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Abstract
In this paper, we investigate the growth and fixed points of solutions of higher-order
linear differential equations in the unit disc. We extend the coefficient conditions to a
type of one-constant-control coefficient comparison and obtain the same estimates
of iterated order of solutions. We also obtain better estimates by providing a precise
value of iterated order of solution instead of a range of that in the case of coefficient
characteristic function comparison. Moreover, we utilize iteration to investigate and
estimate the fixed points of solutions’ arbitrary-order derivatives with higher-order
equations f (k) + Ak–1(z)f (k–1) + · · · + A1(z)f ′ + A0(z)f = 0 and provide a concise method
to judge if the items generated by the iteration do not vanish identically and ensure
the iteration proceeds. Our results are an improvement over those by B. Belaïdi, T. B.
Cao, G. W. Zhang and A. Chen.
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1 Introduction and main results
In this paper, we assume that the reader is familiar with the fundamental results and the
standard notations of Nevanlinna’s value distribution theory in the unit disc D = {z ∈ C :
|z| < 1} (see [1–4]). As for the definition of the iterated order of meromorphic function,
we know that for r ∈ [0, 1), exp1 r = er and expn+1 r = exp(expn r), n ∈ N, and for all r suf-
ficiently large in (0, 1), log1 r = log r and logn+1 r = log(logn r), n ∈ N. Moreover, we denote
exp0 r = r, log0 r = r, exp–1 r = log1 r, log–1 r = exp1 r. Then, let us recall the following defi-
nitions for n ∈N.

Definition 1.1 (see [5]) Let f be a meromorphic function in D. Then the iterated n-order
of f is defined by

σn(f ) = lim
r→1–

log+
n T(r, f )

– log(1 – r)
,
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where log+
1 x = log+ x = max{log x, 0}, log+

n+1 x = log+(log+
n x). For n = 1, σ1(f ) = σ (f ).

If f is analytic in D, then the iterated n-order is defined by

σM,n(f ) = lim
r→1–

log+
n+1 M(r, f )

– log(1 – r)
.

For n = 1, σM,1(f ) = σM(f ).

Remark 1.1 (see [5, 6]) It follows by M. Tsuji that if f is an analytic function in D, then

σ1(f ) ≤ σM,1(f ) ≤ σ1(f ) + 1,

which is best possible in the sense that there are analytic functions g and h such that
σM,1(g) = σ1(g) and σM,1(h) = σ1(h) + 1, see [7]. However, it follows by Proposition 2.2.2
in [3] that σM,n(f ) = σn(f ) for n ≥ 2.

Definition 1.2 (see [5]) Let f be a meromorphic function in D. Then the iterated n-
convergence exponent of the sequence of zeros in D of f (z) is defined by

λn(f ) = lim
r→1–

log+
n N(r, 1

f )
– log(1 – r)

,

where N(r, 1
f ) is the integrated counting function of zeros of f (z).

Similarly, the iterated n-convergence exponent of the sequence of distinct zeros in D of
f (z) is defined by

λ̄n(f ) = lim
r→1–

log+
n N(r, 1

f )
– log(1 – r)

,

where N(r, 1
f ) is the integrated counting function of distinct zeros of f (z).

Definition 1.3 Let f be a meromorphic function in D. Then the iterated convergence
n-exponent of the sequence of fixed points in D of f (z) is defined by

λn(f – z) = lim
r→1–

log log N(r, 1
f –z )

– log(1 – r)
;

and the iterated n-convergence exponent of the sequence of distinct fixed points in D of
f (z) is defined by

λ̄n(f – z) = lim
r→1–

log log N(r, 1
f –z )

– log(1 – r)
.

Definition 1.4 (see [8]) For a measurable set E ⊂ [0, 1), the upper and lower densities are
defined as

densDE = lim
r→1–

m(E ∩ [r, 1))
1 – r

and dens
D

E = lim
r→1–

m(E ∩ [r, 1))
1 – r

,

respectively, where m(F) is the Lebesgue measure of F .
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The next Remark 1.2 follows by Sect. 7 in [8] or can be seen in [9].

Remark 1.2 (see [8, 9]) If a set E satisfies densDE > 0, then
∫

E
dr

1–r = +∞.

Remark 1.3 Remark 1.2 also holds with the definitions of the upper densities in [5, 10];
therefore, the results of this paper are still valid for the definitions of the upper densities
in [5, 10].

The theory of complex linear differential equations in the unit disc has been developed
since 1980s. In recent years, after J. Heittokangas’ work in [4], there has been an increasing
interest in studying the complex oscillation of linear differential equations in the unit disc,
and many important results in the unit disc D analogous to those on the complex plane
C have been obtained. G. G. Gundersen [11] studied the growth of solutions of one type
of second-order linear differential equations on C (see the following Theorem A). After
that, K. H. Kwon [12], Z. X. Chen and C. C. Yang [13], B. Belaïdi [14, 15], and the first
author [16], extended the type of the coefficients with less control constants, removed
infinitesimals, and obtained some improved results. T. B. Cao and H. X. Yi in [10], and T.
B. Cao in [5] generalized the results of [13] and [14] on C to corresponding results in D,
respectively. Later, some improvements and extensions of the type of coefficients in the
unit disc were investigated (see [17, 18]) and gave rise to the unit disc analogues of the
results of [14, 16].

Theorem A (see [11]) Let A(z) and B(z) 
≡ 0 be entire functions, and let α,β , θ1 and θ2 be
real numbers with α > 0,β > 0 and θ1 < θ2. If

∣
∣B(z)

∣
∣ ≥ exp

{(
1 + o(1)

)
α|z|β}

and

∣
∣A(z)

∣
∣ ≤ exp

{
o(1)|z|β}

as |z| → ∞ with θ1 ≤ arg z ≤ θ2, then every solution f 
≡ 0 of the equation

f ′′ + A(z)f ′ + B(z) = 0

has infinite order.

T. B. Cao in [5] investigated the iterated order of solutions of higher-order equations and
obtained the unit disc analogues of B. Belaïdi’s results in [14]. As for the equation

Ak(z)f (k) + Ak–1(z)f (k–1) + · · · + A1(z)f ′ + A0(z)f = 0, (1.1)

he obtained the following results.

Theorem B (see [5]) Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆
D} > 0, and let A0, A1, . . . , Ak be analytic functions in D such that for some real constants
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0 ≤ β < α and μ > 0 we have

∣
∣A0(z)

∣
∣ ≥ expn

{

α

(
1

1 – |z|
)μ}

and

∣
∣Ai(z)

∣
∣ ≤ expn

{

β

(
1

1 – |z|
)μ}

, i = 1, 2, . . . , k,

as |z| → 1– for z ∈ H . Then every meromorphic (or analytic) solution f 
≡ 0 of equation
(1.1) satisfies σn(f ) = ∞ and σn+1(f ) ≥ μ.

Theorem C (see [5]) Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆
D} > 0, and let A0, A1, . . . , Ak be analytic functions in D such that for some real constants
0 ≤ β < α and μ > 0 we have

T(r, A0) ≥ expn–1

{

α

(
1

1 – |z|
)μ}

and

T(r, Ai) ≤ expn–1

{

β

(
1

1 – |z|
)μ}

, i = 1, 2, . . . , k,

as |z| → 1– for z ∈ H . Then every meromorphic (or analytic) solution f 
≡ 0 of equation
(1.1) satisfies σn(f ) = ∞ and σn+1(f ) ≥ μ.

And as for the equation

f (k) + Ak–1(z)f (k–1) + · · · + A1(z)f ′ + A0(z)f = 0, (1.2)

T. B. Cao obtained more accurate results as follows.

Theorem D (see [5]) Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆ D} >
0, and let A0, A1, . . . , Ak–1 be analytic functions in D such that

max
{
σM,n(Ai) : i = 1, 2, . . . , k – 1

} ≤ σM,n(A0) = σ < ∞,

and for some constants 0 ≤ β < α we have, for all ε > 0 sufficiently small,

∣
∣A0(z)

∣
∣ ≥ expn

{

α

(
1

1 – |z|
)σ–ε}

and

∣
∣Ai(z)

∣
∣ ≤ expn

{

β

(
1

1 – |z|
)σ–ε}

, i = 1, 2, . . . , k – 1,

as |z| → 1– for z ∈ H . Then every solution f 
≡ 0 of equation (1.2) satisfies σn(f ) = ∞ and
σn+1(f ) = σM,n(A0).
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Theorem E (see [5]) Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆ D} >
0, and let A0, A1, . . . , Ak–1 be analytic functions in D such that

max
{
σn(Ai) : i = 1, 2, . . . , k – 1

} ≤ σn(A0) = σ < ∞,

and for some constants 0 ≤ β < α we have, for all ε > 0 sufficiently small,

T(r, A0) ≥ expn–1

{

α

(
1

1 – |z|
)σ–ε}

and

T(r, Ai) ≤ expn–1

{

β

(
1

1 – |z|
)σ–ε}

, i = 1, 2, . . . , k – 1,

as |z| → 1– for z ∈ H . Then every solution f 
≡ 0 of equation (1.2) satisfies σn(f ) = ∞ and
αM,n ≥ σn+1(f ) ≥ σn(A0), where αM,n = max{σM,n(Aj) : j = 0, 1, . . . , k – 1}.

The first aim of this paper is to extend the results of B. Belaïdi, T. B. Cao, and the au-
thors by optimizing the conditions of coefficients with less control constants to contrast
coefficients, and obtaining better estimates of the growth of the solutions. We will de-
crease the control constants of the coefficients’ modulus or characteristic functions to
one or two constants and obtain the same results. Furthermore, we will improve the re-
sult of Theorem E to obtain more accurate estimate of the growth of solution. Note that
Theorem E only gave a range of σn+1(f ) between αM,n and σn(A0), while by Remark 1.1,
it is best possible that σM,n(A0) 
= σn(A0) as n = 1. This means even if A0, as a dominant
coefficient, satisfies αM,1 = max{σM(Aj) : j = 1, 2, . . . , k – 1} = σM(A0) and max{σ (Ai) : i =
1, 2, . . . , k – 1} ≤ σ (A0), we still cannot conclude that σ2(f ) is equal to σ (A0) or σM(A0) by
Theorem E. Thus it is natural to pose the question: Can we get a precise value of σn+1(f )
in the case of contrasting coefficients by their characteristic functions? We will solve this
problem in Theorems 1.3, 1.4 and Corollary 1.1.

In addition, T. B. Cao also investigated the fixed points of homogeneous linear differen-
tial equations in D and obtained the following results in [5].

Theorem F (see [5]) Under the hypothesis of one of Theorem D and E, if A1(z)+zA0(z) 
≡ 0,
then every solution f 
≡ 0 of (1.2) satisfies λn+1(f – z) = σn+1(f ).

After that, when Aj(z) ≡ 0(j = 1, . . . , k – 1), G. W. Zhang and A. Chen [19] studied the
fixed points of the i-order (1 ≤ i ≤ k) derivatives of solutions of the equation

f (k) + A(z)f = 0 (1.3)

and obtained the results as follows.

Theorem G (see [19]) Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆
D} > 0, and let A(z) be an analytic function inD such that σM,n(A) = σ < ∞, and for constant
α we have, for all ε > 0 sufficiently small,

∣
∣A(z)

∣
∣ ≥ expn

{

α

(
1

1 – |z|
)σ–ε}
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as |z| → 1– for z ∈ H . Assume that f is a nontrivial solution of equation (1.3). Then

λn
(
f (i) – z

)
= λn

(
f (i) – z

)
= σn(f ) = ∞,

λn+1
(
f (i) – z

)
= λn+1

(
f (i) – z

)
= σn+1(f ) = σ .

Theorem H (see [19]) Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆
D} > 0, and let A(z) be an analytic function in D such that σn(A) = σ < ∞, and for constant
α we have, for all ε > 0 sufficiently small,

T
(
r, A(z)

) ≥ expn–1

{

α

(
1

1 – |z|
)σ–ε}

as |z| → 1– for z ∈ H . Assume that f is a nontrivial solution of equation (1.3). Then

λn
(
f (i) – z

)
= λn

(
f (i) – z

)
= σn(f ) = ∞,

σM,n(A) ≥ λn+1
(
f (i) – z

)
= λn+1

(
f (i) – z

)
= σn+1(f ) ≥ σ .

However, if the equation has two or more than two coefficients, there arises some
difficulties to consider: whether applying the general iterative method, by substituting
g(i) = f (i) – z into the corresponding equations (see the proof of Theorem 1.9), would result
in vanishing A0,j and Fj for any j ∈N (see (5.29)–(5.30)), which consequently would result
in interruption of the iteration. Yet we have not seen any valid result on the fixed points
of arbitrary-order derivatives of solutions of higher-order equation (1.2) in the unit disc
for this. A similar problem has been found recently in an iterative process related to the
solutions’ arbitrary-order derivatives, where the corresponding items generated by itera-
tion were supposed not to vanish identically (see, e.g., [20, 21]). Thus a natural question
is: how to judge these possible vanishing items and whether the iteration can be carried
out all the time.

The second aim of this paper is to investigate the fixed points of solutions and their
arbitrary-order derivatives of general higher order equations (1.1) and (1.2). We tackle the
above problem concisely, extend Theorems G and H to more general equation, and further
improve them by obtaining precise estimates of the fixed points of arbitrary-order deriva-
tives of solutions. At the same time, we improve Theorem F by removing the condition
A1(z) + zA0(z) 
≡ 0.

Theorem 1.1 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆ D} > 0.
Let A0, A1, . . . , Ak–1 be analytic functions in the unit disc D such that max{σM,n(Ai) : i =
1, 2, . . . , k – 1} ≤ σM,n(A0) = μ(0 < μ < ∞), and for a constant α ≥ 0, we have

lim
|z|→1–,z∈H

((
1 – |z|)μ

logn
∣
∣A0(z)

∣
∣
)

> α (1.4)

and

∣
∣Ai(z)

∣
∣ ≤ expn

{

α

(
1

1 – |z|
)μ}

, i = 1, 2, . . . , k – 1, (1.5)
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as |z| → 1– for z ∈ H . Then every solution f 
≡ 0 of (1.2) satisfies σn(f ) = ∞ and σn+1(f ) =
σM,n(A0).

Theorem 1.2 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆ D} > 0.
Let A0, A1, . . . , Ak–1 be analytic functions in the unit disc D such that max{σM,n(Ai) : i =
1, 2, . . . , k – 1} ≤ σM,n(A0) = μ(0 < μ < ∞) and

lim|z|→1–,z∈H

((
1 – |z|)μ

logn
∣
∣Ai(z)

∣
∣)

< lim
|z|→1–,z∈H

((
1 – |z|)μ

logn
∣
∣A0(z)

∣
∣
)
, i = 1, 2, . . . , k – 1. (1.6)

Then every solution f 
≡ 0 of (1.2) satisfies σn(f ) = ∞ and σn+1(f ) = σM,n(A0).

Theorem 1.3 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆ D} > 0.
Let A0, A1, . . . , Ak–1 be analytic functions in the unit disc D such that max{σM,n(Ai) : i =
1, 2, . . . , k – 1} ≤ σM,n(A0) = μ(0 < μ < ∞), and for a constant α ≥ 0, we have

lim
|z|→1–,z∈H

((
1 – |z|)μ

logn–1 T(r, A0)
)

> α (1.7)

and

T(r, Ai) ≤ expn–1

{

α

(
1

1 – |z|
)μ}

, i = 1, 2, . . . , k – 1, (1.8)

as |z| → 1– for z ∈ H . Then every solution f 
≡ 0 of (1.2) satisfies σn(f ) = ∞ and σn+1(f ) =
σM,n(A0).

Theorem 1.4 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆ D} > 0.
Let A0, A1, . . . , Ak–1 be analytic functions in the unit disc D such that max{σM,n(Ai) : i =
1, 2, . . . , k – 1} ≤ σM,n(A0) = μ(0 < μ < ∞) and

lim|z|→1–,z∈H

((
1 – |z|)μ

logn–1 T(r, Ai)
)

< lim
|z|→1–,z∈H

((
1 – |z|)μ

logn–1 T(r, A0)
)
, i = 1, 2, . . . , k – 1. (1.9)

Then every solution f 
≡ 0 of (1.2) satisfies σn(f ) = ∞ and σn+1(f ) = σM,n(A0).

By taking upper and lower limits after some identical transformations of inequalities,
one can easily obtain the following corollary from Theorem 1.3 or Theorem 1.4.

Corollary 1.1 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆ D} > 0.
Let A0, A1, . . . , Ak–1 be analytic functions in the unit disc D such that max{σM,n(Ai) : i =
1, 2, . . . , k – 1} ≤ σM,n(A0) = μ(0 < μ < ∞), and for some constants 0 ≤ β < α, we have

T(r, A0) ≥ expn–1

{

α

(
1

1 – |z|
)μ}
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and

T(r, Ai) ≤ expn–1

{

β

(
1

1 – |z|
)μ}

, i = 1, 2, . . . , k – 1,

as |z| → 1– for z ∈ H . Then every solution f 
≡ 0 of (1.2) satisfies σn(f ) = ∞ and σn+1(f ) =
σM,n(A0).

Remark 1.4 Since for any given ε (0 < ε < μ) we can substitute μ by μ – ε in the proofs of
Theorem 1.1 to Theorem 1.4 and ε is arbitrary, Theorem D is generalized to Theorem 1.1
and Theorem 1.2, and Theorem E to Theorem 1.3 and Theorem 1.4 with less control con-
stants of coefficient conditions. Particularly, Theorem 1.3, Theorem 1.4 and Corollary 1.1
improve Theorem E further by providing a precise value of σn+1(f ) = σM,n(A0) instead of a
range αM,n ≥ σn+1(f ) ≥ σn(A0).

For equation (1.1), we also generalize Theorem B to Theorem 1.5 and Theorem 1.6,
Theorem C to Theorem 1.7 and Theorem 1.8 as follows.

Theorem 1.5 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆D} > 0. Let
A0, A1, . . . , Ak be analytic functions in the unit disc D, and for some constants α ≥ 0 and
μ > 0, we have (1.4) and

∣
∣Ai(z)

∣
∣ ≤ expn

{

α

(
1

1 – |z|
)μ}

, i = 1, 2, . . . , k,

as |z| → 1– for z ∈ H . Then every meromorphic (or analytic) solution f 
≡ 0 of (1.1) satisfies
σn(f ) = ∞ and σn+1(f ) ≥ μ.

Theorem 1.6 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆D} > 0. Let
A0, A1, . . . , Ak be analytic functions in the unit disc D, and for a constant μ > 0, we have

lim|z|→1–,z∈H

((
1 – |z|)μ

logn
∣
∣Ai(z)

∣
∣) < lim

|z|→1–,z∈H

((
1 – |z|)μ

logn
∣
∣A0(z)

∣
∣), i = 1, 2, . . . , k.

Then every meromorphic (or analytic) solution f 
≡ 0 of (1.1) satisfies σn(f ) = ∞ and
σn+1(f ) ≥ μ.

Theorem 1.7 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆D} > 0. Let
A0, A1, . . . , Ak be analytic functions in the unit disc D, and for some constants α ≥ 0 and
μ > 0, we have (1.7) and

T(r, Ai) ≤ expn–1

{

α

(
1

1 – |z|
)μ}

, i = 1, 2, . . . , k,

as |z| → 1– for z ∈ H . Then every meromorphic (or analytic) solution f 
≡ 0 of (1.1) satisfies
σn(f ) = ∞ and σn+1(f ) ≥ μ.

Theorem 1.8 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆D} > 0. Let
A0, A1, . . . , Ak be analytic functions in the unit disc D, and for a constant μ > 0, we have

lim|z|→1–,z∈H

((
1 – |z|)μ

logn–1 T(r, Ai)
)



Chen et al. Advances in Difference Equations        (2021) 2021:431 Page 9 of 21

< lim
|z|→1–,z∈H

((
1 – |z|)μ

logn–1 T(r, A0)
)
, i = 1, 2, . . . , k.

Then every meromorphic (or analytic) solution f 
≡ 0 of (1.1) satisfies σn(f ) = ∞ and
σn+1(f ) ≥ μ.

When Ak(z) ≡ 1, for any given ε (0 < ε < μ), by substituting μ with μ – ε in the proofs
of Theorem 1.7, Theorem 1.8 and combining with Lemma 2.4, we obtain the extensions
of Theorem E in the following corollaries. And of course, the corollaries still hold if we
substitute μ – ε with μ in them.

Corollary 1.2 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆D} > 0. Let
A0, A1, . . . , Ak–1 be analytic functions in the unit disc D such that

max
{
σn(Ai) : i = 1, 2, . . . , k – 1

} ≤ σn(A0) = μ(0 < μ < ∞),

and for a constant α ≥ 0 and all ε > 0 sufficiently small, we have

lim
|z|→1–,z∈H

((
1 – |z|)μ–ε

logn–1 T(r, A0)
)

> α

and

T(r, Ai) ≤ expn–1

{

α

(
1

1 – |z|
)μ–ε}

, i = 1, 2, . . . , k – 1,

as |z| → 1– for z ∈ H . Then every solution f 
≡ 0 of (1.2) satisfies σn(f ) = ∞ and αM,n ≥
σn+1(f ) ≥ σn(A0), where αM,n = max{σM,n(Aj) : j = 0, 1, . . . , k – 1}.

Corollary 1.3 Let H be a set of complex numbers satisfying densD{|z| : z ∈ H ⊆D} > 0. Let
A0, A1, . . . , Ak–1 be analytic functions in the unit disc D such that

max
{
σn(Ai) : i = 1, 2, . . . , k – 1

} ≤ σn(A0) = μ(0 < μ < ∞),

and for all ε > 0 sufficiently small, we have

lim|z|→1–,z∈H

((
1 – |z|)μ–ε

logn–1 T(r, Ai)
)

< lim
|z|→1–,z∈H

((
1 – |z|)μ–ε

logn–1 T(r, A0)
)
, i = 1, 2, . . . , k – 1.

Then every solution f 
≡ 0 of (1.2) satisfies σn(f ) = ∞ and αM,n ≥ σn+1(f ) ≥ σn(A0), where
αM,n = max{σM,n(Aj) : j = 0, 1, . . . , k – 1}.

Moreover, we obtain some results of the fixed points of solutions and their arbitrary-
order derivatives of general high-order linear differential equations (1.1) and (1.2) as fol-
lows.
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Theorem 1.9 Assume that the assumptions of Theorem 1.1 or Theorem 1.2 hold. Then
every solution f 
≡ 0 of (1.2) satisfies

λn
(
f (j) – z

)
= λn(f – z) = σn(f ) = ∞,

λn+1
(
f (j) – z

)
= λn+1(f – z) = σn+1(f ) = μ (j = 1, 2, . . .).

Theorem 1.10 Assume that the assumptions of one of Theorem 1.3, Theorem 1.4 and
Corollary 1.1 hold. Then every solution f 
≡ 0 of (1.2) satisfies

λn
(
f (j) – z

)
= λn(f – z) = σn(f ) = ∞,

λn+1
(
f (j) – z

)
= λn+1(f – z) = σn+1(f ) = μ (j = 1, 2, . . .).

Theorem 1.11 Assume that the assumptions of one of Theorem 1.5 to Theorem 1.8 hold.
Then every meromorphic (or analytic) solution f 
≡ 0 of (1.1) satisfies

λn
(
f (j) – z

)
= λn(f – z) = σn(f ) = ∞,

λn+1
(
f (j) – z

)
= λn+1(f – z) = σn+1(f ) ≥ μ (j = 1, 2, . . .).

Set Ak(z) ≡ 1. Then it is easy to know Corollary 1.4 follows by Theorem 1.11.

Corollary 1.4 Assume that the assumptions of Corollary 1.2 or Corollary 1.3 hold. Then
every solution f 
≡ 0 of (1.2) satisfies

λn
(
f (j) – z

)
= λn(f – z) = σn(f ) = ∞,

λn+1
(
f (j) – z

)
= λn+1(f – z) = σn+1(f ) ≥ μ (j = 1, 2, . . .).

Remark 1.5 Obviously, Theorems F, G, and H are direct results of Theorem 1.9 to Theo-
rem 1.11 and Corollary 1.4, which significantly improve the formers.

Remark 1.6 It is easy to know from the proofs that for any given ε (0 < ε < μ) all these re-
sults still hold if we substitute μ in (1.4)–(1.9) by μ – ε. By taking both sides of inequalities
upper or lower limits after some identical transformations, we can easily conclude that
the conditions in the above results contain the corresponding conditions in Theorems B,
C, D, and E, so these results extend those in [5] and [19].

2 Preliminary lemmas
Lemma 2.1 (see [7]) Let k and j be integers satisfying k > j ≥ 0, and let ε > 0 and d ∈ (0, 1).
If f is meromorphic in D such that f (j) does not vanish identically, then

∣
∣
∣
∣
f (k)(z)
f (j)(z)

∣
∣
∣
∣ ≤

((
1

1 – |z|
)2+ε

max

{

log
1

1 – |z| , T
(
s
(|z|), f

)
})k–j

, |z| /∈ E,

where E ⊂ [0, 1) with finite logarithmic measure
∫

E
dr

1–r < ∞ and s(|z|) = 1 – d(1 – |z|). More-
over, if σ1(f ) < ∞, then

∣
∣
∣
∣
f (k)(z)
f (j)(z)

∣
∣
∣
∣ ≤

(
1

1 – |z|
)(k–j)(σ1(f )+2+ε)

, |z| /∈ E,
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while if σn(f ) < ∞ for n ≥ 2, then

∣
∣
∣
∣
f (k)(z)
f (j)(z)

∣
∣
∣
∣ ≤ expn–1

{(
1

1 – |z|
)σn(f )+ε}

, |z| /∈ E.

Lemma 2.2 (see [22]) Let g : (0, 1) → R and h : (0, 1) → R be monotone increasing func-
tions such that g(r) ≤ h(r) holds outside of an exceptional set E ⊂ [0, 1) for which

∫
E

dr
1–r < ∞.

Then there exists a constant d ∈ (0, 1) such that if s(r) = 1 – d(1 – r), then g(r) ≤ h(s(r)) for
all r ∈ [0, 1).

Lemma 2.3 (see [23]) Let f be a solution of (1.2) where the coefficients Aj(z)(j = 0, . . . , k – 1)
are analytic functions in the disc DR = {z ∈ C : |z| < R}, 0 < R ≤ ∞, let nc ∈ {1, . . . , k} be
the number of nonzero coefficients Aj(z), j = 0, . . . , k – 1, and let θ ∈ [0, 2π ) and ε > 0. If
zθ = νeiθ ∈ DR is such that Aj(zθ ) 
= 0 for some j = 0, . . . , k – 1, then for all ν < r < R,

∣
∣f

(
reiθ )∣∣ ≤ C exp

(

nc

∫ r

ν

max
j=0,...,k–1

∣
∣Aj

(
teiθ )∣∣1/(k–j) dt

)

,

where C > 0 is a constant satisfying

C ≤ (1 + ε) max
j=0,...,k–1

( |f (j)(zθ )|
(nc)j max

j=0,...,k–1
|An(zθ )|j/(k–n)

)

.

The next lemma follows by Lemma 2.3.

Lemma 2.4 Let n ∈N. If the coefficients A0(z), A1(z), . . . , Ak–1(z) are analytic in D, then all
solutions of (1.2) satisfy σM,n+1(f ) ≤ max{σM,n(Aj) : j = 0, . . . , k – 1}.

Lemma 2.5 (see [4]) Let f be a meromorphic function in the unit disc, and let k ≥ 1 be an
integer. Then

m
(

r,
f (k)

f

)

= S(r, f ),

where S(r, f ) = O(log+ T(r, f ) + log( 1
1–r )), possibly outside a set E ⊂ [0, 1) with

∫
E

dr
1–r < +∞.

If f is of finite order of growth, then

m
(

r,
f (k)

f

)

= O
(

log

(
1

1 – r

))

.

Lemma 2.6 (see [24]) If f and g are meromorphic functions in D, n ∈N, then we have
(i) σn(f ) = σn(1/f ),σn(a · f ) = σn(f )(a ∈C – {0});

(ii) σn(f ) = σn(f ′);
(iii) max{σn(f + g),σn(f · g)} ≤ max{σn(f ),σn(g)};
(iv) if σn(f ) < σn(g), then σn(f + g) = σn(g),σn(f · g) = σn(g).

Lemma 2.7 (see [25]) Let A0, A1, . . . , Ak–1 and F 
≡ 0 be meromorphic functions in D, and
let f be a meromorphic solution of the differential equation

f (k) + Ak–1(z)f |(k–1) + · · · + A1(z)f ′ + A0(z)f = F(z) (2.1)



Chen et al. Advances in Difference Equations        (2021) 2021:431 Page 12 of 21

such that

max
{
σp(F),σp(Aj)(j = 0, 1, . . . , k – 1)

}
< σp(f ).

Then λp(f ) = λp(f ) = σp(f ).

Using the same arguments as in the proof of Lemma 2.7 (see [25]), we easily obtain the
following lemma.

Lemma 2.8 Let A0, A1, . . . , Ak–1 and F(
≡ 0) be finite iterated p-order meromorphic func-
tions in D. If f is a meromorphic solution with σp(f ) = ∞ and σp+1(f ) = ρ < ∞ of equation
(2.1), then λp(f ) = λp(f ) = σp(f ) = ∞ and λp+1(f ) = λp+1(f ) = σp+1(f ) = ρ .

Lemma 2.9 (see [26]) Let A0, A1, . . . , Ak–1 and F(
≡ 0) be finite iterated p-order analytic
functions in D. If f is a solution with σp(f ) = ∞ and σp+1(f ) = ρ < ∞ of the equation

f (k) + Ak–1f (k–1) + · · · + A1f ′ + A0f = F ,

then λp(f ) = λp(f ) = σp(f ) = ∞ and λp+1(f ) = λp+1(f ) = σp+1(f ) = ρ .

3 Proofs of Theorems 1.1 to 1.4

Proof of Theorem 1.1 Suppose that f 
≡ 0 is a solution of equation (1.2). From (1.2), we get

|A0| ≤
∣
∣
∣
∣
f (k)

f

∣
∣
∣
∣ + |Ak–1|

∣
∣
∣
∣
f (k–1)

f

∣
∣
∣
∣ + · · · + |A1|

∣
∣
∣
∣
f ′

f

∣
∣
∣
∣. (3.1)

By the assumption of Theorem 1.1, there is a set H of complex numbers with densD{|z| :
z ∈ H ⊆D} > 0 satisfying (1.4) and (1.5) as |z| → 1– for z ∈ H . By (1.4), we know that there
exists a real number γ such that

lim
|z|→1–,z∈H

((
1 – |z|)μ

logn
∣
∣A0(z)

∣
∣
)

> γ > α.

It is easy to know that

(
1 – |z|)μ

logn
∣
∣A0(z)

∣
∣ > γ > α ≥ 0 (3.2)

as |z| → 1– for z ∈ H . By (1.5) and (3.2), we obtain

∣
∣Ai(z)

∣
∣ ≤ expn

{

α

(
1

1 – |z|
)μ}

< expn

{

γ

(
1

1 – |z|
)μ}

<
∣
∣A0(z)

∣
∣, i = 1, 2, . . . , k – 1, (3.3)

as |z| → 1– for z ∈ H . By Lemma 2.1, there exists a set E1 ⊂ [0, 1) with
∫

E1
dr

1–r < ∞ such
that, for all z ∈D satisfying |z| /∈ E1 and i = 1, 2, . . . , k, we have

∣
∣
∣
∣
f (i)(z)
f (z)

∣
∣
∣
∣ ≤

((
1

1 – |z|
)2+ε

max

{

log
1

1 – |z| , T
(
s
(|z|), f

)
})i

, (3.4)
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where s(|z|) = 1 – d(1 – |z|) and d ∈ (0, 1). Applying (3.3) and (3.4) to (3.1), we obtain

expn

{

γ

(
1

1 – |z|
)μ}

<
∣
∣A0(z)

∣
∣

≤ k expn

{

α

(
1

1 – |z|
)μ}((

1
1 – |z|

)2+ε

max

{

log
1

1 – |z| , T
(
s
(|z|), f

)
})k

as |z| → 1– for z ∈ H and |z| /∈ E1. It follows that

exp

{(

expn–1

{

γ

(
1

1 – |z|
)μ})

(
1 – o(1)

)
}

≤ k
((

1
1 – |z|

)2+ε

max

{

log
1

1 – |z| , T
(
s
(|z|), f

)
})k

(3.5)

as |z| → 1– for z ∈ H and |z| /∈ E1. Obviously,
∫
{|z|:z∈H}\E1

dr
1–r = ∞. Hence, by (3.5) and

combining with Lemma 2.2, we can easily obtain σn(f ) = ∞ and

σn+1(f ) = lim
r→1–

log+
n+1 T(r, f )

– log(1 – r)
≥ μ.

By Lemma 2.4, we deduce that

σn+1(f ) = σM,n(f ) ≤ max
{
σM,n(Aj) : j = 1, 2, . . . , k – 1

}
= σM,n(A0) = μ.

Therefore, we obtain σn+1(f ) = σM,n(A0) = μ. �

Proof of Theorem 1.2 Set

γ0 = lim
|z|→1–,z∈H

((
1 – |z|)μ

logn
∣
∣A0(z)

∣
∣
)
,

αi = lim|z|→1–,z∈H

((
1 – |z|)μ

logn
∣
∣Ai(z)

∣
∣), i = 1, 2, . . . , k – 1.

By (1.6), there exist real numbers α,γ such that αi < α < γ < γ0, i = 1, 2, . . . , k – 1. It yields

(
1 – |z|)μ

logn
∣
∣Ai(z)

∣
∣ < α < γ <

(
1 – |z|)μ

logn
∣
∣A0(z)

∣
∣

as |z| → 1– for z ∈ H . Hence, we have (3.3) as |z| → 1– for z ∈ H . Using the same proof as
in Theorem 1.1, we can get the conclusion of Theorem 1.2. �

Proof of Theorem 1.3 Suppose that f 
≡ 0 is a solution of equation (1.2). From (1.2), we get

–A0 =
f (k)

f
+ Ak–1

f (k–1)

f
+ · · · + A1

f ′

f
.

It follows that

m(r, A0) ≤
k–1∑

i=1

m(r, Ai) +
k∑

i=1

m
(

r,
f (i)

f

)

+ O(1). (3.6)
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From the assumption of Theorem 1.3, there exists a set H of complex numbers with
densD{|z| : z ∈ H ⊆ D} > 0 satisfying (1.7) and (1.8) as |z| → 1– for z ∈ H . By (1.7), we
know that there exists a real number γ such that

lim
|z|→1–,z∈H

(
(
1 – |z|)μ

logn–1 T(r, A0) > γ > α.

It is easy to know that

(
1 – |z|)μ

logn–1 T(r, A0) > γ > α ≥ 0 (3.7)

as |z| → 1– for z ∈ H . By (1.8) and (3.7), we obtain

T(r, Ai) ≤ expn–1

{

α

(
1

1 – |z|
)μ}

< expn–1

{

γ

(
1

1 – |z|
)μ}

< T(r, A0), i = 1, 2, . . . , k – 1, (3.8)

as |z| → 1– for z ∈ H . With (3.6), (3.8), and Lemma 2.5, using a similar proof as in Theo-
rem 1.3 of [5], we can easily obtain σn(f ) = ∞ and

σn+1(f ) = lim
r→1–

log+
n+1 T(r, f )

– log(1 – r)
≥ μ.

By Lemma 2.4, we obtain σn+1(f ) ≤ σM,n(A0) = μ. Therefore, σn+1(f ) = σM,n(A0) = μ. We
complete the proof. �

Proof of Theorem 1.4 Set

γ0 = lim
|z|→1–,z∈H

((
1 – |z|)μ

logn–1 T(r, A0)
)
,

αi = lim|z|→1–,z∈H

((
1 – |z|)μ

logn–1 T(r, Ai)
)
, i = 1, 2, . . . , k – 1.

By (1.9), there exist real numbers α,γ such that αi < α < γ < γ0, i = 1, 2, . . . , k – 1. It yields
that

(
1 – |z|)μ

logn–1 T(r, Ai) < α < γ <
(
1 – |z|)μ

logn–1 T(r, A0)

as |z| → 1– for z ∈ H . Hence, we have (3.8) as |z| → 1– for z ∈ H . Using the same proof as
in Theorem 1.3, we can get the conclusion of Theorem 1.4. �

4 Proofs of Theorems 1.5 to 1.8

Proofs of Theorems 1.5 and 1.6 Using a similar discussion as in the proof of Theorem 1.1
or Theorem 1.2, we know that there exists a real number γ > α such that

∣
∣Ai(z)

∣
∣ ≤ expn

{

α

(
1

1 – |z|
)μ}
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< expn

{

γ

(
1

1 – |z|
)μ}

<
∣
∣A0(z)

∣
∣, i = 1, 2, . . . , k, (4.1)

as |z| → 1– for z ∈ H . Combining Theorem B with (4.1), we have the conclusion. �

Proofs of Theorems 1.7 and 1.8 Using a similar discussion as in the proof of Theorem 1.3
or Theorem 1.4, we know that there exists a real number γ > α such that

T(r, Ai) ≤ expn–1

{

α

(
1

1 – |z|
)μ}

< expn–1

{

γ

(
1

1 – |z|
)μ}

< T(r, A0), i = 1, 2, . . . , k, (4.2)

as |z| → 1– for z ∈ H . Combining Theorem C with (4.2), we have the conclusion. �

5 Proofs of Theorems 1.9 to 1.11

Proof of Theorem 1.9 Suppose that f 
≡ 0 is a solution of equation (1.2). By Theorem 1.1
or Theorem 1.2, we have

σn(f ) = ∞, σn+1(f ) = μ. (5.1)

Step 1. We consider the fixed points of f (z). Set g(z) = f (z) – z, z ∈ D. Then, by (5.1), we
get

σn(g) = σn(f ) = ∞, σn+1(g) = σn+1(f ) = μ, λn+1(g) = λn+1(f – z). (5.2)

Substituting f = g + z into (1.2), we get

g(k) + Ak–1g(k–1) + · · · + A1g ′ + A0g = –A1 – zA0. (5.3)

Next we prove that –A1 – zA0 
≡ 0. Suppose that –A1 – zA0 ≡ 0. Obviously, A0 
≡ 0. Then
A1
A0

= –z. Thus we have |A1
A0

| → 1 as |z| → 1– for z ∈ H . While by (3.3), we have

∣
∣
∣
∣
A1

A0

∣
∣
∣
∣ <

expn{α( 1
1–|z| )

μ}
expn{γ ( 1

1–|z| )μ} =
1

exp{(expn–1{γ ( 1
1–|z| )μ})(1 – o(1))} → 0 (5.4)

as |z| → 1– for z ∈ H . (5.4) yields |A1
A0

| → 0 as |z| → 1– for z ∈ H . This is a contradiction.
Hence, –A1 – zA0 
≡ 0. By Lemma 2.6, we have

max
{
σn(Aj)(j = 0, 1, . . . , k – 1),σn(–A1 – zA0)

}
< ∞.

Hence, we deduce by (5.2), (5.3) and Lemma 2.9 that λn(g) = σn(g) = ∞, λn+1(g) = σn+1(g) =
μ. Therefore, we obtain

λn(f – z) = λn(g) = σn(g) = σn(f ) = ∞,

λn+1(f – z) = λn+1(g) = σn+1(g) = σn+1(f ) = μ.
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Step 2. We consider the fixed points of f (j)(z)(j = 1, 2, . . .). For the proof, we use the princi-
ple of mathematical induction. Set Ak(z) = 1. Then |Ak(z)| ≤ expn{α( 1

1–|z| )
μ} and equation

(1.2) becomes (1.1). Set g1(z) = f ′(z) – z, z ∈D. Then, by (5.1), we get

σn(g1) = σn
(
f ′) = ∞, σn+1(g1) = σn+1

(
f ′) = μ,

λn+1(g1) = λn+1
(
f ′ – z

)
.

(5.5)

Dividing both sides of (1.1) by A0, we obtain

Ak

A0
f (k) +

Ak–1

A0
f (k–1) + · · · +

A1

A0
f ′ + f = 0. (5.6)

Differentiating both sides of equation (5.6), we have

Ak

A0
f (k+1) +

((
Ak

A0

)′
+

Ak–1

A0

)

f (k) + · · ·

+
((

A2

A0

)′
+

A1

A0

)

f ′′ +
((

A1

A0

)′
+ 1

)

f ′ = 0. (5.7)

Multiplying now (5.7) by A0, we get

Ak,1f (k+1) + Ak–1,1f (k) + · · · + A1,1f ′′ + A0,1f ′ = 0. (5.8)

Substituting f ′ = g1 + z into (5.8), we get

Ak,1g(k)
1 + Ak–1,1g(k–1)

1 + · · · + A1,1g ′
1 + A0,1g1 = F1, (5.9)

where

Ak,1 = 1, Ai,1 = A0

((
Ai+1

A0

)′
+

Ai

A0

)

(i = 1, 2, . . . , k – 1), (5.10)

A0,1 = A0

((
A1

A0

)′
+ 1

)

, (5.11)

F1 = –(A1,1 + zA0,1). (5.12)

Now we prove that A0,1 
≡ 0. Suppose that A0,1 ≡ 0. By A0 
≡ 0, we get ( A1
A0

)′ + 1 ≡ 0, and
then A1

A0
= –z + C0, where C0 is an arbitrary constant. Thus, we have A1 + (z – C0)A0 = 0.

Then, by (1.2), we know that f0 = z – C0 is a solution of equation (1.2) and σn(f0) < ∞. This
contradicts (5.1). Hence A0,1 
≡ 0. Now we prove F1 
≡ 0. Suppose that F1 ≡ 0. By (5.12),

A1,1 + zA0,1 = 0. (5.13)

If f ′ = z, then by (5.8) and (5.12) we know that f is a solution of (5.8). Hence equation (1.2)
has a solution f1 satisfying f ′

1 = z and σn(f1) < ∞. This contradicts (5.1). Hence F1 
≡ 0. By
(5.10)–(5.12) and Lemma 2.6, we have

max
{
σn(Ai,1) (i = 0, 1, . . . , k),σn(F1)

}
< ∞.
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Hence, by (5.5), (5.9) and using Lemma 2.8 or Lemma 2.9, we have λn(g1) = σn(g1) =
∞,λn+1(g1) = σn+1(g1) = μ. Therefore, we obtain

λn
(
f ′ – z

)
= λn(g1) = σn(g1) = σn(f ) = ∞,

λn+1
(
f ′ – z

)
= λn+1(g1) = σn+1(g1) = σn+1(f ) = μ.

Set g2(z) = f ′′(z) – z, z ∈D. Then, by (5.1), we get

σn(g2) = σn
(
f ′′) = ∞, σn+1(g2) = σn+1

(
f ′′) = μ,

λn+1(g2) = λn+1
(
f ′′ – z

)
.

(5.14)

Dividing both sides of (5.8) by A0,1, we obtain

Ak,1

A0,1
f (k+1) +

Ak–1,1

A0,1
f (k) + · · · +

A1,1

A0,1
f ′′ + f ′ = 0. (5.15)

Differentiating both sides of equation (5.15), we have

Ak,1

A0,1
f (k+2) +

((
Ak,1

A0,1

)′
+

Ak–1,1

A0,1

)

f (k+1) + · · ·

+
((

A2,1

A0,1

)′
+

A1,1

A0,1

)

f ′′′ +
((

A1,1

A0,1

)′
+ 1

)

f ′′ = 0. (5.16)

Multiplying now (5.16) by A0,1, we get

Ak,2f (k+2) + Ak–1,2f (k+1) + · · · + A1,2f ′′′ + A0,2f ′′ = 0. (5.17)

Substituting f ′′ = g2 + z into (5.17), we get

Ak,2g(k)
2 + Ak–1,2g(k–1)

2 + · · · + A1,2g ′
2 + A0,2g2 = F2, (5.18)

where

Ak,2 = 1, Ai,2 = A0,1

((
Ai+1,1

A0,1

)′
+

Ai,1

A0,1

)

(i = 1, 2, . . . , k – 1), (5.19)

A0,2 = A0,1

((
A1,1

A0,1

)′
+ 1

)

, (5.20)

F2 = –(A1,2 + zA0,2). (5.21)

Now we prove that A0,2 
≡ 0. Suppose that A0,2 ≡ 0. By A0,1 
≡ 0, we get ( A1,1
A0,1

)′ + 1 ≡ 0, and
then A1,1

A0,1
= –z + C, where C is an arbitrary constant. Thus, we have

A1,1 + (z – C)A0,1 = 0. (5.22)

If f ′ = z – C, then by (5.8) and (5.22) we know that f is a solution of (5.8). Hence equation
(1.2) has a solution f1,2 satisfying f ′

1,2 = z – C and σn(f1,2) < ∞. This contradicts (5.1). Hence
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A0,2 
≡ 0. Next we prove F2 
≡ 0. Suppose that F2 ≡ 0. By (5.21),

A1,2 + zA0,2 = 0. (5.23)

If f ′′ = z, then by (5.17) and (5.23) we know that f is a solution of (5.17). Hence equation
(1.2) has a solution f2 satisfying f ′′

2 = z and σn(f2) < ∞. This contradicts (5.1). Hence F2 
≡ 0.
By (5.19)–(5.21) and Lemma 2.6, we have

max
{
σn(Ai,2) (i = 0, 1, . . . , k),σn(F2)

}
< ∞.

Hence, we deduce by (5.14), (5.18), and Lemma 2.8 or Lemma 2.9 that λn(g2) = σn(g2) =
∞,λn+1(g2) = σn+1(g2) = μ. Therefore, we obtain

λn
(
f ′′ – z

)
= λn(g2) = σn(g2) = σn(f ) = ∞,

λn+1
(
f ′′ – z

)
= λn+1(g2) = σn+1(g2) = σn+1(f ) = μ.

Suppose now that

A0,s 
≡ 0,

λn
(
f (s) – z

)
= σn(f ) = ∞,

λn+1
(
f (s) – z

)
= σn+1(f ) = μ

(5.24)

for all s = 0, 1, . . . , j – 1, and we prove that (5.24) is true for s = j. Set gj(z) = f (j)(z) – z, z ∈D.
Then, by (5.1), we get

σn(gj) = σn
(
f (j)) = ∞,

σn+1(gj) = σn+1
(
f (j)) = μ, λn+1(gj) = λn+1

(
f (j) – z

)
.

(5.25)

By the same procedure as before, we can obtain

Ak,jf (k+j) + Ak–1,jf (k+j–1) + · · · + A1,jf (j–1) + A0,jf (j) = 0 (5.26)

and

Ak,jg(k)
j + Ak–1,jg(k–1)

j + · · · + A1,jg ′
j + A0,jgj = Fj, (5.27)

where

Ak,j = 1, Ai,j = A0,j–1

((
Ai+1,j–1

A0,j–1

)′
+

Ai,j–1

A0,j–1

)

(i = 1, 2, . . . , k – 1), (5.28)

A0,j = A0,j–1

((
A1,j–1

A0,j–1

)′
+ 1

)

, A0,0 = A0, A1,0 = A1, (5.29)

Fj = –(A1,j + zA0,j) (5.30)
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satisfying A0,j 
≡ 0, Fj 
≡ 0. By using Lemma 2.8 or Lemma 2.9 in (5.27), we have

λn(gj) = λn(gj) = σn(g) = ∞, λn+1(gj) = λn+1(gj) = σn+1(g) = μ. (5.31)

Then, by (5.25) and (5.31), we obtain

λn
(
f (j) – z

)
= λn(gj) = σn(gj) = σn

(
f (j)) = ∞,

λn+1
(
f (j) – z

)
= λn+1(gj) = σn+1(gj) = σn+1

(
f (j)) = μ, j = 1, 2, . . . .

It follows that

λn
(
f (j) – z

)
= λn(f – z) = σn(f ) = ∞,

λn+1
(
f (j) – z

)
= λn+1(f – z) = σn+1(f ) = μ, j = 1, 2, . . . .

The proof is complete. �

Proof of Theorem 1.10 Suppose that f 
≡ 0 is a solution of equation (1.2). By Theorem 1.3 or
Theorem 1.4, we have (5.1). Now we prove that –A1 –zA0 
≡ 0. Suppose that –A1 –zA0 ≡ 0.
It yields A1 = –zA0 and A0 = A1

–z . Hence

T(r, A1) ≤ T(r, A0) + T(r, –z) = T(r, A0) + T(r, z),

T(r, A0) ≤ T(r, A1) + T
(

r,
–1
z

)

= T(r, A1) + T(r, z) + O(1).
(5.32)

By (5.32), we obtain

1 –
T(r, z) + O(1)

T(r, A0)
≤ T(r, A1)

T(r, A0)
≤ 1 +

T(r, z)
T(r, A0)

. (5.33)

Using the same discussion as in the proof of Theorem 1.3, we have

T(r, A1) ≤ expn–1

{

α

(
1

1 – |z|
)μ}

< expn–1

{

γ

(
1

1 – |z|
)μ}

< T(r, A0)

as |z| → 1– for z ∈ H . It follows that

T(r, z)
T(r, A0)

≤ T(r, z)
expn–1{γ ( 1

1–r )μ} → 0, (5.34)

and for n = 1,

T(r, A1)
T(r, A0)

<
α

γ
< 1, (5.35)

and for n ≥ 2,

T(r, A1)
T(r, A0)

<
expn–1{α( 1

1–|z| )
μ}

expn–1{γ ( 1
1–|z| )μ} → 0 (5.36)
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as |z| → 1– for z ∈ H . By (5.33) and (5.34), we have T(r,A1)
T(r,A0) → 1 as |z| → 1– for z ∈ H .

But, by (5.35) and (5.36), we can get T(r,A1)
T(r,A0) � 1 as |z| → 1– for z ∈ H . This is a contradic-

tion. Therefore, –A1 –zA0 
≡ 0. Set Ak(z) = 1. Then T(r, Ak) ≤ expn–1{α( 1
1–|z| )

μ}. Obviously,
A0 
≡ 0. Arguing the same as in the proof of Theorem 1.9, we can complete the proof. �

Proof of Theorem 1.11 For any Ak(z), using the same reasoning in the proofs of The-
orem 1.9 and Theorem 1.10 and replacing σn+1(f ) = μ with σn+1(f ) ≥ μ, σn+1(f (j)) =
μ(j = 1, 2, . . . , k) with σn+1(f (j)) ≥ μ(j = 1, 2, . . . , k), we can complete the proof of Theo-
rem 1.11. �
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