
Matar et al. Advances in Difference Equations        (2021) 2021:423 
https://doi.org/10.1186/s13662-021-03576-6

R E S E A R C H Open Access

On the existence and stability of two positive
solutions of a hybrid differential system of
arbitrary fractional order via
Avery–Anderson–Henderson criterion on
cones
Mohammed M. Matar1, Manar abu Jarad1, Manzoor Ahmad2, Akbar Zada2*, Sina Etemad3 and
Shahram Rezapour3,4*

*Correspondence:
akbarzada@uop.edu.pk;
sh.rezapour@azaruniv.ac.ir;
sh.rezapour@mail.cmuh.org.tw;
rezapourshahram@yahoo.ca
2Department of Mathematics,
University of Peshawar, Peshawar
25000, Pakistan
3Department of Mathematics,
Azarbaijan Shahid Madani
University, Tabriz, Iran
Full list of author information is
available at the end of the article

Abstract
The main objective of this paper is to investigate the existence, uniqueness, and
Ulam–Hyers stability of positive solutions for fractional integro-differential boundary
values problem. Uniqueness result is obtained by using the Banach principle. For
obtaining two positive solutions, we apply another fixed point criterion due to
Avery–Anderson–Henderson on cones by establishing some inequalities. An
illustrative example is presented to indicate the validity of the obtained results. The
results are new and provide a generalization to some known results in the literature.
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1 Introduction
The topic of fractional boundary values problems gained a largest share of interest of re-
searchers and scientists due to its great and important role in many fields such as engi-
neering, physics, chemistry, and many other applications, see [1–3] and the references
therein.

The subject of analysis of differential systems such as existence, uniqueness, and stabil-
ity of solution for various boundary values problems has received the attention of many
researchers, since the shape of the solution of differential models is obtained by its bound-
ary [4–15]. One form of active research is the hybrid system that has been used as a model
of several physical systems and has an unusual differential form, see [16–23].

The fixed point theorems of many versions are the main core of obtaining the neces-
sary and sufficient criteria implying the existence and uniqueness of solution for fractional
boundary values problems [24–42]. In particular, Banach fixed point theorem is the most
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popular one to find the unique solution of the problem. The existence of more than one
solution has been obtained by many fixed point theorems such as Schauder’s and Kras-
nosel’skii’s fixed point theorems according to the stated given conditions on nonlinear
terms. The existence of at least two solutions of the nonlinear boundary value problem
(BVP) are given by Avery–Anderson–Henderson fixed point principle [43].

The in-depth qualitative behavior of the solution for fractional BVPs is the positivity
of such solutions. The study of existence and stability of positive solution in boundary
value problems is characterized by more investigation in all components of the fractional
models along with the involved boundary conditions [44, 45]. Most researchers avoid the
multi nonzero components in initial or boundary conditions such as constants, functions,
integrals, or even derivatives of functions. The using of the zero-valued-conditions fasciate
these investigations and avoid any conflicts of the components.

Sun et al. [46] investigated the required conditions for confirming the existence and
uniqueness of the solution to a nonlinear fractional differential equation (FDE) whose
nonlinearity involves an explicit fractional derivative using Avery–Anderson–Henderson
fixed point theorem. Devi et al. [44] studied the existence and uniqueness along with
the Ulam–Hyers (UH) stability of positive solution of general nonlinear FDEs contain-
ing p-Laplacian operator. The authors of [47] turned to the existence and multiplicity of
positive solutions for a system consisting of Riemann–Liouville FDEs equipped with the
p-Laplacian operators and singular nonnegative nonlinearities, and also furnished with
nonlocal boundary conditions which possess the integrals of Riemann–Stieltjes type. The
existence criterion and its stability of a hybrid fractional differential equation with frac-
tional integral, fractional derivative in the Caputo sense, and p-Laplacian operator are also
investigated in the research article by Al-Sadi et al. [48].

In this article, we focus on the fractional integro-differential boundary value problem of
a hybrid system given as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα(x(t) – g(t, x(t))) = f (t, x(t)), t ∈ (t0, T),α ∈ (n – 1, n),

m0x(t0) + n0Dρ0 x(T) = Iδ0 h0(T , x(T)), ρ0 ∈ (0, 1), m0, n0 ∈ R,

m1x(t0) + n1Dρ1 x(T) = Iδ1 h1(T , x(T)), ρ1 ∈ (1, 2), m1, n1 ∈ R,

x(k)(t0) = Iδk hk(T , x(T)), k = 2, 3, . . . , n – 1, n > 2,

(1)

where m1, n0 �= 0, Dα denotes the Caputo fractional derivative and f , g, hk : [t0, T]×R →R,
k = 0, 1, . . . , n – 1, are given continuous functions, and δ0, . . . , δn–1 > 0. Note that the novelty
of the paper in the above system is that we shall investigate the qualitative criteria for two
positive solutions to a new hybrid system with the finite number of integro-differential
boundary conditions in terminal points with the help of a complicated case of fixed point
techniques due to Avery–Anderson–Henderson. By taking different values for existing
parameters and functions, one can get some well-known FDEs studied in the previous
research works.

The other five sections of the manuscript are summarized as follows: In Sect. 2, we offer
basic preliminaries of results in fractional calculus and fixed point theories. In Sect. 3,
the solution of the fractional linear model of (1) is obtained. Therefore, an application of
Banach fixed point theorem on the integral solution for system (1) implies the existence of
one and only one solution of the system. In Sect. 4, to apply Avery–Anderson–Henderson
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fixed point theorem, we obtain sufficient criteria and conditions for the positivity and
existence of at least two of them for fractional hybrid system (1) by showing the complete
continuity of the operator that represents the integral solution of the system. In Sect. 5,
the UH stability of the solution is investigated and sufficient conditions for this kind of
stability are obtained. Finally, in Sect. 6, we design an example to ensure the consistency
of the results. The conclusion section closes this paper.

2 Preliminaries and notations
We again introduce several specifications and facts about fractional calculus and topics of
fixed point theorems.

Definition 2.1 ([49]) The Riemann–Liouville (left-sided) fractional integral of a real-
valued function φ ∈ C[t0, T] is introduced as

Iqφ(t) =
1

�(q)

∫ t

t0

(t – s)q–1φ(s) ds, q > 0,

if it exists.

Definition 2.2 ([49]) The Caputo fractional derivative of order q ∈ (n – 1, n] for φ ∈
Cn[t0, T] is defined as

Dqφ(t) =

⎧
⎨

⎩

In–qφ(n)(t), n – 1 < q < n,

φ(n)(t), q = n,

if it exists.

Lemma 2.3 ([49]) Let n – 1 < q < n, then

IqDqφ(t) = φ(t) + a0 + a1(t – t0) + a2(t – t0)2 + · · · + an–1(t – t0)n–1

for ak ∈R, k = 0, 1, . . . , n – 1.

For example, the γ th Caputo derivative of φ(t) = (t – t0)ζ is given by

Dγ (t – t0)ζ =

⎧
⎨

⎩

�(ζ+1)
�(ζ–γ +1) (t – t0)ζ–γ , n – 1 < γ < n, n – 1 < ζ ,

0, ζ ≤ n – 1.
(2)

Theorem 2.4 (Banach principle [24]) Let (E,‖ · ‖) be a Banach space and 	 be a closed
and bounded subset of E. If 
 : 	 → 	 is a contraction operator, then 
 has a unique fixed
point in 	. We mean by a contraction that it is an operator 
 that satisfies

‖
x – 
y‖ ≤ k‖x – y‖, k ∈ (0, 1), x, y ∈ 	.

Theorem 2.5 (Avery–Anderson–Henderson theorem [43]) Consider (E,‖·‖) as a Banach
space, P ∈ E as a cone, and μ and φ as two increasing nonnegative continuous functionals
on P, and let ω be a nonnegative continuous functional on P with ω(0) = 0 provided that,
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for some r3 > 0 and M > 0, the inequalities φ(x) ≤ ω(x) ≤ μ(x) and ‖x‖ ≤ Mφ(x) fulfill
∀x ∈ P(φ, r3), in which P(φ, r3) = {x ∈ P : φ(x) < r3}. Let positive numbers r1 < r2 < r3 exist so
that ω(lx) ≤ lω(x) for 0 ≤ l ≤ 1, and x ∈ ∂P(ω, r2). If 
 : P(φ, r3) → P is an operator with
the complete continuity property satisfying:

(C1) φ(
x) > r3, ∀x ∈ ∂P(φ, r3);
(C2) ω(
x) < r2, ∀x ∈ ∂P(ω, r2);
(C3) P(μ, r1) �= ∅, and μ(
x) > r1, ∀x ∈ ∂P(μ, r1),

then 
 admits at least two fixed points x1 and x2 provided that r1 < μ(x1) with ω(x1) < r2

and r2 < ω(x2) with φ(x2) < r3.

3 Results regarding unique solution
We obtain firstly a solution of the corresponding linear system of (1).

Theorem 3.1 Let m1, n0 �= 0 and δ0, . . . , δn–1 > 0. Then the linear hybrid fractional bound-
ary value problem (FBVP)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα(x(t) – g(t)) = f (t), t ∈ (t0, T),α > 2,

m0x(t0) + n0Dρ0 x(T) = Iδ0 h0(T), ρ0 ∈ (0, 1), m0, n0 ∈R,

m1x(t0) + n1Dρ1 x(T) = Iδ1 h1(T), ρ1 ∈ (1, 2), m1, n1 ∈R,

x(k)(t0) = Iδk hk(T), k = 2, 3, . . . , n – 1, n ≥ 3,

(3)

has an integral solution in the following form:

x(t) = Iαf (t) + g(t) – g(t0)

+
(t – t0)�(2 – ρ0)
n0(T – t0)1–ρ0

(

Iδ0 h0(T) –
m0

m1
Iδ1 h1(T)

)

+
1

m1
Iδ1 h1(T)

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

(
n1m0

m1n0
Iα–ρ1 f (T) – Iα–ρ0 f (T)

)

–
n1

m1
Iα–ρ1 f (T)

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

(
n1m0

m1n0
Dρ1 g(T) – Dρ0 g(T)

)

–
n1

m1
Dρ1 g(T)

+
n–1∑

k=2

[
n1(T – t0)k–ρ1

m1�(k – ρ1 + 1)

[

1 –
m0

n0

(t – t0)�(2 – ρ0)
(T – t0)1–ρ0

]

–
(t – t0)k

k!

+
(T – t0)k–1(t – t0)�(2 – ρ0)

�(k – ρ0 + 1)

]
[
g(k)(t0) – Iδk hk(T)

]
. (4)

Proof Taking the fractional integral to both sides of differential equation (3) and using
Lemma 2.3, we get

x(t) = Iαf (t) + g(t) +
n–1∑

k=0

ck(t – t0)k . (5)
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By definition of the Caputo derivative of the fractional order ρi < α, and using equation
(2), it becomes

Dρi x(t) = Iα–ρi f (t) + Dρi g(t) +
n–1∑

k=0

ckDρi (t – t0)k

= Iα–ρi f (t) + Dρi g(t) +
n–1∑

k=
ρi�

ck�(k + 1)
�(k – ρi + 1)

(t – t0)k–ρi .

Particularly, we find

Dρ0 x(t) = Iα–ρ0 f (t) + Dρ0 g(t) +
n–1∑

k=1

ck�(k + 1)
�(k – ρ0 + 1)

(t – t0)k–ρ0

and

Dρ1 x(t) = Iα–ρ1 f (t) + Dρ1 g(t) +
n–1∑

k=2

ck�(k + 1)
�(k – ρ1 + 1)

(t – t0)k–ρ1 .

Then

x(t0) = g(t0) + c0

and

Dρi x(t0) = Dρi g(t0)
(
i ∈ {0, 1}).

Also, we have

x(T) = Iαf (T) + g(T) +
n–1∑

k=0

ck(T – t0)k

and

Dρi x(T) = Iα–ρi f (T) + Dρi g(T) +
n–1∑

k=
ρi�

ck�(k + 1)
�(k – ρi + 1)

(T – t0)k–ρi .

The boundary condition m0x(t0) + n0Dρ0 x(T) = Iδ0 h0(T) gives

Iδ0 h0(T) = m0g(t0) + m0c0 + n0Iα–ρ0 f (T) + n0Dρ0 g(T) (6)

+ n0

n–1∑

k=1

ck�(k + 1)
�(k – ρ0 + 1)

(T – t0)k–ρ0 ,

and the condition m1x(t0) + n1Dρ1 x(T) = Iδ1 h1(T) implies

Iδ1 h1(T) = m1g(t0) + m1c0 + n1Iα–ρ1 f (T) + n1Dρ1 g(T) (7)

+ n1

n–1∑

k=2

ck�(k + 1)
�(k – ρ1 + 1)

(T – t0)k–ρ1 .
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The boundary condition x(k)(t0) = Iδk hk(T), k = 2, 3, . . . , n – 1, implies that

ck =
1
k!

[
Iδk hk(T) – g(k)(t0)

]
, k = 2, 3, . . . , n – 1. (8)

Substituting (8) into (6) and (7), we obtain

m0c0 +
c1n0

�(2 – ρ0)
(T – t0)1–ρ0

= Iδ0 h0(T) – m0g(t0) – n0Iα–ρ0 f (T) – n0Dρ0 g(T)

+ n0

n–1∑

k=2

(T – t0)k–ρ0

�(k – ρ0 + 1)
[
g(k)(t0) – Iδk hk(T)

]

and

c0 = m–1
1 Iδ1 h1(T) – g(t0) – m–1

1 n1Iα–ρ1 f (T) – m–1
1 n1Dρ1 g(T)

+ m–1
1 n1

n–1∑

k=2

(T – t0)k–ρ1

�(k – ρ1 + 1)
[
g(k)(t0) – Iδk hk(T)

]
.

Then

c1 =
�(2 – ρ0)

n0(T – t0)1–ρ0

(

Iδ0 h0(T) –
m0

m1
Iδ1 h1(T)

)

–
�(2 – ρ0)

(T – t0)1–ρ0

(

Iα–ρ0 f (T) –
m0n1

n0m1
Iα–ρ1 f (T)

)

–
�(2 – ρ0)

(T – t0)1–ρ0

(

Dρ0 g(T) –
m0n1

n0m1
Dρ1 g(T)

)

+
�(2 – ρ0)

(T – t0)1–ρ0

n–1∑

k=2

(
(T – t0)k–ρ0

�(k – ρ0 + 1)
–

m0n1(T – t0)k–ρ1

n0m1�(k – ρ1 + 1)

)

× (
g(k)(t0) – Iδk hk(T)

)
.

Substituting the constants ck , k = 0, 1, 2, . . . , n – 1, into (5), we obtain solution (4), and the
proof is finished. �

If ρ0,ρ1 ∈ (0, 1), then the integral solution (4) will be different. This case is explained in
the next result.

Theorem 3.2 Let m0n1
n0m1

�= �(2–ρ1)
�(2–ρ0) (T – t0)ρ1–ρ0 and δ0, . . . , δn–1 > 0. Then the linear hybrid

FBVP

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα(x(t) – g(t)) = f (t), t ∈ (t0, T),α > 2,

m0x(t0) + n0Dρ0 x(T) = Iδ0 h0(T), ρ0 ∈ (0, 1), m0, n0 ∈R,

m1x(t0) + n1Dρ1 x(T) = Iδ1 h1(T), ρ1 ∈ (0, 1), m1, n1 ∈R,

x(k)(t0) = Iδk hk(T), k = 2, 3, . . . , n – 1, n ≥ 3,

(9)
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has an integral solution in the following form:

x(t) = Iαf (t) + g(t) – g(t0)

+
�(2 – ρ1)(m0(t – t0)�(2 – ρ0) – n0(T – t0)1–ρ0 )

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0
Iδ1 h1(T)

+
�(2 – ρ0)(n1(T – t0)1–ρ1 – m1(t – t0)�(2 – ρ1))

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0
Iδ0 h0(T)

+
n0�(2 – ρ0)(m1(t – t0)�(2 – ρ1) – n1(T – t0)1–ρ1 )

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0
Iα–ρ0 f (T)

+
n1�(2 – ρ1)(n0(T – t0)1–ρ0 – m0(t – t0)�(2 – ρ0))

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0
Iα–ρ1 f (T)

+
n0�(2 – ρ0)(m1(t – t0)�(2 – ρ1) – n1(T – t0)1–ρ1 )

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0
Dρ0 g(T) (10)

+
n1�(2 – ρ1)(n0(T – t0)1–ρ0 – m0(t – t0)�(2 – ρ0))

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0
Dρ1 g(T)

+
n–1∑

k=2

[
(t – t0)�(2 – ρ0)�(2 – ρ1)( n0m1(T–t0)k–ρ0

�(k–ρ0+1) – m0n1(T–t0)k–ρ1
�(k–ρ1+1) )

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0
+

(t – t0)k

k!

–
[ n0n1( �(2–ρ0)

�(k–ρ0+1) – �(2–ρ1)
�(k–ρ1+1) )(T – t0)k–ρ0–ρ1+1

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0

]

× [
Iδk hk(T) – g(k)(t0)

]
.

Proof We sketch the proof. Equation (7) will become

Iδ1 h1(T) = m1g(t0) + m1c0 + n1Iα–ρ1 f (T) + n1Dρ1 g(T) (11)

+ n1

n–1∑

k=1

ck�(k + 1)
�(k – ρ1 + 1)

(T – t0)k–ρ1 .

Solving equations (6) and (11) and taking into account (8), we deduce that

c1 =
�(2 – ρ0)�(2 – ρ1)(m0Iδ1 h1(T) – m1Iδ0 h0(T))

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0

+
�(2 – ρ0)�(2 – ρ1)(n0m1Iα–ρ0 f (T) – m0n1Iα–ρ1 f (T))

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0

+
�(2 – ρ0)�(2 – ρ1)(n0m1Dρ0 g(T) – m0n1Dρ1 g(T))

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0

+
�(2 – ρ0)�(2 – ρ1)

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0

×
n–1∑

k=2

(
n0m1(T – t0)k–ρ0

�(k – ρ0 + 1)
–

m0n1(T – t0)k–ρ1

�(k – ρ1 + 1)

)
[
Iδk hk(T) – g(k)(t0)

]
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and

c0 = –g(t0) +
n1�(2 – ρ0)(T – t0)1–ρ1 Iδ0 h0(T) – n0�(2 – ρ1)(T – t0)1–ρ0 Iδ1 h1(T)

n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0

– n0n1
�(2 – ρ0)(T – t0)1–ρ1 Iα–ρ0 f (T) – �(2 – ρ1)(T – t0)1–ρ0 Iα–ρ1 f (T)

m0n1�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0

– n0n1
�(2 – ρ0)(T – t0)1–ρ1 Dρ0 g(T) – �(2 – ρ1)(T – t0)1–ρ0 Dρ1 g(T)

m0n1�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0

– n0n1

n–1∑

k=2

( �(2–ρ0)
�(k–ρ0+1) – �(2–ρ1)

�(k–ρ1+1) )(T – t0)k–ρ0–ρ1+1[Iδk hk(T) – g(k)(t0)]
n1m0�(2 – ρ0)(T – t0)1–ρ1 – n0m1�(2 – ρ1)(T – t0)1–ρ0

.

Substituting the constants ck , k = 0, 1, 2, . . . , n – 1, into (5), we obtain solution (10), and this
completes our proof. �

Now, by Theorem 2.4, we prove the existence of a unique solution to system (1). For this,
define an operator 
 : C([t0, T],R) →R provided


x(t) = Iαf
(
t, x(t)

)
+ g

(
t, x(t)

)
– g

(
t0, x(t0)

)

+
(t – t0)�(2 – ρ0)
n0(T – t0)1–ρ0

(

Iδ0 h0
(
T , x(T)

)
–

m0

m1
Iδ1 h1

(
T , x(T)

)
)

+
1

m1
Iδ1 h1

(
T , x(T)

)

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

(
n1m0

m1n0
Iα–ρ1 f

(
T , x(T)

)
– Iα–ρ0 f

(
T , x(T)

)
)

–
n1

m1
Iα–ρ1 f

(
T , x(T)

)

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

(
n1m0

m1n0
Dρ1 g

(
T , x(T)

)
– Dρ0 g

(
T , x(T)

)
)

–
n1

m1
Dρ1 g

(
T , x(T)

)

+
n–1∑

k=2

[
n1(T – t0)k–ρ1

m1�(k – ρ1 + 1)

[

1 –
m0

n0

(t – t0)�(2 – ρ0)
(T – t0)1–ρ0

]

–
(t – t0)k

k!

+
(T – t0)k–1(t – t0)�(2 – ρ0)

�(k – ρ0 + 1)

]
[
g(k)(t0, x(t0)

)
– Iδk hk

(
T , x(T)

)]
, m1, n0 �= 0.

The required criterion for finding a unique solution of the nonlinear hybrid FBVP (1) is
given in the next result.

Theorem 3.3 Assume
[H1] f , g(k), hk : [t0, T] × C([t0, T],R) → R, k = 0, 1, . . . , n – 1, are continuous functions

such that

⎧
⎪⎪⎨

⎪⎪⎩

|f (t, u1) – f (s, v1)| ≤ Cf |u1 – v1|,
|g(k)(t, u1) – g(k)(s, v1)| ≤ Cg(k) |u1 – v1|,
|hk(t, u1) – hk(s, v1)| ≤ Chk |u1 – v1|,

where t, s ∈ [t0, T], u1, v1 ∈ C([t0, T],R), Cf , Cg(k) , Chk are nonnegative constants.
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Then the hybrid FBVP system (1) admits one and only one solution provided that 
 < 1,
where


 =
Cf (T – t0)α

�(α + 1)
+ 2Cg +

(T – t0)ρ0�(2 – ρ0)
|n0|

×
[

(T – t0)δ0 Ch0

�(δ0 + 1)
+

|m0|(T – t0)δ1 Ch1

|m1|�(δ1 + 1)

]

+
(T – t0)δ1 Ch1

|m1|�(δ1 + 1)
+ (T – t0)ρ0�(2 – ρ0)Cf

×
[ |n1m0|(T – t0)α–ρ1

|m1n0|�(α – ρ1 + 1)
+

(T – t0)α–ρ0

�(α – ρ0 + 1)

]

+
|n1|(T – t0)α–ρ1 Cf

|m1|�(α – ρ1 + 1)

+ (T – t0)ρ1�(2 – ρ0)
[ |n1m0|Cg(2) (T – t0)2–ρ1

|m1n0|�(3 – ρ1)
+

(T – t0)1–ρ0 Cg(1)

�(2 – ρ0)

]

+
|n1|Cg(2) (T – t0)2–ρ1

|m1|�(3 – ρ1)

+
n–1∑

k=2

max
t∈[t0,T]

∣
∣
∣
∣

n1(T – t0)k–ρ1

m1�(k – ρ1 + 1)

[

1 –
m0

n0

(t – t0)�(2 – ρ0)
(T – t0)1–ρ0

]

–
(t – t0)k

k!
+

(T – t0)k–1(t – t0)�(2 – ρ0)
�(k – ρ0 + 1)

∣
∣
∣
∣

[

Cg(k) +
(T – t0)δk Chk

�(δk + 1)

]

. (12)

Proof Let 	 be any closed bounded subset of E. Then the continuity of 
 is followed by
that of constitutive functions and Lebesgue dominated convergence theorem. By enlarging
the set 	, one can deduce that 
 maps 	 into itself. We need to show the contraction
property of the operator 
 . For this, let x, y ∈ 	, then

∣
∣
y(t) – 
x(t)

∣
∣

≤ 1
�(α)

∫ t

t0

(t – s)α–1∣∣f
(
s, y(s)

)
– f

(
s, x(s)

)∣
∣ds

+
∣
∣g

(
t, y(t)

)
– g

(
t, x(t)

)∣
∣ +

∣
∣g

(
t0, y(t0)

)
– g

(
t0, x(t0)

)∣
∣

+
(t – t0)�(2 – ρ0)
|n0|(T – t0)1–ρ0

[
1

�(δ0)

∫ T

t0

(T – s)δ0–1∣∣h0
(
s, y(s)

)
– h0

(
s, x(s)

)∣
∣ds

+
|m0|

|m1|�(δ1)

∫ T

t0

(T – s)δ1–1∣∣h1
(
s, y(s)

)
– h1

(
s, x(s)

)∣
∣ds

]

+
1

|m1|�(δ1)

∫ T

t0

(T – s)δ1–1∣∣h1
(
s, y(s)

)
– h1

(
s, x(s)

)∣
∣ds

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

[ |n1m0|
|m1n0|�(α – ρ1)

∫ T

t0

(T – s)α–ρ1–1∣∣f
(
s, y(s)

)
– f

(
s, x(s)

)∣
∣ds

+
1

�(α – ρ0)

∫ T

t0

(T – s)α–ρ0–1∣∣f
(
s, y(s)

)
– f

(
s, x(s)

)∣
∣ds

]

+
|n1|

|m1|�(α – ρ1)

∫ T

t0

(T – s)α–ρ1–1∣∣f
(
s, y(s)

)
– f

(
s, x(s)

)∣
∣ds
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+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

[ |n1m0|
|m1n0|�(2 – ρ1)

∫ T

t0

(T – s)1–ρ1
∣
∣g ′′(s, y(s)

)
– g ′′(s, x(s)

)∣
∣ds

+
1

�(1 – ρ0)

∫ T

t0

(T – s)–ρ0
∣
∣g ′(s, y(s)

)
– g ′(s, x(s)

)∣
∣ds

]

+
|n1|

|m1|�(2 – ρ1)

∫ T

t0

(T – s)1–ρ1
∣
∣g ′′(s, y(s)

)
– g ′′(s, x(s)

)∣
∣ds

+
n–1∑

k=2

∣
∣
∣
∣

n1(T – t0)k–ρ1

m1�(k – ρ1 + 1)

[

1 –
m0

n0

(t – t0)�(2 – ρ0)
(T – t0)1–ρ0

]

–
(t – t0)k

k!

+
(T – t0)k–1(t – t0)�(2 – ρ0)

�(k – ρ0 + 1)

∣
∣
∣
∣

[
∣
∣g(k)(t0, x(t0)

)
– g(k)(t0, y(t0)

)∣
∣

+
1

�(δk)

∫ T

t0

(T – s)δk –1∣∣hk
(
s, y(s)

)
– hk

(
s, x(s)

)∣
∣ds

]

≤ Cf (T – t0)α

�(α + 1)
‖y – x‖ + 2Cg‖y – x‖

+
(T – t0)ρ0�(2 – ρ0)

|n0|
[

(T – t0)δ0 Ch0

�(δ0 + 1)
+

|m0|(T – t0)δ1 Ch1

|m1|�(δ1 + 1)

]

‖y – x‖

+
(T – t0)δ1 Ch1

|m1|�(δ1 + 1)
‖y – x‖

+ (T – t0)ρ0�(2 – ρ0)Cf

[ |n1m0|(T – t0)α–ρ1

|m1n0|�(α – ρ1 + 1)
+

(T – t0)α–ρ0

�(α – ρ0 + 1)

]

‖y – x‖

+
|n1|(T – t0)α–ρ1 Cf

|m1|�(α – ρ1 + 1)
‖y – x‖

+ (T – t0)ρ1�(2 – ρ0)
[ |n1m0|Cg(2) (T – t0)2–ρ1

|m1n0|�(3 – ρ1)
+

(T – t0)1–ρ0 Cg(1)

�(2 – ρ0)

]

‖y – x‖

+
|n1|Cg(2) (T – t0)2–ρ1

|m1|�(3 – ρ1)
‖y – x‖

+
n–1∑

k=2

∣
∣
∣
∣

n1(T – t0)k–ρ1

m1�(k – ρ1 + 1)

[

1 –
m0

n0

(t – t0)�(2 – ρ0)
(T – t0)1–ρ0

]

–
(t – t0)k

k!

+
(T – t0)k–1(t – t0)�(2 – ρ0)

�(k – ρ0 + 1)

∣
∣
∣
∣

[

Cg(k) +
(T – t0)δk Chk

�(δk + 1)

]

‖y – x‖ = 
‖y – x‖,

where 
 is introduced in (12). Thus, the operator 
 satisfies the contraction property of
Banach fixed point Theorem 2.4 with constant 
 < 1. Hence 
 admits a fixed point in 	,
which is the same unique solution of hybrid FBVP (1). �

4 Results regarding two positive solutions
We establish sufficient conditions of the existence of two positive solutions of system (1)
with the help of the existing hypotheses on cones presented in Theorem 2.5 due to Avery–
Anderson–Henderson.

Define the cone P = {x ∈ C([t0, T],R) : x(t) ≥ 0}. We want to obtain firstly sufficient con-
ditions to make 
x ∈ P, whenever x ∈ P.

The next assumptions are essential for the coming results.
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[H2] Assume that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0, n1 ≤ 0, m1, n0 > 0,
�(3–ρ1)
�(3–ρ0) < m0n1

n0m1
(T – t0)ρ0–ρ1 ,

f (t, x(t)) ≥ 0,

g(t, x(t)) ≥ g(t0, x(t0)) ≥ 0, t ∈ [t0, T],
n1m0
m1n0

Iα–ρ1 f (T , x(T)) ≥ Iα–ρ0 f (T , x(T)),

Kg(κ , x(κ)) ≥ n1m0
m1n0

Dρ1 g(T , x(T)) ≥ Dρ0 g(T , x(T)) ≥ 0, K > 0,κ ∈ [t0, T],

0 ≤ g(k)(t0, x(t0)) ≤ Iδk hk(T , x(T)), k = 2, 3, . . . , n – 1.

[H3] f , g(k), hk : [t0, T] × P →R, k = 0, 1, . . . , n – 1, are all bounded and continuous func-
tions. Moreover, for r > 0, there exist a positive real number Lr and a continuous
nonnegative function g so that ∀(t, x), (s, y) ∈ [t0, T] × [0, r],

∣
∣g(t, x) – g(s, y)

∣
∣ ≤ Lr

∣
∣g(x) – g(y)

∣
∣.

Lemma 4.1 If [H2] holds and x ∈ P, then 
x ∈ P.

Proof For any t ∈ [t0, T], let

ξk(t) = C1
(
1 – C2(t – t0)

)
–

(t – t0)k

k!
+ C3(t – t0),

where

C1 =
n1(T – t0)k–ρ1

m1�(k – ρ1 + 1)
, C2 =

m0

n0

�(2 – ρ0)
(T – t0)1–ρ0

and

C3 =
(T – t0)k–1�(2 – ρ0)

�(k – ρ0 + 1)
.

We first need to show that ξk(t) ≤ 0, that is,

C1 + (C3 – C1C2)(t – t0) ≤ (t – t0)k

k!
, t ∈ [t0, T].

Therefore, it suffices to show that C1 + (C3 – C1C2)(t – t0) ≤ 0. Notice that ξk(t0) = C1 < 0,
then we need to show that C3 ≤ C1C2, that is,

�(k – ρ1 + 1)
�(k – ρ0 + 1)

<
m0n1

n0m1
(T – t0)ρ0–ρ1 , k = 2, 3, . . . , n – 1.

By induction on k, it is obvious, by assumption, that it is true for k = 2. We assume it is
true for the case k and show it for the case k + 1. We have

�(k – ρ1 + 2)
�(k – ρ0 + 2)

=
(k – ρ1 + 1)�(k – ρ1 + 1)
(k – ρ0 + 1)�(k – ρ0 + 1)

<
m0n1(k – ρ1 + 1)
n0m1(k – ρ0 + 1)

(T – t0)ρ0–ρ1 <
m0n1

n0m1
(T – t0)ρ0–ρ1 .
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We deduce now

n–1∑

k=2

ξk(t)
[
g(k)(t0, x(t0)

)
– Iδk hk

(
T , x(T)

)] ≥ 0.

The remainder of the proof is obvious by the given assumptions. Hence, the result fol-
lows. �

Lemma 4.2 If [H2] and [H3] are fulfilled, then 
 : P → P admits the complete continuity
property.

Proof Define a bounded subset Br = {x ∈ P : x(t) ≤ r} of P, and let

⎧
⎪⎪⎨

⎪⎪⎩

maxt∈[t0,T],x∈[0,r] f (t, x) ≤ Lf ,

maxt∈[t0,T],x∈[0,r] g(k)(t, x) ≤ Lg(k) ,

maxt∈[t0,T],x∈[0,r] hk(t, x) ≤ Lhk ,

for positive constants Lf , Lg(k) , and Lhk , k = 0, 1, 2, . . . , n – 1. The proof consists of three
steps.

(Step 1) 
 is a continuous operator.
Assuming x ∈ P, then by Lemma 4.1, 
x ∈ P which implies that 
 : P → P. Let

{xm} be a sequence in the cone P such that limm→∞ xm = x in P. The continuity of f ,
g(k), and hk implies that limm→∞ f (t, xm(t)) = f (t, x(t)), lim m→∞g(k)(t, xm(t)) = g(k)(t, x(t)),
and limm→∞ hk(t, xm(t)) = hk(t, x(t)). In this case, by the dominated convergence theo-
rem,

lim
m→∞
xm(t)

= Iα
(

lim
m→∞ f

(
t, xm(t)

))
+ lim

m→∞
(
g
(
t, xm(t)

)
– g

(
t0, xm(t0)

))

+
(t – t0)�(2 – ρ0)
n0(T – t0)1–ρ0

(

Iδ0
(

lim
m→∞ h0

(
s, xm(s)

))
–

m0

m1
Iδ1

(
lim

m→∞ h1
(
s, xm(s)

))
)

+
1

m1
Iδ1

(
lim

m→∞ h1
(
s, xm(s)

))

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

(
n1m0

m1n0
Iα–ρ1

(
lim

m→∞ f
(
T , xm(T)

))
– Iα–ρ0

(
lim

m→∞ f
(
T , xm(T)

))
)

–
n1

m1
Iα–ρ1

(
lim

m→∞ f
(
T , xm(T)

))

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

(
n1m0

m1n0
lim

m→∞ Dρ1 g
(
T , xm(T)

)
– lim

m→∞ Dρ0 g
(
T , xm(T)

)
)

–
n1

m1
lim

m→∞ Dρ1 g
(
T , xm(T)

)

+
n–1∑

k=2

[
n1(T – t0)k–ρ1

m1�(k – ρ1 + 1)

[

1 –
m0

n0

(t – t0)�(2 – ρ0)
(T – t0)1–ρ0

]

–
(t – t0)k

k!
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+
(T – t0)k–1(t – t0)�(2 – ρ0)

�(k – ρ0 + 1)

][
lim

m→∞ g(k)(t0, xm(t0)
)

– Iδk
(

lim
m→∞ hk

(
s, xm(s)

))]

= 
x(t), t ∈ [t0, T].

Thus, 
 is a continuous operator.
(Step 2) The operator 
 is uniformly bounded. ∀t ∈ [t0, T], we get

0 ≤ 
x(t)

≤ (T – t0)αLf

�(α + 1)
+ Lg

+
(T – t0)�(2 – ρ0)

n0(T – t0)1–ρ0

(
Lh0 (T – t0)δ0

�(δ0 + 1)
+

Lh1 (–m0)(T – t0)δ1

m1�(δ1 + 1)

)

+
Lh1 (T – t0)δ1

m1�(δ1 + 1)
+

Lf (T – t0)�(2 – ρ0)
(T – t0)1–ρ0

(–n1)(–m0)(T – t0)α–ρ1

m1n0�(α – ρ1 + 1)

+
Lf (–n1)(T – t0)α–ρ1

m1�(α – ρ1 + 1)
+

(t – t0)�(2 – ρ0)
(T – t0)1–ρ0

(–n1)(–m0)Lg(2) (T – t0)2–ρ1

m1n0�(3 – ρ1)

+
(–n1)Lg(2) (T – t0)2–ρ1

m1�(3 – ρ1)

+
n–1∑

k=2

[
(T – t0)k

k!
–

n1(T – t0)k–ρ1

m1�(k – ρ1 + 1)

[

1 –
m0

n0

(t – t0)�(2 – ρ0)
(T – t0)1–ρ0

]

–
(T – t0)k–1(t – t0)�(2 – ρ0)

�(k – ρ0 + 1)

]
Lhk (T – t0)δk

�(δk + 1)
.

Hence, 
 maps a bounded set Br into a uniformly bounded subset of P.
(Step 3) 
Br is an equicontinuous set in P. Let x ∈ Br and t2, t1 ∈ [t0, T] such that t1 < t2,

then

∣
∣
x(t2) – 
x(t1)

∣
∣

≤ Lf

�(α)

∫ t1

t0

[
(t2 – s)α–1 – (t1 – s)α–1]ds

+
Lf

�(α)

∫ t2

t1

(t2 – s)α–1 ds +
∣
∣g

(
t2, x(t2)

)
– g

(
t1, x(t1)

)∣
∣

+
(t2 – t1)�(2 – ρ0)

n0(T – t0)1–ρ0

∣
∣
∣
∣I

δ0 h0
(
T , x(T)

)
–

m0

m1
Iδ1 h1

(
T , x(T)

)
∣
∣
∣
∣

+
(t2 – t1)�(2 – ρ0)

(T – t0)1–ρ0

∣
∣
∣
∣
n1m0

m1n0
Iα–ρ1 f

(
T , x(T)

)
– Iα–ρ0 f

(
T , x(T)

)
∣
∣
∣
∣

+
(t2 – t1)�(2 – ρ0)

(T – t0)1–ρ0

∣
∣
∣
∣
n1m0

m1n0
Dρ1 g

(
T , x(T)

)
– Dρ0 g

(
T , x(T)

)
∣
∣
∣
∣

+
n–1∑

k=2

[
(t2 – t0)k – (t1 – t0)k

k!
+

m0n1�(2 – ρ0)(T – t0)k+ρ0–ρ1–1(t2 – t1)
n0m1�(k – ρ1 + 1)

–
(T – t0)k–1(t – t0)�(2 – ρ0)(t2 – t1)

�(k – ρ0 + 1)

]
∣
∣Iδk hk

(
T , x(T)

)
–g(k)(t0, x(t0)

)∣
∣
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≤ Lf
(t2 – t0)α – (t1 – t0)α + 2(t2 – t1)α

�(α + 1)
+ Lr

∣
∣g(t2) – g(t1)

∣
∣

+
(t2 – t1)�(2 – ρ0)

n0(T – t0)1–ρ0

(
Lh0 (T – t0)δ0

�(δ0 + 1)
+

Lh1 |m0|(T – t0)δ1

m1�(δ1 + 1)

)

+
Lf (t2 – t1)�(2 – ρ0)

(T – t0)1–ρ0

(
n1m0(T – t0)α–ρ1

m1n0�(α – ρ1 + 1)
+

(T – t0)α–ρ0

�(α – ρ0 + 1)

)

+
(t2 – t1)�(2 – ρ0)

(T – t0)1–ρ0

(n1m0Lg(2) (T – t0)2–ρ1

m1n0�(3 – ρ1)
+

Lg(1) (T – t0)1–ρ0

�(2 – ρ0)

)

+
n–1∑

k=2

[
(t2 – t0)k – (t1 – t0)k

k!
+

m0n1�(2 – ρ0)(T – t0)k+ρ0–ρ1–1(t2 – t1)
n0m1�(k – ρ1 + 1)

–
(T – t0)k–1(t – t0)�(2 – ρ0)(t2 – t1)

�(k – ρ0 + 1)

]∣
∣
∣
∣
Lhk (T – t0)δk

�(δk + 1)
+Lg(k)

∣
∣
∣
∣.

If t2 – t1 → 0, then |
x(t2) – 
x(t1)| → 0 independently of the values of x. Hence, 
Br is
equicontinuous. By the means of the Arzela–Ascoli theorem, we follow that 
 : P → P is
completely continuous. �

We now show the existence of at least two solutions for the hybrid FBVP (1).
For simplifications, we use the following notations in the coming results:

∣
∣ξk(t)

∣
∣ ≤ Mξk ,

R1 = mf (T – t0)α
(

1
�(α + 1)

+
|n1|

m1(T – t0)ρ1�(α – ρ1 + 1)

)

+
mh0 (T – t0)δ0+ρ0

n0

�(2 – ρ0)
�(δ0 + 1)

+
mh1 (T – t0)δ1

m1�(δ1 + 1)

(

1 +
|m0|
n0

(T – t0)ρ0�(2 – ρ0)
)

,

R2 = Mf (T – t0)α
(

1
�(α + 1)

+
|n1|(1 + m0(T–t0)ρ0 �(2–ρ0)

n0
)

m1(T – t0)ρ1�(α – ρ1 + 1)
+

�(2 – ρ0)
�(α – ρ0 + 1)

)

+ Mg

(

2 + K
(

n0

|m0| +
n1m0

m1n0
(T – t0)ρ0�(2 – ρ0)

))

+
Mh0 (T – t0)δ0+ρ0�(2 – ρ0)

n0�(δ0 + 1)
+

Mh1 (T – t0)δ1

m1�(δ1 + 1)

(

1 +
|m0|(T – t0)ρ0�(2 – ρ0)

n0

)

+ 2
n–1∑

k=2

Mξk Mhk

(

1 +
(T – t0)δk

�(δk + 1)

)

and

R3 =
nf (τ – t0)α

�(α + 1)
+

nh1 (T – t0)δ1

m1�(δ1 + 1)

+
(τ – t0)�(2 – ρ0)

n0(T – t0)1–ρ0

(
nh0 (T – t0)δ0

�(δ0 + 1)
+

|m0|nh1 (T – t0)δ1

m1�(δ1 + 1)

)

+
|n1|(T – t0)α–ρ1 nf

m1�(α – ρ1 + 1)
, τ ∈ [t0, T],

where the involved constants exist and are positive.
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Theorem 4.3 Let [H2] and [H3] hold. If there exist 0 < r1 < r2 < r3 satisfying
(i) f (t, x) > nf

r3
R3

, hi(t, x) > nhi
r3
R3

, i = 0, 1, t ∈ [τ , T], x ≥ r3,
(ii) f (t, x) ≤ Mf

r2
R2

, hi(t, x) ≤ Mhk
r2
R2

, i = 0, 1, (t, x) ∈ [t0, T] × [0, r2], and
(iii) f (t, x) > mf

r1
R1

, hi(t, x) > mhi
r1
R1

, i = 0, 1, (t, x) ∈ [t0, T] × [0, r1],
then hybrid system (1) possesses at least two positive solutions x1 and x2 provided that
r1 < ‖x1‖ with ‖x1‖ < r2 along with r2 < ‖x2‖ with mint∈[τ ,T] x(t) < r3.

Proof Let τ ∈ [t0, T) and define the functionals φ, ω, and μ on the cone P such that

φ(x) = min
t∈[τ ,T]

x(t), ω(x) = μ(x) = ‖x‖.

It is obvious that ω(0) = 0, ω(lx) = |l|ω(x), and φ(x) ≤ ω(x) ≤ μ(x). Using Lemmas 4.1and
4.2, we have 
 : P(φ, r3) → P is completely continuous. We start with the first condition
of Theorem 2.5, namely φ(
x) > r3 for all x ∈ ∂P(φ, r3). Let mint∈[τ ,T] x(t) = r3, we get

min
t∈[τ ,T]


x(t) >
nf r3

R3

(τ – t0)α

�(α + 1)
+

nh1 r3(T – t0)δ1

m1R3�(δ1 + 1)

+
(τ – t0)�(2 – ρ0)

n0(T – t0)1–ρ0

(
nh0 r3(T – t0)δ0

R3�(δ0 + 1)
+

|m0|nh1 r3(T – t0)δ1

m1R3�(δ1 + 1)

)

+
|n1|(T – t0)α–ρ1 nf r3

m1�(α – ρ1 + 1)R3

= r3.

Next, we check the second condition. Let x ∈ ∂P(ω, r2), then


x(t) ≤ (T – t0)αMf r2

�(α + 1)R2
+

2Mgr2

R2
+

Mh1 r2(T – t0)δ1

m1R2�(δ1 + 1)

+
(T – t0)ρ0�(2 – ρ0)r2

n0R2

(
Mh0 (T – t0)δ0

�(δ0 + 1)
+

|m0|Mh1 (T – t0)δ1

m1�(δ1 + 1)

)

+
Mf (T – t0)ρ0�(2 – ρ0)r2

R2

(
n1m0(T – t0)α–ρ1

m1n0�(α – ρ1 + 1)
+

(T – t0)α–ρ0

�(α – ρ0 + 1)

)

+
Mf |n1|(T – t0)α–ρ1 r2

m1�(α – ρ1 + 1)R2
+

r2n0KMg

|m0|R2

+
(T – t0)ρ0�(2 – ρ0)

R2

n1m0KMgr2

m1n0

+
2r2

R2

n–1∑

k=2

Mξk Mhk

(

1 +
(T – t0)δk

�(δk + 1)

)

.

This shows that ω(
x) = ‖
x‖ < r2. Since 0 ∈ P and r1 > 0, hence P(μ, r1) �= ∅. By assuming
x ∈ ∂P(μ, r1), we have 0 ≤ x(t) ≤ r1, ∀t ∈ [t0, T]. By assumption (iii), we have

μ(
x) = max
t∈[t0,T]


x(t)

>
mf r1

R1

(T – t0)α

�(α + 1)
+

mh1 r1(T – t0)δ1

m1R1�(δ1 + 1)
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+
(T – t0)ρ0�(2 – ρ0)

n0

(
mh0 r1(T – t0)δ0

R1�(δ0 + 1)
+

|m0|mh1 r1(T – t0)δ1

m1R1�(δ1 + 1)

)

+
|n1|(T – t0)α–ρ1 mf r1

m1�(α – ρ1 + 1)R1
.

Hence, μ(
x) > r1. All the conditions of Theorem 2.5 are established, and the desired
result follows. �

5 Hyers–Ulam stability
The notion of the stability of functional differential equations was first introduced by Ulam
[50], and then it was extended by Hyers [51]. Later on, this type of stability and its gen-
eralization were called of Hyers–Ulam (HU) and Hyers–Ulam–Rassias (HUR) type, re-
spectively. Investigation of the UH and GUH stability has been given a special attention in
studying all fractional differential equations. Here, we discuss the Hyers–Ulam (HU) and
Hyers–Ulam-Rassias (HUR) stability results about the hybrid FBVP (1) on the interval
[t0, T].

Definition 5.1 System (1) is Hyers–Ulam stable whenever for every ε > 0 and y ∈
C([t0, T],R) satisfying

∣
∣Dα

[
y(t) – g

(
t, y(t)

)]
– f

(
t, y(t)

)∣
∣ ≤ ε, t ∈ [t0, T],α ∈ (n – 1, n), (13)

there exists x(t) as a solution of (1) such that

∣
∣x(t) – y(t)

∣
∣ ≤ Cε, t ∈ [t0, T],

where C is independent of both y and x.

Definition 5.2 System (1) is Hyers–Ulam–Rassias stable if ∀y ∈ C([t0, T],R) satisfying

∣
∣Dα

[
y(t) – g

(
t, y(t)

)]
– f

(
t, y(t)

)∣
∣ ≤ ϕ(t), t ∈ [t0, T], (14)

where ϕ : [t0, T] →R is continuous, there is x(t) as a solution of (1), provided

∣
∣x(t) – y(t)

∣
∣ ≤ Cϕ(t), t ∈ [t0, T],

where C is independent of both y and x.

For simplification, set

�
(
y, f

(
t, y(t)

))

= Iαf
(
t, y(t)

)
+ g

(
t, y(t)

)
– g

(
t0, y(t0)

)

+
(t – t0)�(2 – ρ0)
n0(T – t0)1–ρ0

(

Iδ0 h0
(
T , x(T)

)
–

m0

m1
Iδ1 h1

(
T , y(T)

)
)

+
1

m1
Iδ1 h1

(
T , y(T)

)

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

(
n1m0

m1n0
Iα–ρ1 f

(
T , y(T)

)
– Iα–ρ0 f

(
T , y(T)

)
)
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–
n1

m1
Iα–ρ1 f

(
T , y(T)

)

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

(
n1m0

m1n0
Dρ1 g

(
T , y(T)

)
– Dρ0 g

(
T , y(T)

)
)

–
n1

m1
Dρ1 g

(
T , y(T)

)

+
n–1∑

k=2

[
n1(T – t0)k–ρ1

m1�(k – ρ1 + 1)

[

1 –
m0

n0

(t – t0)�(2 – ρ0)
(T – t0)1–ρ0

]

–
(t – t0)k

k!

+
(T – t0)k–1(t – t0)�(2 – ρ0)

�(k – ρ0 + 1)

]
[
g(k)(t0, y(t0)

)
– Iδk hk

(
T , y(T)

)]
.

Remark 5.1 y ∈ C([t0, T],R) is a solution of (13) iff we can find � ∈ C([t0, T],R) so that
(1) |�(t)| ≤ ε, t ∈ [t0, T];
(2) y satisfies the equation

y(t) = �
(
y,�(t) + f

(
t, y(t)

))
= �

(
y, f

(
t, y(t)

))
+ Iα

�(t). (15)

A similar remark can be obtained on considering inequality (14).

Lemma 5.3 A function y ∈ C([t0, T],R) satisfying (13) also satisfies the following integral
inequality:

∣
∣y(t) – �

(
y, f

(
t, y(t)

))∣
∣ ≤ (T – t0)α

�(α + 1)
ε.

Proof According to Remark 5.1, y satisfies equation (15). As a result,

∣
∣y(t) – �

(
y, f

(
t, y(t)

))∣
∣ =

∣
∣Iα

�(t)
∣
∣

≤ 1
�(α)

∫ t

t0

(t – s)α–1∣∣�(s)
∣
∣ds

≤ (T – t0)α

�(α + 1)
ε. �

Theorem 5.4 If [H1] is fulfilled, hybrid system (1) is Hyers–Ulam stable, provided that

 < 1.

Proof Take ε > 0 and y ∈ C([t0, T],R) satisfying (13), and let x ∈ C([t0, T],R) be the unique
solution of (1). Thus,

∣
∣y(t) – x(t)

∣
∣

≤ 1
�(α)

∫ t

t0

(t – s)α–1∣∣f
(
s, y(s)

)
– f

(
s, x(s)

)∣
∣ds +

∣
∣g

(
t, y(t)

)
– g

(
t, x(t)

)∣
∣

+
∣
∣g

(
t0, y(t0)

)
– g

(
t0, x(t0)

)∣
∣

+
(t – t0)�(2 – ρ0)
n0(T – t0)1–ρ0

[
1

�(δ0)

∫ T

t0

(T – s)δ0–1∣∣h0
(
s, y(s)

)
– h0

(
s, x(s)

)∣
∣ds
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–
m0

m1�(δ1)

∫ T

t0

(T – s)δ1–1∣∣h1
(
s, y(s)

)
– h1

(
s, x(s)

)∣
∣ds

]

+
1

m1�(δ1)

∫ T

t0

(T – s)δ1–1∣∣h1
(
s, y(s)

)
– h1

(
s, x(s)

)∣
∣ds

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

[
n1m0

m1n0�(α – ρ1)

∫ T

t0

(T – s)α–ρ1–1∣∣f
(
s, y(s)

)
– f

(
s, x(s)

)∣
∣ds

+
1

�(α – ρ0)

∫ T

t0

(T – s)α–ρ0–1∣∣f
(
s, y(s)

)
– f

(
s, x(s)

)∣
∣ds

]

–
n1

m1�(α – ρ1)

∫ T

t0

(T – s)α–ρ1–1∣∣f
(
s, y(s)

)
– f

(
s, x(s)

)∣
∣ds

+
(t – t0)�(2 – ρ0)

(T – t0)1–ρ0

[
n1m0

m1n0�(2 – ρ1)

∫ T

t0

(T – s)1–ρ1
∣
∣g ′′(s, y(s)

)
– g ′′(s, x(s)

)∣
∣ds

+
1

�(1 – ρ0)

∫ T

t0

(T – s)–ρ0
∣
∣g ′(s, y(s)

)
– g ′(s, x(s)

)∣
∣ds

]

–
n1

m1�(2 – ρ1)

∫ T

t0

(T – s)1–ρ1
∣
∣g ′′(s, y(s)

)
– g ′′(s, x(s)

)∣
∣ds

+
n–1∑

k=2

∣
∣ξk(t)

∣
∣
∣
∣g(k)(t0, x(t0)

)
– g(k)(t0, y(t0)

)∣
∣

+
1

�(δk)

∫ T

t0

(T – s)δk –1∣∣hk
(
s, y(s)

)
– hk

(
s, x(s)

)∣
∣ds +

(T – t0)α

�(α + 1)
ε

≤ Cf (T – t0)α

�(α + 1)
‖y – x‖ + 2Cg‖y – x‖

+
(T – t0)ρ0�(2 – ρ0)

n0

[
(T – t0)δ0 Ch0

�(δ0 + 1)
–

m0(T – t0)δ1 Ch1

m1�(δ1 + 1)

]

‖y – x‖

–
(T – t0)δ1 Ch1

m1�(δ1 + 1)
‖y – x‖

+ (T – t0)ρ0�(2 – ρ0)Cf

[
n1m0(T – t0)α–ρ1

m1n0�(α – ρ1 + 1)
+

(T – t0)α–ρ0

�(α – ρ0 + 1)

]

‖y – x‖

–
n1(T – t0)α–ρ1 Cf

m1�(α – ρ1 + 1)
‖y – x‖

+ (T – t0)ρ1�(2 – ρ0)
[n1m0Cg(2) (T – t0)2–ρ1

m1n0�(3 – ρ1)
+

(T – t0)1–ρ0 Cg(1)

�(2 – ρ0)

]

‖y – x‖

–
n1Cg(2) (T – t0)2–ρ1

m1�(3 – ρ1)
‖y – x‖

+
n–1∑

k=2

Mξk

[

Cg(k) +
(T – t0)δk Chk

�(δk + 1)

]

‖y – x‖ +
(T – t0)α

�(α + 1)
ε

= 
‖y – x‖ +
(T – t0)α

�(α + 1)
ε.

Hence,

‖y – x‖ ≤ (T – t0)α

(1 – 
)�(α + 1)
ε := Cε,
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where

C =
(T – t0)α

(1 – 
)�(α + 1)
.

Hence, system (1) is Hyers–Ulam stable. �

Remark 5.2 The Hyers–Ulam-Rassias stability can be established in a similar manner.

6 Example
In this portion, we give an example to defend our pivot results of the theory attained above.

Example 6.1 Due to (1), regard the following fractional hybrid differential system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D2.5(x(t) – g(t, x(t))) = f (t, x(t)), t ∈ (0, 1),

–x(0) + D0.5x(1) = I2h0(1, x(1)),

x(0) – D1.5x(1) = I2h1(1, x(1)),

x(2)(0) = I2h2(1, x(1)),

(16)

where α = 2.5, ρ0 = 0.5, ρ1 = 1.5, and δ0 = δ1 = δ2 = 2. Since the functions f , hk , g(k), k =
0, 1, 2, are Lipschitz with Cf = Chk = Cg(k) = 0.01. Therefore, we find that


 = 0.126 < 1.

Hence, problem (16) has a unique solution by Theorem 3.3. Moreover, using Theorem 5.4,
system (16) is Hyers–Ulam (–Rassias) stable with C = 2.39.

Let us, in particular, assume that

f (t, x) = h0(t, x) = h1(t, x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.4, x ≤ 1,

0.39 + x
100 , 1 ≤ x ≤ 5,

2.56x – 12.36, 5 ≤ x ≤ 6,

3, x ≥ 6,

g(t, x) = 0.1et , h2(t, x) = et .

One can find figures of the functions f (t, x) and g(t, x) in [52]. The calculations of the basic
conditions give the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0, n1 ≤ 0, m1, n0 > 0,
�(3–ρ1)
�(3–ρ0) = 0.667 < 1 = n1m0

m1n0
(T – t0)ρ0–ρ1 ,

f (t, x) ≥ 0,

g(t, x(t)) ≥ g(t0, x(t0)) = 0.1 ≥ 0, t ∈ [0, 1],
n1m0
m1n0

Iα–ρ1 f (T , x(T)) = I1f (1, x(1) ≥ I2f (1, x(1)),

g(0.83, x(0.83)) ≤ n1m0
m1n0

Dρ1 g(T , x(T)) = D1.5g(T , x(T))

= I0.5g ′′(1, x(1)) = I0.5g ′(1, x(1)) = D0.5g(T , x(T)) ≥ 0,

0 ≤ g ′′(0, x(0)) = 0.1 ≤ 0.7183 = Iδ2 h2(1, x(1)).
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Moreover, it is obvious that condition [H3] is also valid. To continue our investigation, we
need to justify the conditions of Theorem 4.3. Let r1 = 1, r2 = 5, and r3 = 6. Also assume
that

τ = 0.5,

mf = mh0 = mh1 = Mf = Mg = Mh0 = Mh1

= Mh2 = nf = nh1 = nh0 = 1.

Then we find that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|ξ2(t)| ≤ Mξ2 = 0.89327,

R1 = 1.3mf + 0.443mh0 + 0.943mh1 = 2.686,

R2 = 2.63Mf + (2 + 1.88623K)Mg + 0.443Mh0 + 0.943Mh1 + 2.68Mh2 = 10.6,

R3 = 1.0532nf + 0.722nh1 + 0.222nh0 = 1.997.

Therefore, hypotheses (i)–(iii) are satisfied, since if t ∈ [0.5, 1] and x ≥ 6, we have

⎧
⎨

⎩

f (t, x) > nf
r3
R3

= 3,

hk(t, x) > nhk
r3
R3

= 3, k = 0, 1.

For (t, x) ∈ [0, 1] × [0, 5], we obtain

⎧
⎨

⎩

f (t, x) ≤ Mf
r2
R2

≤ 0.472,

hk(t, x) ≤ Mhk
r2
R2

≤ 0.472, k = 0, 1.

Finally, ∀(t, x) ∈ [0, 1] × [0, 1], we get

⎧
⎨

⎩

f (t, x) > mf
r1
R1

> 0.3723,

hk(t, x) > mhk
r1
R1

> 0.3723, k = 0, 1.

Therefore, using Theorem 4.3, for system (16), the existence of at least two positive
solutions x1 and x2 is guaranteed provided 1 < ‖x1‖ with ‖x1‖ < 5 and 5 < ‖x2‖ with
mint∈[0.5,1] x(t) < 6.

7 Conclusion
The fractional integro-differential boundary problem of a hybrid system is a generaliza-
tion of many existing problems. Many basic expressions are gathered in this model such
as hybrid model, fractional derivatives of any order, fractional intro-differential boundary
conditions, etc. Based on some well-known fixed point theorems of operator theory and
the technique of fractional nonlinear differential systems, the existence and uniqueness
criteria for the considered system (1) have been obtained. To do this, we used some no-
tions on cones and verified some inequalities. Likewise, under specific assumptions and
conditions, we have found the Hyers–Ulam stability result regarding solutions of hybrid
system (1). The future research may continue to develop many qualitative properties of
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a modified system with the very recent fractional derivatives containing nonsingular ker-
nels.
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