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Abstract
In this paper, we introduce multi-Lah numbers and multi-Stirling numbers of the first
kind and recall multi-Bernoulli numbers, all of whose generating functions are given
with the help of multiple logarithm. The aim of this paper is to study several relations
among those three kinds of numbers. In more detail, we represent the multi-Bernoulli
numbers in terms of the multi-Stirling numbers of the first kind and vice versa, and
the multi-Lah numbers in terms of multi-Stirling numbers. In addition, we deduce a
recurrence relation for multi-Lah numbers.

MSC: 11B68; 11B73; 11B83

Keywords: Multi-Lah numbers; Multi-Stirling numbers of the first kind;
Multi-Bernoulli numbers; Multiple logarithm

1 Introduction
As is well known, the unsigned Stirling number

[n
r
]

counts the number of permutations
of a set with n elements which are products of r disjoint cycles. We generalize these num-
bers to the multi-Stirling numbers of the first kind S(k1,k2,...,kr)

1 (n, r) (see (10)) which reduce
to the unsigned Stirling numbers of the first kind for (k1, k2, . . . , kr) = (1, 1, . . . , 1). Indeed,
S(1,1,...,1)

1 (n, r) =
[n

r
]
.

It is also well known that the unsigned Lah number L(n, k) counts the number of ways
a set of n elements can be partitioned into k nonempty linearly ordered subsets. These
numbers are generalized to the multi-Lah numbers L(k1,k2,...,kr)(n, r) (see (18)) which reduce
to the unsigned Lah numbers for (k1, k2, . . . , kr) = (1, 1, . . . , 1). In fact, L(1,1,...,1)(n, r) = L(n, r).

In addition, we need to recall the multi-Bernoulli numbers B(k1,k2,...,kr)
n (see (9)) which

were introduced earlier under the different name of generalized Bernoulli numbers of or-
der r in [7]. These numbers reduce to the Bernoulli numbers of order r up to some con-
stants. Indeed, we see that B(1,1,...,1)

m = 1
r! (–1)mB(r)

m .
The common feature of those three kinds of numbers is that they are all defined with the

help of the multiple logarithm Lik1,k2,...,kr (z) (see (8)), which reduces to the polylogarithm
Lik1 (z), for r = 1.

The aim of this paper is to study several relations among those three kinds of numbers.
In more detail, we represent the multi-Bernoulli numbers in terms of the multi-Stirling
numbers of the first kind and vice versa, and the multi-Lah numbers in terms of multi-
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Stirling numbers. Moreover, we deduce a recurrence relation for multi-Lah numbers. For
the rest of this section, we recall the necessary facts that will be needed throughout this
paper.

The unsigned Stirling numbers L(n, k) are defined by

〈x〉n =
n∑

k=0

L(n, k)(x)k , n ≥ 0
(
see [2–6]

)
, (1)

where 〈x〉0 = 1, 〈x〉n = x(x + 1) · · · (x + n – 1), n ≥ 1, and (x)0 = 1, (x)n = x(x – 1) · · · (x – n +
1), n ≥ 1.

The inverse formula of (1) is given by

(x)n =
n∑

k=0

(–1)n–kL(n, k)〈x〉k , n ≥ 0.

From (1), we can derive the generating function of unsigned Lah numbers given by

1
k!

(
t

1 – t

)k

=
∞∑

n=k

L(n, k)
tn

n!
(
see [2, 5, 8]

)
. (2)

Thus, we note that

L(n, k) =
(

n – 1
k – 1

)
n!
k!

, n, k ≥ 1
(
see [2, 8]

)
. (3)

The Stirling numbers of the first kind are defined by

(x)n =
n∑

k=0

S1(n, k)xk , n ≥ 0
(
see [6, 8]

)
, (4)

and the Stirling numbers of the second kind are defined by

xn =
n∑

k=0

S2(n, k)(x)k , n ≥ 0
(
see [2, 5, 8]

)
. (5)

From (4) and (5), we note that

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
(
see [2–4, 8]

)
(6)

and

1
k!

(
log(1 + t)

)k =
∞∑

n=k

S1(n, k)
tn

n!
(
see [8]

)
. (7)

For any ki ≥ 1 (1 ≤ i ≤ r), and |z| < 1, the multiple logarithm is defined by

Lik1,k2,...,kr (z) =
∑

0<m1<m2<···<mr

zmr

mk1
1 mk2

2 · · ·mkr
r

(
see [1, 7]

)
. (8)

If r = 1, Lik1 (z) =
∑∞

m=1
zm

mk1 is the polylogarithm.
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The multi-Bernoulli numbers, which are called the generalized Bernoulli numbers of
order r in [7], are defined by

Lik1,k2,...,kr (z)
zr

∣∣∣
∣
z=1–e–t

=
∞∑

m=0

B(k1,k2,...,kr)
m

m!
tm. (9)

From (13), we note that

B

r-times︷ ︸︸ ︷
(1, 1, . . . , 1)
m =

1
r!

(–1)mB(r)
m , m ≥ 0, r ≥ 1

(
see [7]

)
,

where B(r)
n are the Bernoulli numbers of order r given by

(
t

et – 1

)r

=
∞∑

n=0

B(r)
n

tn

n!
(
see [1, 7, 8]

)
.

2 Multi-Lah numbers and multi-Stirling numbers of the first kind
Now, we define the multi-Stirling numbers of the first kind by

Lik1,k2,...,kr (t) =
∞∑

n=r
S(k1,k2,...,kr)

1 (n, r)
tn

n!
, (10)

where ki ≥ 1 (1 ≤ i ≤ r – 1), kr ≥ 2, and |t| < 1.
From (8), we note that

d
dt

Lik1,k2,...,kr (t) =
d
dt

∑

0<m1<m2<···<mr

tmr

mk1
1 mk2

2 · · ·mkr
r

(11)

=
1
t

∑

0<m1<m2<···<mr

tmr

mk1
1 mk2

2 · · ·mkr–1
r–1 mkr–1

r

=
1
t

Lik1,k2,...,kr–1,kr–1(t).

Let us take kr = 1 in (11). Then we have

d
dt

Lik1,k2,...,kr–1,1(t) =
1
t

Lik1,k2,...,kr–1,0(t) (12)

=
1
t

∑

0<m1<···<mr–1

1
mk1

1 · · ·mkr–1
r–1

∞∑

mr=mr–1+1

tmr

=
∑

0<m1<m2<···<mr–1

1
mk1

1 mk2
2 · · ·mkr–1

r–1

tmr–1+1

1 – t
1
t

=
1

1 – t
Lik1,k2,...,kr–1 (t).



Kim et al. Advances in Difference Equations        (2021) 2021:411 Page 4 of 9

We claim that the following relations hold. For this, we only need to show the first equality
which we prove by induction on r:

Li1, 1, . . . , 1︸ ︷︷ ︸
r-times

(t) =
1
r!

(
– log(1 – t)

)r =
∞∑

n=r
(–1)n–rS1(n, r)

tn

n!
. (13)

If r = 1, then Li1(t) =
∑∞

m=1
tm

m = – log(1 – t), as we wanted. Assume that r ≥ 2 and that the
relationship holds for r – 1. By (12) and induction hypothesis, we get

d
dt

Li1, 1, . . . , 1︸ ︷︷ ︸
r-times

(t) =
1

1 – t
Li1, 1, . . . , 1︸ ︷︷ ︸

(r–1)-times

(t) =
1

(r – 1)!
1

1 – t
(
– log(1 – t)

)r–1. (14)

Now, by (14) we obtain

Li1, 1, . . . , 1︸ ︷︷ ︸
r-times

(t) =
1

(r – 1)!

∫ t

0

1
1 – t

(
– log(1 – t)

)r–1 dt (15)

=
1

(r – 1)!

∫ – log(1–t)

0
ur–1 du =

1
r!

(
– log(1 – t)

)r .

Thus our proof is completed. From (10), we note that

Li1, 1, . . . , 1︸ ︷︷ ︸
r-times

(t) =
∞∑

n=r
S

r-times︷ ︸︸ ︷
(1, 1, . . . , 1)
1 (n, r)

tn

n!
. (16)

Therefore, by (13) and (16), we obtain the following lemma.

Lemma 1 For n, r ≥ 1, we have

S

r-times︷ ︸︸ ︷
(1, 1, . . . , 1)
1 (n, r) = (–1)n–rS1(n, r) =

[
n
r

]
,

where
[n

r
]

are the unsigned Stirling numbers of the first kind.

We observe that

Lik1,k2,...,kr (1 – e–t)
(1 – e–t)r (17)

=
1

(1 – e–t)r

∞∑

m=r
S(k1,k2,...,kr)

1 (m, r)
1

m!
(
1 – e–t)m

=
1

(1 – e–t)r

∞∑

l=r

l∑

m=r
(–1)m–lS2(l, m)S(k1,k2,...,kr)

1 (m, r)
tl

l!

=
(–1)rtr

(1 – e–t)r

∞∑

l=0

l+r∑

m=r
(–1)m–lS2(l + r, m)S(k1,...,kr)

1 (m, r)
l!

(l + r)!
tl

l!
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=
∞∑

j=0

B(r)
j (–1)r–j tj

j!

∞∑

l=0

( l+r∑

m=r
(–1)m–lS2(l + r, m)S(k1,...,kr)

1 (m, r)
1

r!
(l+r

l
)

)
tl

l!

=
∞∑

n=0

( n∑

l=0

l+r∑

m=r

(n
l
)
B(r)

n–l(–1)n–r–m

r!
(l+r

r
) S2(l + r, m)S(k1,...,kr)

1 (m, r)

)
tn

n!
.

Therefore, by (9) and (17), we obtain the following theorem.

Theorem 2 For ki ≥ 1 (i = 1, 2, . . . , r), and n ≥ 0, we have

B(k1,k2,...,kr)
n =

n∑

l=0

l+r∑

m=r

(n
l
)
B(r)

n–l(–1)n–r–m

r!
(l+r

r
) S2(l + r, m)S(k1,...,kr)

1 (m, r).

For any integer ki (i = 1, 2, . . . , r), in the view of (9), we define L(k1,k2,...,kr)(n, r) for n, r ≥ 0,
which are called multi-Lah numbers, as

Lik1,k2,...,kr (1 – e–t)
(1 – t)r =

∞∑

n=r
L(k1,k2,...,kr)(n, r)

tn

n!
. (18)

From (13), we note that

∞∑

n=r
L

r-times︷ ︸︸ ︷
(1, 1, . . . , 1)(n, r)

tn

n!
=

1
(1 – t)r Li1, 1, . . . , 1︸ ︷︷ ︸

r-times

(
1 – e–t) (19)

=
1

(1 – t)r
1
r!

(
– log

(
1 –

(
1 – e–t)))r

=
1
r!

(
t

1 – t

)r

=
∞∑

n=r
L(n, r)

tn

n!
.

Thus, by (19), we get

L

r-times︷ ︸︸ ︷
(1, 1, . . . , 1)(n, r) = L(n, r), n, r ≥ 0.

For n ≥ 1, from (8) and (18), we get

∞∑

n=r
L(k1,...,kr–1,–kr)(n, r)

tn

n!
(20)

=
1

(1 – t)r Lik1,...,kr–1,–kr

(
1 – et)

=
1

(1 – t)r

∑

0<m1<m2<···<mr–1

1
mk1

1 mk2
2 · · ·mkr–1

r–1

∞∑

mr=mr–1+1

(1 – e–t)mr

m–kr
r

=
1

(1 – t)r

∑

0<m1<m2<···<mr–1

1
mk1

1 mk2
2 · · ·mkr–1

r–1

∞∑

mr=1

(1 – e–t)mr+mr–1

(mr + mr–1)–kr

=
1

(1 – t)r

∑

0<m1<m2<···<mr–1

(1 – et)mr–1

mk1
1 mk2

2 · · ·mkr–1
r–1

∞∑

mr=1

(–1)mr mr !
(mr + mr–1)–kr

1
mr !

(
e–t – 1

)mr
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=
1

(1 – t)r

∑

0<m1<m2<···<mr–1

(1 – et)mr–1

mk1
1 mk2

2 · · ·mkr–1
r–1

∞∑

mr=1

(–1)mr mr !
(mr + mr–1)–kr

∞∑

l=mr

S2(l, mr)
(–t)l

l!

=
1

(1 – t)r

∑

0<m1<m2<···<mr–1

(1 – et)mr–1

mk1
1 mk2

2 · · ·mkr–1
r–1

∞∑

l=1

( l∑

mr=1

(–1)mr+lmr !
(mr + mr–1)–kr

S2(l, mr)

)
tl

l!

=
1

1 – t

∞∑

l=1

( l∑

mr=1

(–1)mr+lmr !S2(l, mr)
kr∑

j=0

(
kr

j

)
mkr–j

r

×
(

1
1 – t

)r–1 ∑

0<m1<m2<···<mr–1

(1 – e–t)mr–1

mk1
1 · · ·mkr–1–j

r–1

)
tl

l!

=
1

1 – t

∞∑

l=1

( l∑

mr=1

(–1)mr+lmr !S2(l, mr)

×
kr∑

j=0

(
kr

j

)
mkr–j

r

(
1

1 – t

)r–1

Lik1,...,kr–1–j
(
1 – e–t)

)
tl

l!
.

From (20), we note that

∞∑

n=r
L(k1,k2,...,kr–1,–kr)(n, r)

tn

n!
(21)

=
1

1 – t

∞∑

l=1

( l∑

mr=1

kr∑

j=0

(–1)mr+lmr !S2(l, mr)
(

kr

j

)
mkr–j

r

×
∞∑

m=r–1

L(k1,k2,...,kr–2,kr–1–j)(m, r – 1)
tm

m!

)
tl

l!

=
1

1 – t

∞∑

p=r

(p+1–r∑

l=1

(
p
l

) p∑

mr=1

kr∑

j=0

(–1)mr+lmr !mkr–j
r S2(l, mr)

(
kr

j

)

× L(k1,k2,...,kr–2,kr–1–j)(p – l, r – 1)

)
tp

p!

=
∞∑

n=r

( n∑

p=r

p+1–r∑

l=1

(
p
l

) p∑

mr=1

kr∑

j=0

(–1)mr+lmr !mkr–j
r S2(l, mr)

(
kr

j

)

× L(k1,k2,...,kr–2,kr–1–j)(p – l, r – 1)
n!
p!

)
tn

n!
.

Therefore, by comparing the coefficients on both sides of (21), we obtain the following
theorem.

Theorem 3 For any ki ≥ 1 (i = 1, 2, . . . , r), and n, r ∈ N, we have

L(k1,k2,...,kr–1,–kr)(n, r)

=
n∑

p=r

p∑

l=1

p∑

mr=1

kr∑

j=0

(–1)mr+lmr !mkr–j
r

(
p
l

)(
kr

j

)
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× S2(l, mr)L(k1,k2,...,kr–2,kr–1–j)(p – l, r – 1)
n!
p!

.

Replacing t by – log(1 – t) in (9), we get

1
tr Lik1,k2,...,kr (t) =

∞∑

m=0

B(k1,k2,...,kr)
m (–1)m 1

m!
(
log(1 – t)

)m

=
∞∑

m=0

B(k1,k2,...,kr)
m (–1)m

∞∑

n=m
S1(n, m)(–1)n tn

n!
(22)

=
∞∑

n=0

( n∑

m=0

(–1)n–mB(k1,k2,...,kr)
m S1(n, m)

)
tn

n!
.

On the other hand, by (10), we get

1
tr Lik1,k2,...,kr (t) =

1
tr

∞∑

n=r
S(k1,k2,...,kr)

1 (n, r)
tn

n!
(23)

=
∞∑

n=0

S(k1,k2,...,kr)
1 (n + r, r)

n!
(n + r)!

tn

n!

=
∞∑

n=0

S(k1,k2,...,kr)
1 (n + r, r)

r!
(n+r

n
)

tn

n!
.

Therefore, by (22) and (23), we obtain the following theorem.

Theorem 4 For each ki ≥ 1 (i = 1, 2, . . . , r), n ≥ 0, and r ∈N, we have

S(k1,k2,...,kr)
1 (n + r, r) = r!

(
n + r

n

) n∑

m=0

B(k1,k2,...,kr)
m

[
n
m

]
.

Now, we observe that

∞∑

n=r
L(k1,k2,...,kr)(n, r)

tn

n!

=
1

(1 – t)r Lik1,k2,...,kr

(
1 – e–t) (24)

=
∞∑

j=0

(
r + j – 1

j

)
tj

∞∑

m=r
Sk1,k2,...,kr

1 (m, r)
1

m!
(
1 – e–t)m

=
∞∑

j=0

(
r + j – 1

j

)
tj

∞∑

l=r

( l∑

m=r
S(k1,...,kr)

1 (m, r)(–1)m–lS2(l, m)

)
tl

l!

=
∞∑

n=r

( n∑

l=r

l∑

m=r
S(k1,...,kr)

1 (m, r)(–1)m–lS2(l, m)
(

r + n – l – 1
n – l

)
n!
l!

)
tn

n!
.

Therefore, by comparing the coefficients on both sides of (24), we obtain the following
theorem.
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Theorem 5 For each ki (i = 1, 2, . . . , r), and n, r ∈N, with n ≥ r, we have

L(k1,k2,...,kr)(n, r)

=
n∑

l=r

l∑

m=r
S(k1,...,kr)

1 (m, r)(–1)m–lS2(l, m)
(

r + n – l – 1
n – l

)
n!
l!

.

3 Conclusion
There are various ways of studying special polynomials and numbers which include gen-
erating functions, combinatorial methods, p-adic analysis, umbral calculus, special func-
tions, differential equations, and probability theory. In this paper, using the generating
function method and by making use of the multiple logarithm, we studied three kinds of
numbers, namely the multi-Stirling numbers of the first kind, the multi-Lah numbers, and
the multi-Bernoulli numbers, which reduce respectively to the unsigned Stirling numbers
of the first kind, the Lah numbers, and the higher-order Bernoulli numbers up to constants
when the index is specialized to (k1, k2, . . . , kr) = (1, 1, . . . , 1). We deduced several relations
among those numbers. In more detail, we expressed the multi-Bernoulli numbers in terms
of the multi-Stirling numbers of the first kind and vice versa, and the multi-Lah numbers
in terms of multi-Stirling numbers. Further, we derived a recurrence relation for multi-Lah
numbers.

It is our continuous interest to explore some special numbers and polynomials by using
different tools like those mentioned above.
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