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Abstract
In this article, we consider a temporally second-order unconditionally energy stable
computational method for the Allen–Cahn (AC) equation with a high-order
polynomial free energy potential. By modifying the nonlinear parts in the governing
equation, we have a linear convex splitting scheme of the energy for the high-order
AC equation. In addition, by combining the linear convex splitting with a
strong-stability-preserving implicit–explicit Runge–Kutta (RK) method, the proposed
method is linear, temporally second-order accurate, and unconditionally energy
stable. Computational tests are performed to demonstrate that the proposed method
is accurate, efficient, and energy stable.

Keywords: Allen–Cahn equation; Linear convex splitting; Implicit–explicit RK
scheme; High-order polynomial free energy

1 Introduction
Phase-field equations have arisen as a significant numerical framework in modeling and
studying evolution of pattern formation in materials [1]. In general, phase-field models
are driven by gradient flows for the governing total energy functionals [2, 3], e.g., the
Ginzburg–Landau (GL) free energy functional:

E(φ) =
∫

�

(
F(φ)
ε2 +

1
2
|∇φ|2

)
dx, (1)

where � is a domain in R
d (d = 1, 2, 3), φ is the order parameter, F(φ) = 1

4 (φ2 – 1)2 is the
GL potential, and ε > 0 is a constant. We assume the homogeneous Neumann boundary
condition for φ: ∇φ · n = 0 on ∂�, where n is normal to ∂�. The L2-gradient flow for (1)
is the Allen–Cahn (AC) equation [4].

Various computational methods have been proposed to solve the AC equation [5–16].
Shen and Yang [5] and Long et al. [6] presented a second-order semiimplicit method based
on a second-order backward differentiation formula with a stabilizing term. Guan et al. [7]

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03571-x
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03571-x&domain=pdf
mailto:leeh1@kw.ac.kr


Kim and Lee Advances in Difference Equations        (2021) 2021:416 Page 2 of 13

and Bu et al. [8] developed second-order schemes using the convex splitting (CS) method
[17, 18] and the secant scheme [19]. In [9], Lee and Lee developed a second-order semian-
alytical Fourier spectral method. Guillén-González and G. Tierra [10] and Li et al. [11]
presented a second-order semiimplicit Crank–Nicolson (CN) method. In [12], Shin et
al. proposed a second-order CS method based on the implicit–explicit (IMEX) Runge–
Kutta (RK) method [20]. In [13], Ji et al. developed CN formulas using the invariant energy
quadratization idea [21] and the scalar auxiliary variable approach [22]. In [14], Zhang et
al. proposed a second-order scheme using the stabilized scalar auxiliary variable method
[23].

Recently, the AC equation with a high-order polynomial Fp(φ) = 1
4 (φp – 1)2, referred to

as the hAC equation, was introduced to better represent the interfacial dynamics [24].
Here, p is an even integer.

For more background information about the hAC equation, let us consider the origin of
the standard quartic polynomial free energy, F(φ) = 1

4 (φ2 – 1)2. In the original derivation
of the bulk free energy in the total free energy functional E(φ), the following logarithmic
free energy was used:

F(φ) =
θ

2

[
(1 + φ) ln

(
1 + φ

2

)
+ (1 – φ) ln

(
1 – φ

2

)]
+

θc

2
(
1 – φ2),

where θ and θc are the absolute and the critical temperatures, respectively [25]. How-
ever, the logarithmic bulk free energy function has singularities at φ = ±1. Therefore, for
computational efficiency, a quartic polynomial approximation F(φ) = 1

4 (φ2 – 1)2 has been
used instead of the logarithmic potential. The AC equation has been successfully applied
as a building block equation for modeling many scientifically and industrially important
problems such as crystal growth, image segmentation, motion by mean curvature, tissue
growth, volume repairing and smoothing, topology optimization, volume reconstruction
from point cloud and slice data, and multiphase fluid flows [24]. However, the AC equa-
tion with the classical quartic polynomial function has a limitation in preserving struc-
tures. For example, as we will show that with a numerical experiment in the later section,
if two separated components are close to each other, then they may merge with each other.
To resolve this problem, we use the hAC equation which has a good structure preserving
property. As shown in Fig. 1, the higher the order p, the larger the free energy barrier. This
fact implies that once two different phases are separated, they remain separated, which is
a good feature in modeling the dynamics of complex shapes.

Compared to the AC equation, the hAC equation is less studied numerically [24]. The
main purpose of this article is to develop a second-order energy stable method for the
hAC equation, which is based on the CS idea. For Fp(φ), one can split into 1

4φ2p + 1
4 and

Figure 1 Plot of the free energy Fp(φ) = 1
4 (φ

p – 1)2

with different orders: p = 2, 4, 10
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– 1
2φp, however, the resulting method is highly nonlinear thus its numerical implemen-

tation is complicated. In this study, we propose a linear CS that can be applied to all p,
by placing 1

4 (φp – 1)2 in the concave part. In addition, we combine the linear CS with
a strong-stability-preserving (SSP) IMEX-RK method [26] to obtain temporally second-
order accurate and unconditionally energy stable scheme.

The contents of this article are as follows. We present the linear CS scheme with an
auxiliary term in Sect. 2. In Sect. 3, we propose the second-order CS method, prove un-
conditional energy stability, and describe the computational implementation. In Sect. 4,
we present computational tests to demonstrate the performance of the method. Conclu-
sions are given in Sect. 5.

2 Linear convex splitting with an auxiliary term
It is well known that the AC equation preserves the maximum principle [27]. Thus, like
a common practice to consider the AC and Cahn–Hilliard equations with the truncated
Ginzburg–Landau double-well potential [5, 28–32], we can replace 1

4 (φp – 1)2 by

F̃p(φ) =

⎧⎪⎪⎨
⎪⎪⎩

A
2 φ2 – Bφ + C, φ > 1,
1
4 (φp – 1)2, φ ∈ [–1, 1],
A
2 φ2 + Bφ + C, φ < –1,

where A = p2

2 , B = p2

2 , and C = p2

4 .

Remark 1 With the replacement of 1
4 (φp – 1)2 by F̃p(φ), we have

max
φ∈R

∣∣F̃ ′′
p (φ)

∣∣ ≤ A.

Therefore, the hAC equation can be rewritten as follows:

∂φ

∂t
= –

( F̃ ′
p(φ)
ε2 – �φ

)
. (2)

Next, we consider the following splitting E(φ) = Ec(φ) – Ee(φ):

Ec(φ) =
∫

�

(
β

2ε2 φ2 +
1
2
|∇φ|2

)
dx, Ee(φ) =

∫
�

1
ε2

(
β

2
φ2 – F̃p(φ)

)
dx, (3)

where β ≥ 0 is a constant.

Lemma 1 Both Ec(φ) and Ee(φ) in (3) are convex if β ≥ A.

Proof For Ec(φ), we have

Ec(φ + sψ) = Ec(φ) +
∫

�

δEc(φ)
δφ

sψ dx +
∫

�

δ2Ec(φ)
δφ2

(sψ)2

2
dx + O

(
s3)

= Ec(φ) + s
∫

�

(
β

ε2 φ – �φ

)
ψ dx +

s2

2

∫
�

(
β

ε2 ψ2 – ψ�ψ

)
dx + O

(
s3).
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Then, we obtain

d2Ec(φ + sψ)
ds2

∣∣∣∣
s=0

=
∫

�

(
β

ε2 ψ2 + |∇ψ |2
)

dx ≥ 0.

For Ee(φ), we get

Ee(φ + sψ) = Ee(φ) + s
∫

�

1
ε2

(
βφ – F̃ ′

p(φ)
)
ψ dx +

s2

2

∫
�

1
ε2

(
β – F̃ ′′

p (φ)
)
ψ2 dx + O

(
s3).

Then, we have

d2Ee(φ + sψ)
ds2

∣∣∣∣
s=0

=
∫

�

1
ε2

(
β – F̃ ′′

p (φ)
)
ψ2 dx ≥ 0 if β ≥ A.

Therefore, the convexity condition of Ec(φ) and Ee(φ) is satisfied if β ≥ A. �

Lemma 2 The convexity condition of Ec(φ) and Ee(φ) results in the following inequality:

E(φ) – E(ψ) ≤
(

δEc(φ)
δφ

–
δEe(ψ)

δφ
,φ – ψ

)
L2

=
(

β

ε2 φ – �φ –
1
ε2

(
βψ – F̃ ′

p(ψ)
)
,φ – ψ

)
L2

,
(4)

where (·, ·)L2 denotes the L2-inner product with respect to �.

Proof For Ec(φ), we have

∫
�

(
β

2ε2 φ2 +
1
2
|∇φ|2 –

β

2ε2 ψ2 –
1
2
|∇ψ |2

)
dx

=
(

β

ε2 φ –
β

2ε2 (φ – ψ) – �φ +
1
2
�(φ – ψ),φ – ψ

)
L2

≤
(

β

ε2 φ – �φ,φ – ψ

)
L2

.

(5)

And we obtain for Ee(φ) with β ≥ A,

∫
�

1
ε2

(
β

2
φ2 – F̃p(φ) –

β

2
ψ2 + F̃p(ψ)

)
dx

=
1
ε2

(
βψ – F̃ ′

p(ψ),φ – ψ
)

L2 +
(

1
2ε2

(
β – F̃ ′′

p (ϕ)
)
, (φ – ψ)2

)
L2

≥ 1
ε2

(
βψ – F̃ ′

p(ψ),φ – ψ
)

L2 ,

(6)

where ϕ is between φ and ψ . Then, subtracting (6) from (5) yields inequality (4). �
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3 Unconditionally stable second-order scheme
Next, we propose a second-order CS scheme for the hAC equation by combining the linear
CS (3) with the specially designed second-order (three-stage) SSP-IMEX-RK scheme:

φ(1) = φn – �t
(

δEc(φ(1))
δφ

–
δEe(φn)

δφ

)
,

φ(2) = a10φ
n + a11φ

(1) – b1�t
(

δEc(φ(2))
δφ

–
δEe(φ(1))

δφ

)
,

φn+1 = a20φ
n + a21φ

(1) + a22φ
(2) – b2�t

(
δEc(φn+1)

δφ
–

δEe(φ(2))
δφ

)
,

(7)

where a10, a11, a20, a21, a22, b1, b2 satisfy the second-order conditions and the stability
condition [26], and are as follows:

a10 = –
1
2

, a11 =
3
2

, a20 = –
1
2

, a21 =
5
2

, a22 = –1,

b1 =
1
2

, b2 =
1
2

.

Theorem 1 The method (7) with β ≥ A is unconditionally energy stable, i.e., we have the
following inequality:

E
(
φn+1) ≤ E

(
φn)

for any time step �t > 0.

Proof Let μ(φ,ψ) = δEc(φ)
δφ

– δEe(ψ)
δφ

for simplicity of notation. From the second and third
steps of (7), we obtain

φ(2) – φ(1) = –
�t
2

(
μ

(
φ(2),φ(1)) + μ

(
φ(1),φn))

and

φn+1 – φ(2) = –
�t
2

(
μ

(
φn+1,φ(2)) – 2μ

(
φ(2),φ(1)) – μ

(
φ(1),φn)).

Using Lemma 2, we obtain

E
(
φn+1) – E

(
φn)

=
(
E
(
φn+1) – E

(
φ(2))) +

(
E
(
φ(2)) – E

(
φ(1))) +

(
E
(
φ(1)) – E

(
φn))

≤ –
�t
2

((
μ

(
φn+1,φ(2)),μ

(
φn+1,φ(2)) – 2μ

(
φ(2),φ(1)) – μ

(
φ(1),φn))

L2

+
(
μ

(
φ(2),φ(1)),μ

(
φ(2),φ(1)) + μ

(
φ(1),φn))

L2 + 2
(
μ

(
φ(1),φn),μ

(
φ(1),φn))

L2
)

= –
�t
8

∫
�

((
2μ

(
φn+1,φ(2)) – 2μ

(
φ(2),φ(1)) – μ

(
φ(1),φn))2 + 7

(
μ

(
φ(1),φn))2)dx

≤ 0.

This completes the proof. �
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3.1 Numerical implementation
We can rewrite the first-step of (7) as

(I + �tL)φ(1) = φn +
�t
ε2

(
βφn – F̃ ′

p
(
φn)),

where L = β/ε2 – �. Then, we have

φ(1) = (I + �tL)–1
(

φn +
�t
ε2

(
βφn – F̃ ′

p
(
φn))),

where we have used the zero Neumann boundary condition for φ. In the same way,

φ(2) =
(

I +
�t
2

L
)–1(

–
1
2
φn +

3
2
φ(1) +

�t
2ε2

(
βφ(1) – F̃ ′

p
(
φ(1))))

and

φn+1 =
(

I +
�t
2

L
)–1(

–
1
2
φn +

5
2
φ(1) – φ(2) +

�t
2ε2

(
βφ(2) – F̃ ′

p
(
φ(2)))).

The Fourier spectral method [33–38] with the discrete cosine transform in MATLAB is
used.

4 Computational experiments
4.1 Convergence test
We investigate the performance of the proposed scheme with an initial condition

φ(x, 0) = 0.2 cos(4πx) + 0.4 cos(7πx)

on � = [0, 1]. We set ε = 0.02 and β = 0; and calculate φ(x, t) for 0 < t ≤ tf = 5ε2. To demon-
strate spatial accuracy of the numerical solution, computations are done by changing the
number of grid points 16, 24, . . . , 256. Figure 2 displays the relative l2-errors of φ(x, tf ) with
p = 4, 6, 8, 10 for different numbers of grid points and time steps. The errors are calculated
by comparing with the reference numerical solution using 512 grid points and �t = tf /214.
As we can observe in Fig. 2, the spatial convergence of the scheme under grid refinement
is evident.

Next, to calculate the temporal convergence rate, computations are done by fixing
�x = 1/128 and changing �t = tf /212, tf /211, . . . , tf /27. We use the quadruply over-resolved
computational result as the reference numerical solution. Figure 3(a) displays the relative
l2-errors of φ(x, tf ) with p = 4, 6, 8, 10 for different time steps. The errors are calculated
by comparing with the reference numerical solution. The result shows that the scheme is
second-order accurate in time for all p. In addition, Fig. 3(b) shows the average CPU time
consumed using the method with p = 4, 6, 8, 10 for different �t. The computational results
indicates that the average CPU time is almost linear with respect to the number of steps
and not affected by p.
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Figure 2 Relative l2-errors of φ(x, tf ) with different p for 16, 24, . . . , 256 grid points and
�t = tf /212, tf /211, . . . , tf /27 with ε = 0.02

Figure 3 (a) Relative l2-errors of φ(x, tf ) with different p for �t = tf /212, tf /211, . . . , tf /27 with ε = 0.02 and
�x = 1

128 . (b) CPU time versus time step with different p

4.2 Energy stability test
To study the energy stability of the proposed method, let us consider the following initial
condition on � = [0, 1] × [0, 1]:

φ(x, y, 0) = rand(x, y),
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Figure 4 Evolution of the energy with different time steps for different p

Figure 5 Evolution of the energy with
�t = 219ε2 ≈ 13 for different p

where rand(x, y) is a random number between [–0.9, 0.9]. We use ε = 0.005, β = p2/2, and
�x = �y = 1/128. Figure 4 displays the temporal evolution of the discrete energy with
various �t for p = 4, 6, 8, 10. And the temporal evolution of the discrete energy with �t =
219ε2 ≈ 13 for p = 4, 6, 8, 10 is displayed in Fig. 5. For all p and large time steps, all the
discrete total energies are temporally decreasing. Figure 6 displays the temporal evolution
of φ(x, y, t) with �t = 24ε2 for all p.

4.3 Motion by mean curvature
Suppose a radially symmetric initial condition is given as follows:

φ(x, y, 0) = tanh

(
R0 –

√
(x – a)2 + (y – b)2

√
2ε

)
,
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Figure 6 Evolution of φ(x, y, t) with ε = 0.005, �x =�y = 1
128 , and �t = 24ε2

which represents a circle centered at (a, b) with an initial radius R0. It is well known that
the solution of the AC equation follows the motion by mean curvature. Therefore, the
radius R(t) of the interfacial circle (where φ(x, y, t) = 0) shrinks at the rate of the curvature
of the circle:

dR(t)
dt

= –
1

R(t)
, i.e., R(t) =

√
R2

0 – 2t.

To compare the original AC equation and the hAC equation for the mean curvature
flow, the computational domain � = [0, 1] × [0, 1], (a, b) = (0.5, 0.5), R0 = 0.35, ε = 0.02,
β = 0, �x = �y = 1/128, and �t = 10–5 are used. Figure 7(a) displays the evolution of
the radius of the interfacial circle for p = 2, 4, 6, 8, 10. And the interfacial layer (from
φ = –0.95 to φ = 0.95) at t = 0.05 for p = 2 and 10 is displayed in Fig. 7(b). The results
suggest that the hAC equation can generate a sharper interface than the original AC equa-
tion.
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Figure 7 (a) Evolution of the radius of the interfacial circle for different p. (b) Interfacial layer (from φ = –0.95
to φ = 0.95) at t = 0.05 for p = 2 and 10

Figure 8 Evolution of φ(x, y, t) with ε = 0.02, �x =�y = 1
128 , and �t = 10–5. In each case, times are t = 0,

400�t, 2000�t, and 4000�t (from left to right)

4.4 Effect of p on the interfacial dynamics in 2D
To investigate the effect of p in the hAC equation on the interfacial dynamics in 2D, we
consider two circles on � = [0, 2]×[0, 1] (see the first column of Fig. 8(a)). Their centers are
(0.667, 0.5) and (1.333, 0.5), respectively, and radii are 0.3, and we set φ(x, y, 0) to 1 inside
the circles and –1 otherwise. We choose ε = 0.02, β = 0, �x = �y = 1/128, and �t = 10–5.
Figure 8 displays the evolution of φ(x, y, t) for p = 2 and 10. The initial two circles merge
into one when p = 2, whereas shrink without merging when p = 10.

4.5 Effect of p on the interfacial dynamics in 3D
To examine the effect of p in the hAC equation on the interfacial dynamics in 3D, we
consider a three-dimensional spiral on � = [0, 1] × [0, 1] × [0, 1] (see the first column of
Fig. 9) [24]. The width and height of the spiral are 8�x and 58�x, respectively, and we
set φ(x, y, z, 0) to 1 inside the spiral and –1 otherwise. We use �x = �y = �z = 1

64 , ε = �x,
β = p2/2, and �t = 10ε2. Figures 9 and 10 display the evolution of φ(x, y, z, t) and energy
for p = 4, 6, 8, 10. As p increases, the high-order polynomial free energy term

∫
�

Fp(φ)
ε2 dx

influences the evolution of φ more strongly than the interfacial energy term
∫
�

1
2 |∇φ|2 dx.

As a result, φ loses its spiral shape by merge as p decreases, whereas φ still shows a spiral
shape maintaining its interface as p increases.
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Figure 9 Evolution of φ(x, y, z, t) with �x =�y =�z = 1
64 , ε =�x, and �t = 10ε2

Figure 10 Evolution of the energy

5 Conclusions
We developed a linear, second-order, and unconditionally energy stable method for the
hAC equation. In order to handle

∫
�

F̃p(φ) dx, β

2ε2

∫
�

φ2 dx is added, which yields the lin-
ear convex–concave decomposition of the total energy for β ≥ A. In addition, we com-
bined the linear CS with the specially designed second-order SSP-IMEX-RK scheme. We
demonstrated that the proposed method is efficient and unconditionally energy stable,
and second-order temporally accurate. In addition, we confirmed that the hAC equation
has different interfacial dynamics depending on the value of p.
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