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Abstract
In this work, we aim at studying the asymptotic and oscillatory behavior of
even-order neutral delay noncanonical differential equations. To the best of our
knowledge, most of the related previous works are concerned only with neutral
equations in the canonical case. Our new oscillation criteria essentially improve,
simplify, and complement related results in the literature, especially those from a
paper by Li and Rogovchenko (Abstr. Appl. Anal. 2014:395368, 2014). Some examples
are presented that illustrate the importance of the new criteria.
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1 Introduction
Neutral delay differential equations (NDDEs) have many interesting applications in var-
ious branches of applied science. It is well known that the modeling of many natural
and technological phenomena can be carried out using differential equations, often of a
higher order (see [1, 2]). The study of half-linear/Emden–Fowler differential equations
with deviating arguments has numerous applications in physics and engineering (e.g.,
half-linear/Emden–Fowler differential equations arise in the study of p-Laplace equations,
porous medium problems, chemotaxis models, and so forth); see, e.g., the papers [3, 4] for
more details, the papers [5–7] for the oscillation of half-linear differential equations, and
the papers [3, 8–10] for the oscillation and asymptotic behavior of half-linear/Emden–
Fowler differential equations with different neutral coefficients.

In this paper, we consider the oscillation and asymptotic behavior of even-order half-
linear/Emden–Fowler NDDE of the form

(
r · ((u + p · (u ◦ τ )

)(m–1))α)′(l) + q(l)uβ
(
σ (l)

)
= 0, (1.1)

where l ≥ l0, m ≥ 4 is an even integer, α, β are ratios of odd positive integers, r is a known
differentiable real-valued function, while p, τ , q and σ are known continuous real-valued
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functions on [l0,∞). We also assume that r(l) > 0, r′(l) ≥ 0, p(l) ∈ [0, p0], p0 is a constant,
q(l) ≥ 0, q �= 0 on any half-line [L,∞) for all L ≥ l0, τ (l) ≤ l, σ (l) ≤ l, liml→∞ τ (l) = ∞, and
liml→∞ σ (l) = ∞.

To facilitate the analysis and presentation of results, we will define the function ν :=
u + p · (u ◦ τ ). A solution u(l) of (1.1) different from zero means that u(l) is a continuous
real-valued function on [l0,∞) such that ν ∈ Cm–1([l0,∞)), r · (ν(m–1))α ∈ C1([l0,∞)), and
which satisfies the equation in (1.1).

A solution u(l) of (1.1) is called oscillatory if it is neither positive nor negative and
presents arbitrarily large zeros on [l0,∞); otherwise, it is called nonoscillatory.

Although there are many works that have dealt with the oscillation of solutions of m-
order neutral differential equations, as far as we know, most of them are concerned only
with the canonical operator, that is, when r(l) verifies that

∫ l

l0
r–1/α(κ) dκ → ∞ as l → ∞. (1.2)

On the other hand, in the noncanonical case, when

∫ ∞

l0
r–1/α(κ) dκ < ∞, (1.3)

the studied equations have the so-called Kneser’s solutions. The sign of one of such so-
lutions differs from the sign of its first derivative, that is, u(l)u′(l) < 0. Moreover, in case
of even-order differential equations, the assumption (1.2) has been commonly used in the
literature to ensure that any possible positive solution u satisfies u > (1 – p)ν , which does
not generally hold in the case of (1.3). This results in the difficulty of studying the case
when u(l)u′(l) < 0, using the usual techniques (see [11–13]).

From 1969 until recently, the asymptotic behavior of a DDE of the form

(
r(l)

(
u(m–1)(l)

)α)′ + q(l)uβ
(
σ (l)

)
= 0, (1.4)

with the canonical condition in (1.2), has attracted the interest of several authors (see
[14–17]). Nonetheless, in 2003 Agarwal et al. [18] obtained a criterion for the existence of
a bounded solution of (1.4) under the noncanonical condition (1.3). Later on, Baculikova
et al. [19], Li and Rogovchenko [7], and Zhang et al. [20–22] discussed the asymptotic and
oscillatory behavior of (1.4) under the condition (1.3). Very recently, Moaaz and Muhib
[23] improved and complemented the results in [19–21].

The authors in [24–29] were interested in studying and developing the oscillation theory
of even-order neutral equations of the form

(
u + p · (u ◦ τ )

)(m)(l) + q(l)u
(
σ (l)

)
= 0.

To see other oscillation criteria of more general neutral differential equations considering
the canonical operator, one can see the references [30, 31].

Li and Rogovchenko [32] obtained some results on the oscillatory and asymptotic be-
havior of the solutions of (1.1) under the condition (1.3). For the reader’s convenience, we
present the following result which appeared in [32].
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Theorem 1.1 Let m ≥ 4 be even and 0 < α = β ≤ 1. Assume that 0 ≤ p(l) ≤ p0 < ∞ for
some constant p0, τ ′ ≥ τ∗ > 0, and τ ◦ σ = σ ◦ τ , and there exist three functions η1,η2,η3 ∈
C([l0,∞),R) such that

η1(l) ≤ σ (l) ≤ η2(l), η1(l) ≤ τ (l) ≤ l < η2(l), η3(l) ≥ σ (l), η3(l) > l,

and

lim
l→∞

η1(l) = ∞.

Suppose also that

τ∗(τ∗ + pβ
0 )–1

((m – 1)!)β
lim inf

l→∞

∫ l

τ–1(η1(l))
Q(s)

(
(η1(s))m–1

(r(η1(s)))1/β

)β

ds >
1
e

,

τ∗(τ∗ + pβ
0 )–1

((m – 2)!)β
lim inf

l→∞

∫ η2(l)

l

(
Q(s)

(
σ m–2(s)

)β(
δ0

(
η2(s)

))β)
ds >

1
e

,

and

τ∗(τ∗ + pβ
0 )–1

((m – 3)!)β
lim inf

l→∞

∫ η3(l)

l

(
Q(s)

(∫ ∞

η3(s)

((
η – η3(s)

)m–3
δ0(η)

)
dη

)β)
ds >

1
e

,

where Q(l) = min{q(l), q(τ (l))}. Then (1.1) is oscillatory.

In this work, we establish new oscillation criteria for neutral delay differential equations
of even order. Unlike most of the previous related works, we are interested in studying the
behavior of the solutions of equation (1.1) in the noncanonical case. As far as we know, the
unique work related with oscillations in the noncanonical case of (1.1) is [32]. However, in
[32], there is no detailed guideline about how to choose the functions ηi, i = 1, 2, 3, fulfilling
the forcing conditions, an intriguing issue is how to build up oscillation criteria without
requiring the presence of the obscure functions ηi. Here, we will address this topic and
introduce some new oscillation criteria. Some examples are provided to illustrate the new
results.

The following lemmas are needed in the proofs of our main results.

Lemma 1.1 ([33, Lemma 2.2.3]) Let f ∈ Cm([l0,∞), (0,∞)), f (m) be of fixed sign, f (m) ≡ 0
on a subray of [l0,∞), and liml→∞ f (l) �= 0. Assume that there is an l1 ∈ [l0,∞) such that
f (m–1)f (m) ≤ 0 for l ∈ [l1,∞). Then, there is an lλ ∈ [l1,∞)such that

f (l) ≥ λ

(m – 1)!
lm–1∣∣f (m–1)(l)

∣
∣,

for λ ∈ (0, 1) and l ∈ [lλ,∞).

Lemma 1.2 ([34]) Assume that B ≥ 0, A > 0, ϑ ≥ 0, and μ > 0. Then, we have that

Bϑ – Aϑ (μ+1)/μ ≤ μμ

(μ + 1)μ+1
Bμ+1

Aμ
.
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Lemma 1.3 ([35, Lemma 1.1]) Assume that f (l) ∈ Cm([l0,∞), (0,∞)) and f (m)(l) is even-
tually of one sign for all large l. Then, there exists a nonnegative integer h ≤ m, with m + h
even for f (m)(l) ≥ 0, or m + h odd for f (m)(l) ≤ 0, such that

h > 0 yields f (k)(l) > 0 for k = 0, 1, . . . , h – 1,

and

h ≤ m – 1 yields (–1)h+kf (k)(l) > 0 for k = h, h + 1, . . . , m – 1,

eventually.

2 Main results
In order to facilitate the calculation, let us define the following:

δ0(l) :=
∫ ∞

l
r–1/α(κ) dκ ,

η(l) :=

⎧
⎨

⎩
cβ–α

1 if α ≥ β ,

c2δ
β–α
0 (l) if α < β ,

and

μ(l) :=

⎧
⎨

⎩
cβ–α

3 if α ≥ β ,

( c4
(m–3)!

∫ ∞
l (� – l)m–3δ0(�) d�)β–α if α < β ,

where c1, c2, c3, and c4 are any positive constants.

Lemma 2.1 Assume that u(l) ∈ C([l0,∞), (0,∞)) is a solution of (1.1). Then ν(l) > 0,
(r(l)(ν(m–1)(l))α)′ ≤ 0, and one of the following cases holds, for l ∈ [l1,∞), l1 ≥ l0:

(A) ν ′(l), ν(m–1)(l) are positive and ν(m)(l) is negative;
(B) ν ′(l), ν(m–2)(l) are positive and ν(m–1)(l) is negative;
(C) (–1)kν(k)(l) are positive for all k = 1, 2, . . . , m – 1.

Proof Assume that u is an eventually positive solution of (1.1). Then, there exists l1 ≥ l0

such that u(l), u(τ (l)), and u(σ (l)) are positive for all l ≥ l1. Hence, we see that ν(l) > 0 for
l ≥ l1. It follows from (1.1) that (r(l)(ν(m–1)(l))α)′ ≤ 0. Now, using Lemma 1.3 with m even,
we readily get the cases (A)–(C). �

Lemma 2.2 Assume that u(l) ∈ C([l0,∞), (0,∞)) is a solution of (1.1) and that ν(l) satis-
fies (B) in Lemma 2.1. Then (ν(m–2)(l))β–α ≥ η(l), eventually.

Proof Assume that u is an eventually positive solution of (1.1) and that ν satisfies (B) for
l ≥ l1. Let us consider different possibilities.

If we assume firstly that α = β , then (ν(m–2)(l))β–α = 1, and the result follows trivially.



Elabbasy et al. Advances in Difference Equations        (2021) 2021:412 Page 5 of 15

Now, consider that α > β . Since ν(m–2)(l) is a nonincreasing positive function, there is an
m1 > 0 such that ν(m–2)(l) ≤ m1, which implies that

(
ν(m–2)(l)

)β–α ≥ mβ–α
1 ,

and thus the result holds taking c1 = m1.
Finally, suppose that α < β .
Using the decreasingness property of r(ν(m–1))α , we obtain, for l ≥ l1,

r(l)
(
ν(m–1)(l)

)α ≤ r(l1)
(
ν(m–1)(l1)

)α = –m2 < 0,

from which

(
r1/αν(m–1))(l) ≤ –m1/α

2 . (2.1)

Multiplying (2.1) by r–1/α(l) and integrating it on [l, L], we get

ν(m–2)(L) ≤ ν(m–2)(l) –
∫ L

l

m1/α
2

r1/α(ϑ)
dϑ .

Letting L → ∞, we get

0 ≤ ν(m–2)(l) – m1/α
2 δ0(l),

that is,

ν(m–2)(l) ≥ m1/α
2 δ0(l).

Thus, we see that

(
ν(m–2)(l)

)β–α ≥ m(β–α)/α
2 δ

β–α
0 (l) = c2δ

β–α
0 (l).

Therefore,

(
ν(m–2)(l)

)β–α ≥ η(l).

The proof is complete. �

Lemma 2.3 Assume that u(l) ∈ C([l0,∞), (0,∞)) is a solution of (1.1) and ν satisfies con-
dition (C) in Lemma 2.1. Then νβ–α(l) ≥ μ(l), eventually.

Proof Assuming the hypothesis of the statement in the case α = β , the result follows read-
ily, as (ν)β–α = 1.

Next, we assume that α > β . Since ν is a nonincreasing positive function, there are M3 > 0
and l2 ≥ l1 such that ν ≤ M3, for every l ≥ l2, and hence

(ν)β–α ≥ Mβ–α
3 = k1.
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Finally, we suppose that α < β . Using the decreasingness property of r(ν(m–1))α , we obtain
for l ≥ l1 that

(
r
(
ν(m–1))α)

(l) ≤ (
r
(
ν(m–1))α)

(l1) = –M4 < 0,

which yields

(
r1/αν(m–1))(l) ≤ –M1/α

4 . (2.2)

Multiplying (2.2) by r–1/α(l) and integrating it on [l, L], we get

ν(m–2)(L) ≤ ν(m–2)(l) –
∫ L

l

M1/α
4

r1/α(ϑ)
dϑ .

Letting L → ∞ and using (C), we obtain

0 ≤ ν(m–2)(l) – M1/α
4 δ0(l). (2.3)

Integrating (2.3) (m – 2) times from l to ∞, we successively arrive at

ν(m–3)(l) ≤ –M1/α
4

∫ ∞

l
δ0(�) d�,

–ν(m–4)(l) ≤ –M1/α
4

∫ ∞

l

(∫ ∞

s
δ0(�) d�

)
ds = –

M1/α
4

1!

∫ ∞

l
(� – l)δ0(�) d�,

and finally, we get

ν(l) ≥ M1/α
4

(m – 3)!

∫ ∞

l
(� – l)m–3δ0(�) d�.

Therefore, taking c4 = M1/α
4 , we have that

(
ν(l)

)β–α ≥ μ(l).

This completes the proof. �

Lemma 2.4 Assume that u(l) ∈ C([l0,∞), (0,∞)) is a solution of (1.1) and ν satisfies con-
dition (C) in Lemma 2.1. If

∫ ∞

l0

(∫ ∞

l
(v – l)m–3

(
1

r(v)

∫ v

l1
q(s) ds

)1/α

dv
)

dl = ∞, (2.4)

then liml→∞ u(l) = 0.

Proof Suppose that u(l) ∈ C([l0,∞), (0,∞)) is a solution of (1.1) and ν satisfies condition
(C) in Lemma 2.1. Let us denote liml→∞ ν(l) = D. We claim that D = 0. Indeed, for the
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sake of contradiction, suppose that D > 0, and so for all ε > 0 there exists l1 ≥ l0 such that
u(σ (l)) ≥ D for l ≥ l1. Integrating (1.1) on [l1, l], we get

r
(
ν(m–1))α(l) = r

(
ν(m–1))α(l1) –

∫ l

l1
q(s)uβ

(
σ (s)

)
ds ≤ –Dβ

∫ l

l1
q(s) ds,

that is,

ν(m–1)(l) < –Dβ/α
(

1
r(l)

∫ l

l1
q(s) ds

)1/α

. (2.5)

Integrating (2.5) twice on [l,∞), we successively have that

–ν(m–2)(l) < –Dβ/α
∫ ∞

l

(
1

r(v)

∫ v

l1
q(s) ds

)1/α

dv

and finally,

ν(m–3)(l) < –Dβ/α
∫ ∞

l

∫ ∞

s

(
1

r(v)

∫ v

l1
q(s) ds

)1/α

dv ds

= –Dβ/α
∫ ∞

l
(v – l)

(
1

r(v)

∫ v

l1
q(s) ds

)1/α

dv.

Similarly, integrating the above inequality (m – 4) times on [l,∞), we obtain

ν ′(l) < –Dβ/α
∫ ∞

l
(v – l)m–3

(
1

r(v)

∫ v

l1
q(s) ds

)1/α

dv.

Integrating this inequality on [l1,∞), we find

ν(l1) > Dβ/α
∫ ∞

l1

(∫ ∞

l
(v – l)m–3

(
1

r(v)

∫ v

l1
q(s) ds

)1/α

dv
)

dl,

which is a contradiction to (2.4). Thus, D = 0; moreover, the inequality u ≤ ν implies
liml→∞ u(l) = 0. The proof is complete. �

Theorem 2.1 Let 0 ≤ p(l) < 1, and let us assume that (2.4)holds. If the first-order DDE

y′(l) + q(l)
(

λ0(1 – p(σ (l)))σ m–1(l)
(m – 1)!r1/α(σ (l))

)β

yβ/α(
σ (l)

)
= 0 (2.6)

is oscillatory for some constant λ0 ∈ (0, 1) and

lim sup
l→∞

∫ l

l0

(
η(s)q(s)

(
1 – p

(
σ (s)

))β

(
λ1σ

m–2(s)
(m – 2)!

)β

δα
0 (s) –

αα+1r–1/α(s)
(α + 1)α+1δ0(s)

)
ds = ∞ (2.7)

holds for some constant λ1 ∈ (0, 1), then every solution of (1.1) is either oscillatory or con-
verges to zero as l → ∞.
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Proof Suppose on the contrary that there is a nonoscillatory solution u of (1.1). Then, we
can assume u(l), u(τ (l)), and u(σ (l)) are positive for l ≥ l1 ≥ l0. It follows from Lemma 2.1
that there are three possible cases for the behavior of ν and its derivatives.

First, suppose that case (A) holds. From the definition of ν , we see that

u(l) = ν(l) – p(l)u
(
τ (l)

) ≥ (
1 – p(l)

)
ν(l), (2.8)

which, together with (1.1), gives

(
r
(
ν(m–1))α)′(l) ≤ –q(l)

(
1 – p

(
σ (l)

))β
νβ

(
σ (l)

)
. (2.9)

From Lemma 1.1, we have

ν(l) ≥ λlm–1

(m – 1)!
ν(m–1)(l), (2.10)

for every λ ∈ (0, 1). From (2.10) and (2.9), we obtain

(
r
(
ν(m–1))α)′(l) + q(l)

(
1 – p

(
σ (l)

))β

(
λσ m–1(l)
(m – 1)!

)β(
ν(m–1)(σ (l)

))β ≤ 0.

Letting y(l) = r(l)(ν(m–1)(l))α , clearly, y(l) is a positive solution of the first-order delay dif-
ferential inequality

y′(l) + q(l)
(

λ(1 – p(σ (l)))σ m–1(l)
(m – 1)!r1/α(σ (l))

)β

yβ/α(
σ (l)

) ≤ 0. (2.11)

It follows from [36, Theorem 1] that the corresponding differential equation (2.6) also has
a positive solution for all λ0 ∈ (0, 1), which is a contradiction.

Next, consider that case (B) holds. We define the function � by

� :=
r(ν(m–1))α

(ν(m–2))α
. (2.12)

Then �(l) < 0 for l ≥ l1. Noting that (r(ν(m–1))α)′ ≤ 0, we have

r1/α(s)ν(m–1)(s) ≤ r1/α(l)ν(m–1)(l), s ≥ l ≥ l1. (2.13)

Multiplying (2.13) by r–1/α(s) and integrating it on [l,∞), we obtain

0 ≤ ν(m–2)(l) + r1/α(l)ν(m–1)(l)δ0(l),

that is,

–
r1/α(l)ν(m–1)(l)δ0(l)

ν(m–2)(l)
≤ 1,

which in view of (2.12) may be written as

–�(l)δα
0 (l) ≤ 1. (2.14)
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Differentiating (2.12), we have

�′(l) =
(r(ν(m–1))α)′(l)

(ν(m–2)(l))α
–

αr(l)(ν(m–1)(l))α+1

(ν(m–2)(l))α+1 ,

which, in view of (1.1) and (2.12), becomes

�′(l) = –
q(l)uβ (σ (l))
(ν(m–2)(l))α

–
α�(α+1)/α(l)

r1/α(l)
. (2.15)

Taking into account the fact that ν ′(l) > 0 and the definition of ν(l), we get that (2.8) holds.
Hence, (2.15) becomes

�′(l) ≤ –
q(l)(1 – p(σ (l)))βνβ (σ (l))

(ν(m–2)(l))α
–

α�(α+1)/α(l)
r1/α(l)

. (2.16)

From Lemma 1.1, we find

ν(l) ≥ λlm–2

(m – 2)!
ν(m–2)(l),

for all sufficiently large l and for every λ ∈ (0, 1). Then, (2.16) becomes

�′(l) ≤ –q(l)
(
1 – p

(
σ (l)

))β

(
λσ m–2(l)
(m – 2)!

)β(
ν(m–2)(σ (l)

))β–α (ν(m–2)(σ (l)))α

(ν(m–2)(l))α

–
α�(α+1)/α(l)

r1/α(l)
.

Since l ≥ σ (l) and ν(m–2)(l) is decreasing, in view of the definition of η(l) and Lemma 2.2,
we have that

�′(l) ≤ –η(l)q(l)
(
1 – p

(
σ (l)

))β

(
λσ m–2(l)
(m – 2)!

)β

–
α�(α+1)/α(l)

r1/α(l)
. (2.17)

Multiplying (2.17) by δα
0 (l) and integrating it on [l1, l], we get

0 ≥ δα
0 (l)�(l) – δα

0 (l1)�(l1) +
∫ l

l1

αδα–1
0 (s)

r1/α(s)
�(s) ds +

∫ l

l1

αδα
0 (s)

r1/α(s)
�(α+1)/α(s) ds

+
∫ l

l1
η(s)q(s)

(
1 – p

(
σ (s)

))β

(
λσ m–2(s)
(m – 2)!

)β

δα
0 (s) ds.

Setting A = δα
0 (s)/r1/α(s), B = δα–1

0 (s)/r1/α(s), and ϑ = –�(s), and using Lemma 1.2, we get

∫ l

l1

(
η(s)q(s)

(
1 – p

(
σ (s)

))β

(
λσ m–2(s)
(m – 2)!

)β

δα
0 (s) –

αα+1r–1/α(s)
(α + 1)α+1δ0(s)

)
ds ≤ �(l1)

δ–α
0 (l1)

+ 1,

due to (2.14), which contradicts (2.7).
Finally, suppose that (C) holds. From Lemma 2.4, we see that liml→∞ u(l) = 0, which is

a contradiction.
The proof of the theorem is complete. �



Elabbasy et al. Advances in Difference Equations        (2021) 2021:412 Page 10 of 15

Remark Combining Theorem 2.1 and the results reported in the papers [37, 38] for equa-
tion (2.6), one can obtain various oscillation criteria for equation (1.1) in the case where
α = β .

Theorem 2.2 Let us assume that the first-order DDE (2.6) is oscillatory for some λ0 ∈ (0, 1)
and that (2.7) holds for some λ1 ∈ (0, 1). If

τ ◦ σ = σ ◦ τ , τ ′(l) ≥ τ0 > 0, σ (l) ≤ τ (l),

and

lim sup
l→∞

(
μ(l)δα

m–2(l)
∫ l

l0
Q(�) d�

)
> κ

(
1 +

pβ
0

τ0

)
, (2.18)

where

δk+1(l) :=
∫ ∞

l
δk(�) d� for k = 0, 1, . . . , m – 3,

Q(l) := min
{

q(l), q
(
τ (l)

)}
,

and κ = 1 if β ∈ (0, 1]; otherwise, κ = 2β–1, then every solution of (1.1) is oscillatory.

Proof We argue by contradiction. Assume to the contrary that there is a nonoscillatory
solution u of (1.1). Then, we can assume u(l), u(τ (l)), and u(σ (l)) are positive for l ≥ l1 ≥ l0.
It follows from Lemma 2.1 that there are three possible cases for the behavior of ν and its
derivatives.

The proofs of the cases in which (A) or (B) is fulfilled are similar to those of Theorem 2.1.
Suppose that (C) holds. Since (r(l)(ν(m–1)(l))α)′ ≤ 0, we have that

r(s)
(
ν(m–1)(s)

)α – r(l)
(
ν(m–1)(l)

)α ≤ 0 for all s ≥ l,

or

ν(m–1)(s) ≤ r1/α(l)ν(m–1)(l)
1

r1/α(s)
.

Integrating this inequality from l to ∞ and using the fact that ν(m–2) is a positive decreasing
function, we arrive at

–ν(m–2)(l) ≤ r1/α(l)ν(m–1)(l)
∫ ∞

l

1
r1/α(�)

d� = r1/α(l)ν(m–1)(l)δ0(l).

Taking into account the behavior of the derivatives of ν(l) and integrating the last inequal-
ity (m – 2) times from l to ∞, we obtain

(–1)k+1ν(k)(l) ≤ r1/α(l)ν(m–1)(l)δm–k–2(l), (2.19)

for k = 0, 1, . . . , m – 3. On the other hand, from (1.1) we have

uβ
(
σ (l)

)
= –

1
q(l)

(
r(l)

(
ν(m–1)(l)

)α)′, (2.20)
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and taking into account that τ ′(l) ≥ τ0 > 0, we get

uβ
(
σ
(
τ (l)

))
= –

1
τ ′(l)q(τ (l))

(
r
(
τ (l)

)(
ν(m–1)(τ (l)

))α)′

≤ –
1

τ0q(τ (l))
(
r
(
τ (l)

)(
ν(m–1)(τ (l)

))α)′.
(2.21)

From (2.20) and (2.21), after using [39, Lemma 1], we find that

νβ
(
σ (l)

)
=

(
u
(
σ (l)

)
+ p

(
σ (l)

)
u
(
τ
(
σ (l)

)))β

≤ κ
(
uβ

(
σ (l)

)
+ pβ

0 uβ
(
σ
(
τ (l)

)))

≤ –
κ

q(l)
(
r(l)

(
ν(m–1)(l)

)α)′ –
κpβ

0
τ0q(τ (l))

(
r
(
τ (l)

)(
ν(m–1)(τ (l)

))α)′

≤ –
κ

Q(l)

(
r(l)

(
ν(m–1)(l)

)α +
pβ

0
τ0

r
(
τ (l)

)(
ν(m–1)(τ (l)

))α

)′
,

or

(
r
(
ν(m–1))α +

pβ
0

τ0
r(τ )

(
ν(m–1)(τ )

)α

)′
(l) ≤ –

1
κ

Q(l)νβ
(
σ (l)

)
.

Integrating this inequality from l1 to l, we obtain

r(l)
(
ν(m–1)(l)

)α +
pβ

0
τ0

r
(
τ (l)

)(
ν(m–1)(τ (l)

))α

≤ r(l1)
(
ν(m–1)(l1)

)α +
pβ

0
τ0

r
(
τ (l1)

)(
ν(m–1)(τ (l1)

))α –
1
κ

∫ l

l1
Q(�)νβ

(
σ (�)

)
d�

≤ –
1
κ

νβ
(
σ (l)

)∫ l

l1
Q(�) d�.

Since (r(l)ν(m–1)(l))′ ≤ 0 and τ (l) ≤ l, we arrive at

(
1 +

pβ
0

τ0

)
r(l)

(
ν(m–1)(l)

)α ≤ –
1
κ

νβ
(
σ (l)

)∫ l

l1
Q(�) d�

≤ –
1
κ

να(l)νβ–α(l)
∫ l

l1
Q(�) d�,

which, in view of Lemma 2.3, gives

(
1 +

pβ
0

τ0

)
r(l)

(
ν(m–1)(l)

)α ≤ –
1
κ

μ(l)να(l)
∫ l

l1
Q(�) d�. (2.22)

Finally, from the inequality in (2.19) for k = 0 and (2.22), we have that

(
1 +

pβ
0

τ0

)
≥ 1

κ
μ(l)δα

m–2(l)
∫ l

l1
Q(�) d�,

which is a contradiction to (2.18). This completes the proof. �
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3 Some applications
Example 3.1 Consider the NDDE

(
l4(u(l) + p0u(al)

)′′′)′ + q0u(bl) = 0, (3.1)

where a, b ∈ (0, 1) and q0 > 0. Then, we note that

α = β = 1, m = 4, r(l) = l4, p(l) = p0,

τ (l) = al, q(l) = q0, and σ (l) = bl.

Therefore, it is easy to verify that

δ0(l) =
1

3l3 , δ1(l) =
1

6l2 , and δ2(l) =
1
6l

.

Next, to apply Theorem 2.1, we must first check that conditions (2.4), (2.6), and (2.7) are
fulfilled. A simple calculus shows that the integral in (2.4) is divergent. After replacing and
simplifying, (2.6) becomes

y′(l) + q0
λ0(1 – p0)

6b
1
l

y(bl) = 0. (3.2)

Applying a well-known oscillation result [40, Theorem 2.1.1] to the first-order DDE in
(3.2), we obtain immediately that it is oscillatory if

lim inf
l→∞

∫ l

bl
q0

λ0(1 – p0)
6b

1
s

ds >
1
e

,

that is,

q0 ln
1
b

>
3!b

(1 – p0)e
. (3.3)

Now, we note that (2.7) reduces to

lim sup
l→∞

∫ l

l0

(
q0(1 – p0)

λ1b2

6
–

3
4

)
1
s

ds = ∞,

which is satisfied if

q0 >
18

4(1 – p0)b2 . (3.4)

Thus, if conditions (3.3) and (3.4) hold, then every solution of (3.1) is oscillatory or tends
to zero. Moreover, if q0 = κb–κ (κ + 1)(κ – 1)(2 – κ)(p0aκ + 1) with κ ∈ (–1, 0), then it is easy
to verify that u(l) = lκ is a nonoscillatory solution of (3.1) and tends to zero as l → ∞.

On the other hand, to apply Theorem 2.2, we see that the condition (2.18) becomes

lim sup
l→∞

(
1
6l

∫ l

l0
q0 d�

)
>

(
1 +

p0

a

)
,
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and so

q0 > 6
(

1 +
p0

a

)
. (3.5)

Thus, if conditions (3.3), (3.4), and (3.5) hold, then every solution of (3.1) is oscillatory.

Example 3.2 Consider the NDDE

(
e3l

((
u(l) +

(
1 –

1
l2

)
u(l – a)

)′′′)3)′
+ q0e3lu3(l – b) = 0, (3.6)

where l ≥ 1, 0 < a < b, and q0 > 0. Then, we note that α = β = 3, m = 4,

r(l) = e3l, p(l) = 1 – 1/l2, τ (l) = l – a, q(l) = q0e3l, and σ (l) = l – b.

Therefore, it is easy to verify that

δi(l) = e–l for i = 0, 1, 2.

A simple calculus shows that in this case the integral in (2.4) diverges. After replacing and
simplifying, (2.6) becomes

y′(l) + q0e3l
(

λ0
(l – b)
3!el–b

)3

y(l – b) = 0. (3.7)

Applying a well-known oscillation result [40, Theorem 2.1.1], we see that (3.7) is oscilla-
tory. Moreover, (2.7) reduces to

lim sup
l→∞

∫ l

l0

(
q0

λ3
1

23 –
(

3
4

)4)
ds = ∞,

which is satisfied if q0 > 81/32. Thus, every solution of (3.6) is oscillatory or tends to zero
if q0 > 81/32.

On the other hand, to apply Theorem 2.2, we see that the condition (2.18) becomes

lim sup
l→∞

e–3l
∫ l

l0
q0e3(s–a) ds > 23,

that is, q0 > 24e3a. Thus, every solution of (3.6) is oscillatory if q0 > max{24e3a, 81/32}.
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