} = 0 for some n0 ∈ N, then T : Pn0 ∪ Qn0 → Pn0 ∪ Qn0 is
compact. Then we can conclude by Theorem 1.2 when T is noncyclic relatively nonex-
pansive mapping.

Next, we assume that max{χ (Pn),χ (Qn)} > 0 for all n ∈ N. Since Pn+1 ⊆ T (Pn) and
Qn+1 ⊆ T (Qn), we have

�
(
χ (P2n+1 ∪Q2n+1),χ (P2n ∪Q2n)

)

= �
(
max

{
χ (P2n+1),χ (Q2n+1)

}
,χ (P2n ∪Q2n)

)

= �
(
max

{
χ

(
conv

(
T (P2n)

))
,χ

(
conv

(
T (Q2n)

))}
,χ (P2n ∪Q2n)

)

= �
(
max

{
χ

(
T (P2n)

)
,χ

(
T (Q2n)

)}
,χ (P2n ∪Q2n)

)

= �
(
χ

(
T (P2n) ∪ T (Q2n)

)
,χ (P2n ∪Q2n)

)

≥ CF ,

that is,

CF ≤ �
(
χ (P2n+1 ∪Q2n+1),χ (P2n ∪Q2n)

)

≤ F(χ (P2n ∪Q2n),χ (P2n+1 ∪Q2n+1),

χ (P2n ∪Q2n) > χ (P2n+1 ∪Q2n+1),

for all n ∈N. The sequence {χn = χ (P2n ∪Q2n)} is such that χn ≥ χn+1 ≥ 0, so we can find
� ≥ 0 satisfying χn → � as n → ∞. Let � > 0. Applying Definition 2.3 on the sequences
ζn = χ (P2n+1 ∪Q2n+1) and ξn = χ (P2n ∪Q2n) gives ζn, ξn → γ and ξn > �, so we have

lim sup
n→∞

�
(
χ (P2n+1 ∪Q2n+1),χ (P2n ∪Q2n)

)
= lim sup

n→∞
χ (ζn, ξn) < CF ,

a contradiction. Thus, � = 0 and χn = χ (P2n ∪Q2n) → 0 as n → ∞. That is, limn→∞ χ (Pn ∪
Qn) = max{limn→∞ χ (Pn), limn→∞ χ (Qn)} = 0. Now, letP∞ =

⋂∞
n=0 Pn andQ∞ =

⋂∞
n=0 Qn.

Using property (70) of Definition 1.3, the pair (P∞,Q∞) is nonempty, convex, com-
pact, and T -invariant with dist(P∞,Q∞) = dist(A,B). Therefore, T has a best proximity
point. �

3 Particular cases
Here we discuss some consequences of Theorems 2.5 and 2.6 with various condensing
operators for different forms of � and CF = 0 that include some existing results.

(i) (Patle, Patel, and Arab [24]) If CF = 0, then for (K1,K2) ⊆ (A,B),

0 ≤ �
(
χ (T K1 ∪ T K2),χ (K1 ∪K2)

)
(1)

(ii) (Gabeleh and Markin [12]) If �(ζ , ξ ) = λξ – ζ (λ ∈ (0, 1)) in (1), then for
(K1,K2) ⊆ (A,B),

χ (T K1 ∪ T K2) ≤ λχ (K1 ∪K2)). (2)

Next, we deal with an application in terms of fractional calculus.



Das et al. Advances in Difference Equations        (2021) 2021:414 Page 7 of 13

4 Applications to fractional calculus
Fractional differential/integral equations (FDE/FIE) have been extensively studied as an
application of fixed point theory. In fact, to get the unique solution of an FDE, one has to
apply Banach fixed point theorem or its variants. There are different types of FDEs in the
literature but the FDEs in the Caputo sense are the easiest to solve. The main advantage
of Caputo derivative is that the derivative of the constant function is 0, while most of the
other fractional derivatives do not have such an important property. This property helps
in initial value problems to apply fixed point theorems. In [1], the existence of solutions
for some Atangana–Baleanu fractional differential equations in the Caputo sense have
been discussed. Some other FDE related work can be seen in [2–8, 10–12, 15–18] and the
references cited therein.

Definition 4.1 (Fractional differential operator) A fractional differential operator Dμ is
called fractional Caputo–Fabrizio derivative (CFD) of order 0 < μ < 1 of a function x if and
only if Dμ satisfies

Dμx(ς ) =
1

1 – μ

∫ ς

0
x′(τ ) exp

(
–μ

1 – μ
(t – τ )

)
dτ , ς ≥ 0. (3)

The fractional integral is introduced by

Jμx(ς ) = (1 – μ)x(ς ) + μ

∫ ς

0
x(τ ) dτ . (4)

In this section, we consider integro-differential system in terms of CFD as follows:

Dμx(ς ) = ϒ1

(
ς , x(ς ),

∫ τ1+τ2

τ1

φ1
(
ς , τ , x(τ )

)
dτ ,

∫ ς

τ1

ψ1
(
ς , τ , x(τ )

)
dτ

)
,

x(τ1) = x1,

Dμy(ς ) = ϒ2

(
ς , y(ς ),

∫ τ1+τ2

τ1

φ2
(
ς , τ , y(τ )

)
dτ ,

∫ ς

τ1

ψ2
(
ς , τ , y(τ )

)
dτ

)
,

y(τ1) = y1,

(5)

where I = [τ1 – τ2, τ1 + τ2], Ix = [x1 – ε, x1 + ε], Iy = [y1 – ε, y1 + ε], and Iε = [τ1 – ε, τ1 + ε].
We have the following assumptions:

(A1) The given functions are continuous in R and such that φ1 : I × I × Ix →R,
φ2 : I × I × Iy →R, ϒ1 : Iε × Ix × Ix × Ix →R, ϒ2 : Iε × Iy × Iy × Iy →R, and x, y
belong to nonempty, bounded, closed, and convex sets ᵀ1 ⊂ C(Iε ,R) and
ᵀ2 ⊂ C(Iε ,R), respectively.

(A2) For the sup-norm, we suppose that ‖x1 – y1‖ ≤ ε‖x – y‖, 0 < ε ≤ 1, so that
dist(ᵀ1,ᵀ2) = ‖x1 – y1‖. Moreover, for all x ∈ ᵀ1 and y ∈ ᵀ2, we assume that there is
a positive constant σ > 0 such that

‖ϒ1 – ϒ2‖ ≤ σ
(‖x – y‖ – ‖x1 – y1‖

)
.



Das et al. Advances in Difference Equations        (2021) 2021:414 Page 8 of 13

(A3) For any Ix, Iy, there is a positive function ϕ : R+ → R
+ which is upper

semicontinuous and satisfies ϕ(ı) < ı and

χ
(
ϒ1(Iε × Ix × Ix × Ix) ∪ ϒ2(Iε × Iy × Iy × Iy)

)
<

ϕ(x(Ix ∪ Iy))
εμ

, εμ > 0.

Now, we want to find conditions for the existence of solution for the system (5). We
define an operator T : ᵀ1 ∪ ᵀ2 → C(Iε ,R) (the space of all continuous functions on the
interval Iε ) as follows:

T (ς ) :=

⎧
⎨

⎩
y1 + (1 – μ)ϒ1 + μ

∫ ς

τ1
ϒ1(η) dη if x ∈ ᵀ1,

x1 + (1 – μ)ϒ2 + μ
∫ ς

τ2
ϒ2(η) dη if x ∈ ᵀ2.

(6)

Theorem 4.2 Consider system (5) satisfying the hypotheses (A1)–(A3). It has a solution in
C(Iε ,R), whenever

(1 – μ)σ <
1
4

, σ > 0, 0 < μ < 1.

Proof Consider the operator T . We claim that it is a cyclic operator. Let x ∈ ᵀ1. Then we
obtain

‖T x – y1‖ =
∥∥∥∥(1 – μ)ϒ1 + μ

∫ ς

τ1

ϒ1(η) dη

∥∥∥∥

≤ (1 – μ)‖ϒ1‖ + μ

∫ ς

τ1

∥∥ϒ1(η)
∥∥dη

≤ S1(ς – τ1) ≤ S1[1 + με1 – μ]

≤ S1[1 + με̄ – μ] := S1εμ,

where S1 := sup(ϒ1) = ‖ϒ1‖. By letting ε1 < ε
max{S1,S2} := ε̄, where S2 := sup(ϒ2), we have

‖T x – y1‖ < εμ, ∀x ∈ ᵀ1.

Thus, T x ∈ ᵀ2. In the same manner, we can show that, for y ∈ ᵀ2, this implies

‖T y – x1‖ < εμ,

and hence T y ∈ ᵀ1. We conclude that T is cyclic. The above conclusion shows that the set
T (ᵀ1) is bounded in ᵀ2, as well as the set T (ᵀ2) is bounded in ᵀ1.

Note that ω ∈ ᵀ1 ∪ᵀ2 indicates an solution of the system (5) if and only if dist(ᵀ1 ∪ ᵀ2) =
‖ω – T ω‖. Therefore, we proceed to prove such a conclusion. Now, we aim to show that
T (ᵀ1) is equicontinuous in ᵀ2. For ς and ς ′, we have

∥∥T x(ς ) – T x
(
ς ′)∥∥ = μ

∥∥∥∥

∫ ς

τ1

ϒ1(η) dη –
∫ ς ′

τ1

ϒ1(η) dη

∥∥∥∥

≤ μ

∣∣∣∣

∫ ς ′

ς

∥∥ϒ1(η)
∥∥dη

∣∣∣
∣

≤ μS1
∣∣ς – ς ′∣∣ ≤ εμS1,
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which indicates that T (ᵀ1) is equicontinuous in ᵀ2. In a similar manner, we deduce that
T (ᵀ2) is equicontinuous in ᵀ1. Hence, by the Arzela–Ascoli theorem, we conclude that
the pair (ᵀ1,ᵀ2) is relatively compact. Next, we show that T is relatively nonexpansive.

For (x, y) ∈ (ᵀ1,ᵀ2), we have

∥∥T x(ς ) – T y(ς )
∥∥

=
∥∥∥∥y1 + (1 – μ)ϒ1 + μ

∫ ς

τ1

ϒ1(η) dη – x1 – (1 – μ)ϒ2 – μ

∫ ς

τ1

ϒ2(η) dη

∥∥∥∥

≤ ‖x – y‖ + (1 – μ)
∥∥ϒ1(ς ) – ϒ2(ς )

∥∥ + μ

∣∣∣∣

∫ ς

τ1

∥∥ϒ1(η) – ϒ2(η)
∥∥dη

∣∣∣∣

≤ ε‖x – y‖ + (1 – μ)σ
(‖x – y‖ – ‖x1 – y1‖

)
+ μσ

(‖x – y‖ – ‖x1 – y1‖
)
(ς – τ1)

≤ ε‖x – y‖ + (1 – μ)σ
(‖x – y‖ – ‖x1 – y1‖

)
+ μσ

(‖x – y‖ – ‖x1 – y1‖
)
ε1

≤ ([
ε + (1 – μ)σ + σ ε̄

]
+

[
(1 – μ)σ + σ ε̄

])‖x – y‖
≤ (

ε + 2
[
(1 – μ)σ + σεμ

])‖x – y‖.

But ε is an arbitrary constant, thus when ε → 0, we have εμ = 1 – μ. Hence, we obtain the
inequality

∥∥T x(ς ) – T y(ς )
∥∥ ≤ 4(1 – μ)σ‖x – y‖ < ‖x – y‖.

This implies that T is relatively nonexpansive.
We proceed to show that T is χ -condensing. Assume that (Ix, Iy) ⊆ (ᵀ1,ᵀ2) is nonempty,

bounded, closed, and convex set such that

χ
(
T (Ix) ∪ T (Iy)

)

= max
{(

χT (Ix),χT (Iy)
)}

= max
(

sup
x

{χT x, x ∈ Ix}, sup
y

{χT y, y ∈ Iy}
)

= max
(

sup
x

{
χ

(
y1 + (1 – μ)convϒ1 + με1convϒ1

)}
,

sup
y

{
χ

(
x1 + (1 – μ)convϒ2 + με2convϒ2

)})

≤ max
(

sup
x

{
χ

(
y1 + (1 – μ)convϒ1(Iε × Ix × Ix × Ix)

+ με̄convϒ1(Iε × Ix × Ix × Ix)
)}

,

sup
y

{
χ

(
x1 + (1 – μ)convϒ2(Iε × Iy × Iy × Iy) + με̄convϒ2(Iε × Iy × Iy × Iy)

)})

≤ εμ max
({

χ
(
ϒ1(Iε × Ix × Ix × Ix)

)}
,
{
χ

(
ϒ2(Iε × Iy × Iy × Iy)

)})

≤ εμχ
(
ϒ1(Iε × Ix × Ix × Ix) ∪ ϒ2(Iε × Iy × Iy × Iy)

)

< εμ

ϕ(χ (Ix ∪ Iy))
εμ

= ϕ
(
χ (Ix ∪ Iy)

)
.



Das et al. Advances in Difference Equations        (2021) 2021:414 Page 10 of 13

Thus, we obtain

ϕ
(
χ (Ix ∪ Iy)

)
– χ

(
T (Ix) ∪ T (Iy)

) ≥ 0.

By putting �(τ ,ς ) := ϕ(ς ) – τ , then we arrive at

�
(
χ

(
T (Ix) ∪ T (Iy)

)
,ϕ

(
χ (Ix ∪ Iy)

)) ≥ 0.

Hence, necessary requirements of Theorem 2.5 are verified. Therefore, the operator T has
a best proximity point, and thus system (5) has a solution.

This completes the proof. �

4.1 Numerical constructions
Here, we present some particular systems aiming to use Theorem 4.2. The main condi-
tion in this theorem is (1 – μ)σ < 1/4. This inequality is very easy to check comparing
with other existence theorems requiring (A1)–(A3). Theorem 4.2 indicates that the sys-
tem obeying formula (5) has a solution. This type of solution is very important in dynamic
and control systems. By this solution, one can study the stability, as well as oscillatory and
other behaviors of the solution.

Example 4.3 Consider the system

D0.9x(ς ) = x(κ1 – κ2y), x(0) = x0,

D0.9y(ς ) = y(κ3x – k4), y(0) = y0.
(7)

With the help on Mathematica 11.2, the solution is given by the integral

∫ x[ς ]1/τ

τ0=0

1
(1 + W (–(κ2)/(κ1) exp((κ3τ – constant)/κ1)τ ( – κ4/κ1)))

dτ

≈ κ1ς + constant,

y[ς ] = –κ1/κ2W
(
–κ2/κ1 exp

((
κ3x[ς ] – constant

)
/κ1

)
x[ς ]–κ4/κ1

)
,

where W represents the product log-function. In order to apply Theorem 4.2, we
take (x0, y0) = (1, 1) and σ = (κ2κ3 – κ1κ4), and then σ (1 – μ) < 0.25. For instance, for
(κ1,κ2,κ3,κ4) = (2, 1, 0.4, 0.1), we have σ (1 – μ) = 0.2 · 0.1 = 0.02 < 0.25; thus, by Theo-
rem 4.2, the system has a solution that converges to a limit cycle. For another case, as-
sume that (κ1,κ2,κ3,κ4) = (1, 1, 0.9, 0.8); then σ (1 – μ) = 0.1 · 0.1 = 0.01 < 0.25. Accord-
ing to Theorem 4.2, system (7) has a solution converging to a limit cycle. Similarly, for
(κ1,κ2,κ3,κ4) = (1, 1, 1, 0.8) and (κ1,κ2,κ3,κ4) = (1, 0.9, 1, 0.5), Fig. 1 indicates the different
cases depending on the value of σ .

Example 4.4 Consider the following system:

D0.5x(ς ) = y, x(0) = x0,

D0.5y(ς ) = –x + σy, y(0) = y0,
(8)
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Figure 1 Solutions of (7) for different values of σ (1 –μ). Fig. 1(a) and Fig. 1(c) are the solutions for
(κ1,κ2,κ3,κ4) = (2, 1, 0.4, 0.1) and (1, 1, 0.9, 0.8), respectively. Fig. 1(b) and Fig. 1(d) graphs indicate the solutions
for (1, 1, 1, 0.8) and (1, 0.9, 1, 0.5), respectively. We see that the cyclic solution for these cases is cyclic

Figure 2 Solutions of (8) for different values of σ (1 –μ). We see that the solution for these cases is cyclic

Figure 3 Solutions of (10) for the value of σ (1 –μ) = 0.2, indicating the sample solution family

where the value of σ satisfies σ (1–μ) < 0.25. For instance, when σ = 0.4, we have σ (1–μ) =
0.2 < 0.25 and then the system has a solution with the initial condition (x0, y0) = (0, 0).
Moreover, the solution is cyclic and its portrait indicates an unstable limit cycle (see
Fig. 2(a)–(b)). When σ = 0.1, we have σ (1 – μ) = 0.05 < 0.25 and then the system has a
solution with a portrait of an unstable limit cycle (see Fig. 2(c)–(d)).

Example 4.5 Consider the integro-differential system

D0.6x(ς ) = σy + σ

∫
sin(x) dx, x(0) = x0,

D0.6y(ς ) = (1 – σ )x + σ

∫
cos(y) dy, y(0) = y0,

(9)

which is equivalent to

D0.6x(ς ) = σy – σ cos(x) + c1, x(0) = x0,

D0.6y(ς ) = (1 – σ )x + σ sin(y) + c2. y(0) = y0.
(10)

For σ = 0.5, one has σ (1 –μ) = 0.2 < 0.25. Then (10) admits a solution where the constants
c1 ≤ σ and c2 ≤ σ (see Fig. 3).
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