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Abstract
HIV patients are vulnerable to developing active visceral leishmaniasis (VL). To
understand this complication, we studied a mathematical model for HIV and visceral
leishmaniasis coinfection. In this approach, we reckoned two distinct equilibria: the
disease-free and the endemic equilibria. The local and global stability of the
disease-free equilibrium were thoroughly investigated. To further support the
qualitative findings, we performed simulations to quantify the changes of the
dynamical behavior of the full model for variation of relevant parameters. Increasing
the rate of VL recovery (φ1), the recovery rate for VL–HIV Co-infection (φ2), removing
reservoirs (c1), minimizing the contact rate (βh) are important in controlling the
transmission of individual and co-infection disease of VL and HIV. In conclusion,
possible measures should be implemented to reduce the number of infected
individuals. Therefore, we recommend that policy makers and stakeholders
incorporate these measures during planing and implementation phases to control
the transmission of VL–HIV co-infection.

Keywords: VL; HIV; Co-infection; Mathematical model; Stability analysis; Numerical
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1 Introduction
Visceral leishmaniasis (VL) also known as ‘Kala-azar’ is a vector borne, zoonotic disease
caused by Leishmania donovani species [1, 2]. There are more than 20 species of leish-
mania that can cause human infection. The infection is transmitted following a success-
ful bite and inoculation by the infected phlebotomine female sand flies [3, 4]. The World
Health Organization(WHO) considers leishmaniasis as the sixth most important endemic
disease in the world [5], and it is distributed around the world in 90 countries [6], most
of which are developing countries associated with malnutrition, population displacement,
poor housing, a weak immune system, and lack of financial resources [6]. WHO estimated
that from about 900,000 to 1.3 million new cases of leishmaniasis are reported per year
[1, 2, 6, 7]; of these, approximately 0.2–0.4 million are of visceral leishmaniasis (VL) [6, 7].
The spread of the disease is linked to environmental changes such as deforestation, build-
ing of dams, irrigation schemes, and urbanization [7].
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Human immunodeficiency virus (HIV) is the etiological agent responsible for the ac-
quired immunodeficiency syndrome (AIDS) [8]. There are multiple modes of HIV trans-
mission including sexual intercourse, sharing needles with HIV-infected persons, or via
HIV-contaminated blood transfusions and others [8]. It is estimated that 36.7 million peo-
ple worldwide are living with HIV [7] and 2.0 million new infections are reported per year
[7, 9]. Also approximately one million died of HIV-related causes globally [10].

It is expected that there is an overlap between the transmission areas of HIV and leish-
maniasis. Due to this fact there have been an increasing number of cases of VL–HIV co-
infection, which has spread throughout the world [4, 7]. The co-infection has been re-
ported in 35 countries [11, 12]. So that VL–HIV co-infection is an emerging new threat
to global public health and development [4, 11, 12].

Mathematical modeling has a great role in describing the dynamics of infectious dis-
eases in a community [13, 14]. Several scholars have developed different models for HIV,
VL, and their co-infection with other diseases to study their transmission dynamics. For
example, many mathematical models have been developed to understand the transmission
nature of HIV [9, 15–18] and VL [19–25] explicitly. In addition, some co-infection models
for HIV and malaria [26], HIV-TB [8] and VL and malaria [5] were proposed and analyzed.
Hussaini et al. [27] recently presented a mathematical model to study the transmission dy-
namics of HIV and VL co-infection. In developing their model, they took into account the
human and sand fly populations. However, they did not consider the reservoir population
for VL and co-infection transmission dynamics in their assumption. Reservoirs are impor-
tant for maintaining the life cycle of many leishmania species and hence are important for
transmission of zoonotic and rural/sylvatic infections. Reservoirs acquire infection with
leishmaniasis following contact with infected sand flies, and they are infected to their life
time. Treating humans while removing reservoirs from the system reduces the fraction of
infected sand flies, which gives a good control strategy against the disease [3, 21].

In this study, we formulated and analyzed mathematical model for VL–HIV co-
infection, which incorporates the key epidemiological and biological features of each of
the two diseases by considering the reservoir population for VL transmission.

The paper is organized as follows: In Sect. 2, the mathematical model of HIV–VL is pre-
sented together with a set of definitions and basic underlying hypotheses. The formulated
HIV–VL mathematical model is analyzed in Sect. 3. In Sect. 4 numerical simulations to
give a better interpretation of the analytical results were reported. The last part, Sect. 5,
is devoted to the discussion and conclusions.

2 Baseline model formulation
In this work, the population that has been considered is classified into three sub-
populations, namely the human population, the sand fly population, and the reservoir
population; each of them are again divided into different states. The human population
Nh(t) that are sexually active in a certain community are sub-divided into susceptible in-
dividuals Sh(t), individuals infected with visceral leishmaniasis (VL) only Ihl(t), HIV only
infected individuals without clinical symptoms of AIDS Ihh(t), individuals co-infected with
VL and HIV with no clinical symptoms of AIDS Ihhl(t), HIV infected individuals with AIDS
symptoms Ah(t), and co-infected individuals both with clinical symptoms of AIDS and VL
Ahl(t).

The number of susceptible individuals can be increased by a constant rate of recruitment
�h and recovery from only VL infected class with a rate φ1 and diminished by natural death
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Table 1 Parameter descriptions of the HIV–VL co-infection model

Parameter Description

�h Recruitment rate of susceptible humans
�s Recruitment rate of the susceptible sand fly population
�r Recruitment rate of reservoirs
μh Natural death rate of the human population
μs Natural death rate of the sand fly population
μr Natural death rate of the reservoir population
al Biting rate of sand flies
bl VL progression rate in sand flies
cl VL progression rate in human and sand fly
φ1, φ2, φ3 Humans recovery rate from VL
δl VL-induced death rate
δA AIDS-induced death rate
βh Effective contact rate for HIV infection
κ HIV progression rate to AIDS stage
ηhh , ηA , ηhl Modification parameters
ε1, ε2, τ Modification parameters

rate μh, forces of infection λh and λl from HIV only and VL only infections, respectively.
A susceptible individual can acquire VL infection following the effective contact with VL
infected single sand fly at a rate of λl , and he/she also acquires HIV at a rate of λh if the
individual is in effective contact with an HIV infected individual. Once the susceptible
individuals are infected with either of infections, they will transfer to the respective in-
fection classes (either Ihh(t) or Ihl(t)). In this co-infection model the natural death rate μh

is assumed equal for all human population classes. For a more detailed description of the
parameters, refer to Table 1. Thus, the total human population is given by

Nh(t) = Sh(t) + Ihl(t) + Ihh(t) + Ihhl(t) + Ah(t) + Ahl(t).

The second sub-population of the model, the sand fly population Ns(t), has two sub-classes
denoted by Ss(t) and Is(t) at time t representing susceptible and infected sand flies, respec-
tively. The susceptible sand flies can be recruited at a rate of �s through birth to the sand
fly population. The natural death rate of the sand fly is denoted by μs, it can contribute to
the reduction of the sand fly susceptible class. This sums the total sand fly population to

Ns(t) = Ss(t) + Is(t).

The last sub-population considered in this disease dynamics study is the reservoir popu-
lation Nr(t) at time t, which is also categorized into two groups; the susceptible class Sr(t)
and the infected reservoir Ir(t). Thus, the total reservoir population is given by

Nr(t) = Sr(t) + Ir(t).

The forces of infection associated with HIV/AIDS, VL, sand flies and reservoir population
are denoted by λh, λl , λs, and λr , respectively, and are given as follows:

λh = βh

{
(Ihh + ηhhIhhl) + ηA(Ah + ηhlAhl)

Nh

}
,

λl = albl
Is

Nh
,
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Figure 1 Compartmental diagram of HIV–VL on co-infectious

λs = alcl

{
Ihl + Ihhl + Ahl

Nh
+

Ir

Nr

}
,

λr = albl
Is

Nr
.

Considering the formulations and assumptions above with the compartmental diagram in
Fig. 1, the HIV/AIDS–VL co-infection model can be described by the following system of
ordinary differential equations:

S′
h = �h + φ1Ihl – μhSh – alblIs

Sh

Nh
– βh

{
(Ihh + ηhhIhhl) + ηA(Ah + ηhlAhl)

} Sh

Nh
,

I ′
hl = alblIs

Sh

Nh
– βh

{
(Ihh + ηhhIhhl) + ηA(Ah + ηhlAhl)

} Ihl

Nh
– (φ1 + δl + μh)Ihl,

I ′
hh = βh

{
(Ihh + ηhhIhhl) + ηA(Ah + ηhlAhl)

} Sh

Nh
+ φ2Ihhl – alblIs

Ihh

Nh
– (μh + κ)Ihh,

I ′
hhl = βh

{
(Ihh + ηhhIhhl) + ηA(Ah + ηhlAhl)

} Ihl

Nh

+ alblIs
Ihh

Nh
– (φ2 + ε1κ + μh + τδl)Ihhl,

A′
h = κIhh + φ3Ahl – ε2alblIs

Ah

Nh
– (δA + μh)Ah, (1)

A′
hl = ε1κIhhl + ε2alblIs

Ah

Nh
– (φ3 + δhl + μh)Ahl,

S′
s = �s – alcl

(
Ihl + Ihhl + Ahl

Nh
+

Ir

Nr

)
Ss – μsSs,

I ′
s = alcl

(
Ihl + Ihhl + Ahl

Nh
+

Ir

Nr

)
Ss – μsIs,
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S′
r = �r – alblIs

Sr

Nr
– μrSr ,

I ′
r = alblIs

Sr

Nr
– μrIr .

The rates of change for the total human population, the sand fly population, and the reser-
voir population with change in time are as follows:

N ′
h = �h – μhNh – (δlIhl + τδlIhhl + δAAh + δhlAhl),

N ′
s = �s – μsNs,

N ′
r = �r – μrNr ,

where φ2 = ι1φ1, φ3 = ι2φ1, δhl = εδA + τδl .

2.1 Invariant region
The system in (1) describes the epidemiological dynamics of the human population, the
sand fly population, and the reservoir population. If disease specific induced death rates
are assumed negligible (δl = 0 = δA = δhl), then

lim
t→∞ sup Nh(t) =

�h

μh
, lim

t→∞ sup Ns(t) =
�s

μs
, and lim

t→∞ sup Nr(t) =
�r

μr
.

Thus, the feasible region is


 =
{

(Sh, Ihl, Ihh, Ihhl, Ah, Ahl, Ss, Is, Sr , Ir) ∈R
10
+ : Sh, Ihl, Ihh, Ihhl, Ah, Ahl,

Ss, Is, Sr , Ir ≥ 0, Nh ≤ �h

μh
, Ns ≤ �s

μs
, Nr ≤ �r

μr

}
.

All the model parameters and variables are nonnegative. If nonnegative initial values of
the state variables are taken from this region, then the solution of system (1) will remain
in 
. Therefore, this region is a positively invariant set, and hence studying the dynamics
of model (1) in the biologically meaningful and mathematically well-posed region 
 is
sufficient.

3 Analysis of the HIV/AIDS–VL co-infection model
Model analysis is an important part in modeling the epidemiological phenomenon to find
the qualitative and theoretical results. Before proceeding to further analysis, nondimen-
sionalizing the sub-populations as seen below helps to study the proportion of each of the
state variables.

sh(t) =
Sh(t)
Nh(t)

, ihl(t) =
Ihl(t)
Nh(t)

, ihh(t) =
Ihh(t)
Nh(t)

,

ihhl(t) =
Ihhl(t)
Nh(t)

, ah(t) =
Ah(t)
Nh(t)

,

ahl(t) =
Ahl(t)
Nh(t)

, ss(t) =
Ss(t)
Ns(t)

, is(t) =
Is(t)
Ns(t)

,
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sr(t) =
Sr(t)
Nr(t)

, ir(t) =
Ir(t)
Nr(t)

.

Here, it can be defined that p = Ns
Nh

and q = Ns
Nr

are the female sand fly–human ratio and
female sand fly–reservoir ratio [5], respectively, and they can be assumed as constants
[28]. Then the new deterministic model for the above re-scaled classes is as follows:

s′
h =

�h

Nh
+ φ1ihl – alblpissh – βh

{
(ihh + ηhhihhl) + ηA(ah + ηhlahl)

}
sh

–
(

�h

Nh
– (δlihl + τδlihhl + δAah + δhlahl)

)
sh,

i′hl = alblpissh – βh
{

(ihh + ηhhihhl) + ηA(ah + ηhlahl)
}

ihl – φ1ihl

–
(

�h

Nh
+ δl – (δlihl + τδlihhl + δAah + δhlahl)

)
ihl,

i′hh = βh
{

(ihh + ηhhihhl) + ηA(ah + ηhlahl)
}

sh + φ2ihhl – alblpisihh

– κihh –
(

�h

Nh
– (δlihl + τδlihhl + δAah + δhlahl)

)
ihh,

i′hhl = βh
{

(ihh + ηhhihhl) + ηA(ah + ηhlahl)
}

ihl + alblpisihh

–
(

�h

Nh
+ φ2 + ε1κ + τδl – (δlihl + τδlihhl + δAah + δhlahl)

)
ihhl,

a′
h = κihh + φ3ahl – ε2alblpisah –

(
�h

Nh
+ δA – (δlihl + τδlihhl + δAah + δhlahl)

)
ah,

a′
hl = ε1κihhl + ε2alblpisah –

(
�h

Nh
+ φ3 + δhl – (δlihl + τδlihhl + δAah + δhlahl)

)
ahl,

s′
s =

�s

Ns
– alcl(ihl + ihhl + ahl + ir)ss –

�s

Ns
ss,

i′s = alcl(ihl + ihhl + ahl + ir)ss –
�s

Ns
is

s′
r =

�r

Nr
– alblqissr –

�r

Nr
sr ,

i′r = alblqissr –
�r

Nr
ir

(2)

with the biologically feasible region of

� =
{

(sh, ihl, ihh, ihhl, ah, ahl, ss, is, sr , ir) ∈R
10
+ : 0 ≤ sh, ihl, ihh, ihhl,

ah, ahl ≤ 1, 0 ≤ ss, is ≤ 1, 0 ≤ sr , ir ≤ 1
}

.

Region � is a positively invariant domain, and it is mathematically well-posed under sys-
tem (2). Now it is possible to proceed to the detailed analysis of epidemiological model
(2).

3.1 Disease-free equilibrium and basic reproduction number
Studying the possibility of the population to be invaded has paramount importance. Here
the disease-free state that shows the absence of the diseases is investigated. The DFE for
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system (2) is given by

E0 =
(
s∗

h, i∗hl, i∗hh, i∗hhl, a∗
h, a∗

hl, s∗
s , i∗s , s∗

r , i∗r
)

= (1, 0, 0, 0, 0, 0, 1, 0, 1, 0).

Using the next generation approach (see [29, 30]), F and V stand for new infections and
transition of infection rates, respectively. The partial derivatives of F and V with respect
to each non-susceptible class are denoted by F and V , respectively, where

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 alblp 0
0 βh βhηhl βhηA βhηAηhl 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

alcl 0 alcl 0 alcl 0 alcl

0 0 0 0 0 alblq 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v11 0 0 0 0 0 0
0 v22 –φ2 0 0 0 0
0 0 v33 0 0 0 0
0 –κ 0 v44 –φ3 0 0
0 0 –ε1κ 0 v55 0 0
0 0 0 0 0 μs 0
0 0 0 0 0 0 μr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where v11 = φ1 + δl + μh, v22 = κ + μh, v33 = φ2 + ε1κ + τδl + μh, v44 = δA + μh, v55 = φ3 + δhl +
μh.

Then the basic reproduction number associated with system (2) is defined by the spec-
tral radius of the next generation matrix FV –1 and obtained as

R0 = max

{
βh(δA + μh + ηAκ)
(κ + μh)(δA + μh)

,

√
alcl(μralblp + alblq(φ1 + δl + μh))

μsμr(φ1 + δl + μh)

}
.

Furthermore, it can also be given as R0 = ρ(FV –1) = max{R0h,R0l}.
R0l = βh(δA+μh+ηAκ)

(κ+μh)(δA+μh) is the basic reproduction number for an HIV only model, i.e., at the

absence of VL. And R0h =
√

alcl(μralblp+alblq(φ1+δl+μh))
μsμr (φ1+δl+μh) represents the reproduction number

for a VL only model at the absence of HIV.

Theorem 3.1 The DFE of system (2) E0 is locally asymptotically stable in � if R0 < 1 and
unstable if R0 > 1.
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Proof To prove Theorem 3.1, it is apparent to start with linearizing model (2) around E0.
Thus, the Jacobian matrix is given as follows:

JE0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–μh j12 –βh j14 j15 j16 0 –alblp 0 0
0 –j22 0 0 0 0 0 alblp 0 0
0 0 j33 j34 βhηA βhηAηhl 0 0 0 0
0 0 0 –j44 0 0 0 0 0 0
0 0 κ 0 –j55 φ3 0 0 0 0
0 0 0 ε1κ 0 –j66 0 0 0 0
0 –alcl 0 –alcl 0 –alcl –μs 0 0 –alcl

0 alcl 0 alcl 0 alcl 0 –μs 0 alcl

0 0 0 0 0 0 0 –alblq –μr 0
0 0 0 0 0 0 0 alblq 0 –μr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where j12 = φ1 +δl , j14 = –βhηhh +τδl , j15 = –βhηA +δA, j16 = –βhηAηhl +δhl , j22 = φ1 +δl +μh,
j33 = βh – κ – μh, j34 = βhηhh + φ2, j44 = φ2 + ε1κ + τδl + μh, j55 = δA + μh, j66 = φ3 + δhl + μh.

Hence the eigenvalues of the matrix JE0 are λ1 = –μh, λ4 = –(φ2 + ε1κ + τδl + μh),
λ6 = –(φ3 + δhl + μh), λ7 = –μs, λ9 = –μr , and the rest can be obtained from the follow-
ing characteristic polynomials:

λ2 + A1λ + A0 = 0,

λ3 + B2λ
2 + B1λ + B0 = 0,

(3)

where A1 = κ +δA +2μh –βh, A0 = –βhηAκ –(βh –κ –μh)(δA +μh), B2 = μr +μs +μh +φ2 +δl ,
B1 = (μh +φ2 +δl)(μr +μs)+μrμs –alclalblq–alclpalbl , B0 = (μh +φ2 +δl)(μrμs –alclalblq)–
alb1palclμr .

For a quadratic polynomial to have negative roots, the Routh–Hurwitz stability criterion
states that both A1 and A0 must be greater than zero. Thus, from the quadratic equation
of system (3) if R0 < 1, A1 and A0 yield

κ + δA + 2μh > βh,

– βhηAκ – (βh – κ – μh)(δA + μh) > 0 ⇒ R0 < 1.

And for cubic polynomial the criterion is B2 > 0, B0 > 0 and B2B1 – B0 > 0. Thus, from the
cubic polynomial of equation (3), B2 is apparently positive; as can be seen it is the sum of
positive parameters. It is given for B0 > 0 that

(μh + φ2 + δl)(μrμs – alclalblq) – alb1palclμr > 0,

which simplified to R0 < 1. And for B2B1 – B0 > 0,

(μr + μs + μh + φ2 + δl)
(
(μh + φ2 + δl)(μr + μs) + μrμs – alclalblq – alclpalbl

)
– (μh + φ2 + δl)(μrμs – alclalblq) + alb1palclμr > 0

also holds. Therefore, whenever R0 < 1, the DFE becomes locally asymptotically sta-
ble. �
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3.1.1 Global stability of DFE
Applying the Castillo–Chavez et al. [31] (Appendix A), let us rewrite the model in system
(2) as

dX
dt

= F(X, Z),

dZ
dt

= G(X, Z), G(X, 0) = 0.

The column vector X contains uninfected classes, while the components of vector Z are
the infected individuals. Thus, for the transformed system, model (2) is

X = (sh, ss, sr),

Z = (ihl, ihh, ihhl, ah, ahl).

From the first condition, dX
dt = F(X, 0), X∗ is globally asymptotically stable, the reduced

system is given by

F(X, 0) =

⎛
⎜⎝

�h
Nh

– μhsh
�s
Ns

– μsss
�r
Nr

– μrsr

⎞
⎟⎠ .

Therefore, for the DFE of system (2), say E0 = (X∗, 0), to be globally stable, the following
two conditions must be satisfied [31]. From the second condition, G(X, Z) = AZ – Ĝ(X, Z)
with Ĝ(X, Z) ≥ 0, where A = DzG(X∗, 0) = ( ∂Gi

∂zj
(X∗, 0)) is the linearization matrix of system

(2) evaluated at E0. Hence, the matrix A is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–v11 0 0 0 0 alblp 0
0 v22 βhηhl + φ2 βhηA βhηAηhl 0 0
0 0 –v33 0 0 0 0
0 κ 0 –v44 φ3 0 0
0 0 ε1κ 0 –v55 0 0

alcl 0 alcl 0 alcl –μs alcl

0 0 0 0 0 alblq –μr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where only v22 is changed to βh –κ –μh, the rest are as defined previously. Now the column
vector Ĝ(X, Z) is given by

Ĝ(X, Z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ĝ1(X, Z)
Ĝ2(X, Z)
Ĝ3(X, Z)
Ĝ4(X, Z)
Ĝ5(X, Z)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

alblpis(1 – sh) + βh(ihh + ηhlihl + ηA(ah + ηhl))ihl

βh(ihh + ηhlihl + ηA(ah + ηhl))(1 – sh) + alblpisihh

– (βh(ihh + ηhlihl + ηA(ah + ηhl))ihl + alblpisihh)
ε1alblpisah

–ε1alblpisahalcl(ihl + ihhl + ahl + ir)(1 – ss)alblqis(1 – sr)

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)
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This implied that the third and the fifth entries of Ĝ(X, Z) are negative if all the parame-
ters and the state variables in those entries are taken strictly positive. Hence Ĝ(X, Z) is not
greater than zero. Thus, the second condition (H2) stated above is not fulfilled. This con-
cludes that the DFE may not be globally asymptotically stable. Apart from the following
special cases, this may be a guarantee for bifurcation analysis. For two special cases, we
have the following sub-results.

Lemma 3.2
(a) The DFE of system (2) E0 is globally asymptotically stable if HIV/AIDS patients are

protected against VL whenever there is maximum protection against HIV/AIDS
(βh = 0).

(b) The DFE of system (2) E0 is globally asymptotically stable if VL patients are protected
against HIV/AIDS whenever there is maximum protection against VL (al = 0).

3.2 Bifurcation analysis
The center manifold theory [31–35], particularly we use the theorem in Castillo–Chavez
and Song [31] (Appendix A), helps to study the possibility of backward bifurcation. To
determine the direction of bifurcation of system (2) through applying this theory, initially
the variables are renamed as x1 = sh, x2 = ihl , x3 = ihh, x4 = ihhl , x5 = ah, x6 = ahl , x7 = ss, x8 =
is, x9 = sr , x10 = ir with vector representation of x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)T . If the
model is denoted by x′ = f(x) with f(x) = (f1(x), f2(x), f3(x), f4(x), f5(x), f6(x), f7(x), f8(x), f9(x),
f10(x))T , then system (2) can be rewritten as follows:

x′
1 = f1 =

�h

Nh
+ φ1x2 – alblpx8x1 – βh

{
(x3 + ηhhx4) + ηA(x5 + ηhlx6)

}
x1

–
(

�h

Nh
– (δlx2 + τδlx4 + δAx5 + δhlx6)

)
x1,

x′
2 = f2 = alblpx8x1 – βh

{
(x3 + ηhhx4) + ηA(x5 + ηhlx6)

}
x2 – φ1x2

–
(

�h

Nh
+ δl – (δlx2 + τδlx4 + δAx5 + δhlx6)

)
x2,

x′
3 = f3 = βh

{
(x3 + ηhhx4) + ηA(x5 + ηhlx6)

}
x1 + φ2x4 – alblpx8x3

– κx3 –
(

�h

Nh
– (δlx2 + τδlx4 + δAx5 + δhlx6)

)
x3,

x′
4 = f4 = βh

{
(x3 + ηhhx4) + ηA(x5 + ηhlx6)

}
x2 + alblpx8x3

–
(

�h

Nh
+ φ2 + ε1κ + τδl – (δlx2 + τδlx4 + δAx5 + δhlx6)

)
x4, (5)

x′
5 = f5 = κx3 + φ3x6 – ε2alblpx8x5 –

(
�h

Nh
+ δA – (δlx2 + τδlx4 + δAx5 + δhlx6)

)
x5,

x′
6 = f6 = ε1κx4 + ε2alblpx8x5

–
(

�h

Nh
+ φ3 + δhl – (δlx2 + τδlx4 + δAx5 + δhlx6)

)
x6,

x′
7 = f7 =

�s

Ns
– alcl(x2 + x4 + x6 + x10)x7 –

�s

Ns
x7,
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x′
8 = f8 = alcl(x2 + x4 + x6 + x10)x7 –

�s

Ns
x8,

x′
9 = f9 =

�r

Nr
– alblqx8x9 –

�r

Nr
x9,

x′
10 = f10 = alblqx8x9 –

�r

Nr
x10.

Let βh = β∗ = (κ+μh)(δA+μh)
δA+μh+ηAκ

be the bifurcation parameter solved at R0l < R0h = 1 (R0 = 1).
Then the Jacobian of system (5) at DFE is given by

Jβ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–μh j12 –β∗ j14 j15 j16 0 –alblp 0 0
0 –j22 0 0 0 0 0 alblp 0 0
0 0 j33 j34 β∗ηA β∗ηAηhl 0 0 0 0
0 0 0 –j44 0 0 0 0 0 0
0 0 κ 0 –j55 φ3 0 0 0 0
0 0 0 ε1κ 0 –j66 0 0 0 0
0 –alcl 0 –alcl 0 –alcl –μs 0 0 –alcl

0 alcl 0 alcl 0 alcl 0 –μs 0 alcl

0 0 0 0 0 0 0 –alblq –μr 0
0 0 0 0 0 0 0 alblq 0 –μr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the shorthand representations are as given previously, but βh is given by the bifur-
cation parameter β∗. There are two eigenvectors associated with Jβ∗ at its simple (zero)
eigenvalue. Thus, the right eigenvector denoted by (w = (w1, w2, w3, w4, w5, w6, w7, w8, w9,
w10)T ) has the entries as given below.

w1 =
j12w2 – β∗w3 + j15w5 – alblw8

μh
, w2 =

alblpw8

j22
, w3 =

j55w5

κ
,

w4 = 0, w5 = w5, w6 = 0, w7 = –w8,

w8 = w8, w9 = –w10, w10 = w10.

(6)

And the left eigenvector represented by (v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)T ) is given
with the following values of entries:

v1 = 0, v2 =
alclv8

j22
, v3 =

–κv5

j33
,

v4 =
ε1κv6 + j34v3 + alclv8

j44
, v5 = v5,

v6 =
β∗ηAηhlv3 + φ3v5 + alclv8

j66
, v7 = 0,

v8 =
μrv10

alcl
, v9 = 0, v10 = v10.

(7)

The center manifold approach described in [31] is used to study the direction of bifurca-
tion analysis with computation of a and b, where

a =
10∑

k,i,j=1

vkwiwj
∂fk

∂xi∂xj

(
E0,β∗)



Melese and Alemneh Advances in Difference Equations        (2021) 2021:429 Page 12 of 20

b =
10∑

k,i=1

vkwi
∂fk

∂xi∂βh

(
E0,β∗).

The first, the seventh, and the ninth entries of the left eigenvector are zero, thus the par-

tial derivatives of the corresponding drift functions (f1, f7, and f9) are not important in

computing a and b than wasting time. Thus, from system (5), the only crucial ones and

nonzero derivative of the drift evaluated at (E0,β∗) are given below.

∂2f2

∂x2∂x3
=

∂2f2

∂x3∂x2
= –β∗,

∂2f2

∂x2∂x4
=

∂2f2

∂x4∂x2
= –β∗ηhh,

∂2f2

∂x2∂x5
=

∂2f2

∂x5∂x2
= –β∗ηA,

∂2f2

∂x2∂x6
=

∂2f2

∂x6∂x2
= –β∗ηAηhl,

∂2f2

∂x1∂x8
=

∂2f2

∂x8∂x1
= alblp,

∂2f3

∂x1∂x3
=

∂2f3

∂x3∂x1
= β∗,

∂2f3

∂x1∂x4
=

∂2f3

∂x4∂x1
= β∗ηhh,

∂2f3

∂x1∂x5
=

∂2f3

∂x5∂x1
= β∗ηA,

∂2f3

∂x1∂x6
=

∂2f3

∂x6∂x1
= β∗ηAηhl,

∂2f3

∂x3∂x8
=

∂2f3

∂x8∂x3
= –alblp,

∂2f4

∂x2∂x3
=

∂2f4

∂x3∂x2
= β∗,

∂2f4

∂x2∂x4
=

∂2f4

∂x4∂x2
= β∗ηhh,

∂2f4

∂x2∂x5
=

∂2f4

∂x5∂x2
= β∗ηA,

∂2f4

∂x2∂x6
=

∂2f4

∂x6∂x2
= β∗ηAηhl,

∂2f4

∂x3∂x8
=

∂2f4

∂x8∂x3
= alblp,

∂2f5

∂x5∂x8
=

∂2f5

∂x8∂x5
= –ε2alblp,

∂2f6

∂x5∂x8
=

∂2f6

∂x8∂x5
= ε2alblp,

∂2f8

∂x2∂x7
=

∂2f8

∂x7∂x2
=

∂2f8

∂x4∂x7
=

∂2f8

∂x7∂x4
=

∂2f8

∂x6∂x7

=
∂2f8

∂x7∂x6
=

∂2f8

∂x10∂x7
=

∂2f8

∂x7∂x10
= a1c1,

∂2f10

∂x8∂x9
=

∂2f10

∂x9∂x8
= alblq.

(8)

Additionally,

∂2f3

∂x3∂βh
=

∂2f3

∂βh∂x3
= 1,

∂2f3

∂x4∂βh
=

∂2f3

∂βh∂x4
= ηhh,

∂2f3

∂x5∂βh
=

∂2f3

∂βh∂x5
= ηA,

∂2f3

∂x6∂βh
=

∂2f3

∂βh∂x6
= ηAηhl.

(9)
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Thus, using equations (6), (7), (8), and (9), it can be found that

a =
alclv8

j22
v8w8alblp {Q1 – Q2} –

κv5

j33
w5

{
Q1β

∗
(

j55

κ
+ ηA

)
–

j55

κ
w8alblp

}

+
ε1κv6 + j34v3 + alclv8

j44
w5w8alblp

{
Q2 +

j55

κ

}
– w5w8ε2alblp

{
v5 –

(β∗ηAηhlv3 + φ3v5 + alclv8)
j66

}

– μrv10w8

(
alblp

j22
w8 + w10

)
– v10w8w10alblq

(10)

and

b =
(δA + μh + ηA)(δA + μh + ηAκ)

(κ + μh)ηAκ
v5w5 (11)

where

Q1 =
(j12w2 – β∗w3 + j15w5 – alblw8)

μh
,

Q1 =
β∗w5

j22

(
j55

κ
+ ηA

)
.

It is clear from equation 11 that the bifurcation coefficient, b, is automatically positive.
Thus, it follows from Theorem 4.1 in [31] that the the HIV-VL co-infection model will
undergo backward bifurcation if the bifurcation coefficient, a, given by equation 10, is
positive.

3.3 Sensitivity analysis
In this section, sensitivity indices of R0 with respect to the parameters are calculated,
as shown in Table 2, using the formula, where y is the model parameter, following the
technique described in [36, 37]. These indices show how important each parameter is to
the disease transmission. Since R0 = max{R0l,R0h}, we obtained the sensitivity indices of
R0l and R0h separately (see Appendix B).

Table 2 Sensitivity indices table

Parameter symbol Sensitivity indices

R0h Basic reproduction number of VL
c1 +ve
b1 +ve
a1 +ve
φ1 –ve
μr –ve
μs –ve
δl –ve

R0l Basic reproduction number of HIV
βh +ve
ηa +ve
k –ve
δa –ve
μh –ve
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Figure 2 Magnitude and direction of sensitivity analysis results of parameters for (a) HIV and (b) VL explicit
models

Table 3 Parameter values of the VL–HIV co-infection model

Parameter Value day–1 Source

�h 0.03 Assumed
�s 0.2999× Ns [38]
�r 0.0073× Nr [5]
μh 0.0000395 Assumed
μs 0.189 [38]
μr 0.000274 [5]
al 0.29 Assumed
bl varies Assumed
cl 0.0714 [7]
φ1, φ2, φ3 varies Assumed
δl 0.011 [39]
δA 0.000913 [40]
βh varies Assumed
κ 0.0005 Assumed
ηhh , ηA , ηhl 1.4, 1.5, 1.001 Assumed
ε1, ε2, τ 1.002, 0.04, 1.001 Assumed

From Fig. 2 and Table 2, we have the following statements. If the sensitivity index is posi-
tive, then the reproduction number increases along with increasing value of the parameter.
That means that positive index parameters have a power of expanding the disease if their
value increases. On the other hand, if the sensitivity index is negative, then reproduction
decreases with the increasing value of the parameter. This also mean that negative index
parameters have a power of reducing the burden of the disease in the community as their
value increases. From this policy makers and stakeholders are expected to act accordingly
in combating VL infection, HIV infection, and their co-infection from the community.

4 Numerical simulation
In this section, we use numerical simulations to support the analytical results previously
established. We used Maple 18 to show the effect of some parameters in the expansion
as well as for the control of HIV only, VL only, and co-infection of HIV and VL. We used
parameter values in Table 3 for simulation purpose.

4.1 Effect of human recovery rate (φ1) on VL infectious population
In Fig. 3, we investigated the effect of φ1 in reducing VL-only infectious population by
maintaining the other parameters constant. The figure reflects that when the values of φ1

increase, the number of VL only infectious population is diminished. Therefore, we should
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Figure 3 Effect of human recovery rate on VL infectious population

Figure 4 Effect of contact rate on HIV infectious and co-infectious population

focus on improving recovery rates either by treating infected populations or by increasing
the levels of individuals’ immunity to VL disease in the population. Government policy
makers should take this into account as a mitigation strategy.

4.2 Effect of effective contact rate(βh) on HIV infectious and co-infectious
population

In this section, we examine the influence of effective contact rate βh on HIV infectious
and HIV–VL co-infectious population. Figure 4 reflects that as the value of contact rate
of βh is increased, the HIV infectious and HIV–VL co-infectious population is increased,
which leads to the increased expansion of co-infection of HIV and VL. Consequently, to
control HIV infected and co-infection of HIV and VL, decreasing the contact rate of βh

is significant. Therefore, stakeholders need to focus on reducing the contact rate of HIV
infectious by using an appropriate method of prevention mechanism to bring down the
expansion of co-infection in the community.

4.3 Effect of VL progression rate (cl) on human and sand fly population
Figure 5 shows the effect of VL progression rate on humans and sand fly population. It
reveals that as the VL in humans and sand flies population increases, the infection of pop-
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Figure 5 Effect of VL progression rate on the sand fly population

Figure 6 Effect of recovery rate of HIV–VL on the co-infectious population

ulation by VL also grows up. Therefore, it is advisable to use treated bed net, chemical
techniques to reduce the expansion. This is also another good control strategy to reduce
VL infection.

4.4 Effect of recovery rate of HIV–VL (φ2) on the co-infectious population
In this section, we investigate the effect of recovery rate of HIV and VL (φ2) on the co-
infectious population. As we clarified in the model description, due to treatment or other
mechanisms, the co-infectious population recovers from VL only diseases with their own
probability and join the recovered compartment. Therefore, Fig. 6 shows that increasing
the rate of recovery of the co-infectious population has a great advantage in reducing VL
diseases in the population.

4.5 Effect of VL progression rate in the sand fly reservoir population
Figure 7 shows the effect of VL progression rate on the sand fly reservoir population. It
illustrates that as the reservoir increases around the sand fly population, the infection of
these reservoirs also increases. From this we can understand that it is important to remove
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Figure 7 Effect of recovery rate of HIV–VL on co-infectious population

reservoirs from the system to reduce the number of infected reservoirs and infected sand
flies. This gives a good control strategy against the disease.

5 Results and conclusions
We developed a transmission dynamics model for VL–HIV co-infection, and the pop-
ulation is subdivided into ten compartments. Before starting the qualitative analysis of
the model, we proved the existence of a region where the model is mathematically and
epidemiologically well posed. Basic reproduction numbers, disease-free equilibrium, en-
demic equilibrium, and stability analysis of equilibrium points were analyzed. Numeri-
cally, we experimented on the effect of basic parameters in the expansion or control of VL
only, HIV only, and their co-infection. From the result, we conclude that an increase in
the rate of VL recovery (φ1) contributes greatly to reducing VL infectious individuals in
the community. Similarly, increasing the recovery rate for VL-HIV co-infection (φ2) con-
tributes to the reduction of co-infection in the population. Also it is important to remove
reservoirs (c1) from the system so that the number of infected reservoirs and infected sand
flies is reduced. Reducing the contact rate βh is significant in bringing down the number of
HIV and VL–HIV co-infected infectious population. The rate of recovery for co-infection
also has an influence on dropping co-infectious population if its value has been improved.
Therefore, stakeholders should focus on the above basic parameters by using an appro-
priate method of prevention mechanism to reduce the expansion of infection in VL only,
HIV only, and VL–HIV co-infection in the community.

Appendix A: Theorems
Theorem ([41]) For the system

⎧⎨
⎩

dX
dt = F(X, Z),
dZ
dt = G(X, Z), G(X, 0) = 0,

(12)

where the components of the column vector X ∈ Rn denote the uninfected populations and
Z ∈ Rm denotes the infected population.E0 = (X∗, 0) represents the disease-free equilibrium
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of this system.E0 is globally asymptotically stable equilibrium for the model if it satisfies
conditions (H1) and (H2):

(H1) For dX
dt = F(X, 0), X∗ is globally asymptotically stable.

(H2) dZ
dt = DZG(X∗, 0)Z – Ĝ(X, Z), Ĝ(X, Z) ≥ 0 for all (X, Z) ∈ 
,

where DZG(X∗, 0) is the Jacobian of G(X, Z) taken at the infected population and evaluated
at (X∗, 0).

Theorem (Castillo-Chavez & Song [31]) Let us consider the general system of ODEs with
a parameter φ:

dx
dt

= f (x,φ), f : Rn × R −→ Rn, f ∈ C2(Rn × R
)
, (13)

where x = 0 is an equilibrium point for the system in Eq. (18). That is, f (0,φ) ≡ 0 for all φ.
Assume the following:

M1: A = Dxf (0, 0) = ( ∂f
∂xj

(0, 0)) is the linearization matrix of the system given by (18)
around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A
and other eigenvalues of A have negative real parts;

M2: Matrix A has a nonnegative right eigenvector w and a left eigenvector v corresponding
to the zero eigenvalue. Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0), b =

n∑
k,i=1

vkwi
∂2fk

∂xi∂φ
(0, 0).

The local dynamics of (21) around 0 are totally determined by a and b. If a < 0 and b > 0,
then the bifurcation is forward; if a > 0 and b > 0,then the bifurcation is backward. Using
this approach, the following result may be obtained.

Appendix B: Sensitivity of parameters
The sensitivity indices of R0l and R0h are given as follows:

R0l =
βh(δA + μh + ηAκ)
(κ + μh)(δA + μh)

,

R0h =

√
alcl(μralblp + alblq(φ1 + δl + μh)

μsμr(φ1 + δl + μh)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ
�0h
c1 = �0h

∂c1
× c1

�0h
= 1

2
al

2bl(μrp+qδl+qμh+qφ1)

μsμr(φ1+δl+μh)
√

al2clbl (μrp+qδl+qμh+qφ1)
μsμr (φ1+δl+μh)

> 0,

Λ
�0h
b1

= �0h
∂b1

× b1
�0h

= cl > 0,

Λ
�0h
a1 = �0h

∂a1
× a1

�0h
=

√
alcl(μralblp+alblq(φ1+δl+μh))

μsμr (φ1+δl+μh) > 0,

Λ
�0h
φ1

= ∂�0h
∂φ1

× φ1
�0d

= – φ1μrclp
(μrp+qδl+qμh+qφ1)(φ1+δl+μh) < 0,

Λ
�0h
μr = ∂�0h

∂μr
× μr

�0d
= – qcl(φ1+δl+μh)

μrp+qδl+qμh+qφ1
< 0,

Λ
�0h
δl

= ∂�0h
∂δ1

× δ1
�0d

= – δlμrclp
(μrp+qδl+qμh+qφ1)(φ1+δl+μh) < 0,

Λ
�0h
μs = ∂�0h

∂μs
× μs

�0d
= –cl < 0,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ
�0l
βh

= ∂�0l
∂βh

× βh
�0l

= 1 > 0,

Λ
�0l
ηa = ∂�0l

∂ηa
× ηa

�0l
= ηak

ηak+δa+μh
> 0,

Λ
�0l
k = ∂�0l

∂k × k
�0l

= – k(–ηaμh+δa+μh)
(ηak+δa+μh)(k+μh) < 0,

Λ
�0l
δa = ∂�0l

∂δa
× δ2

�0l
= – kηaδa

(ηak+δa+μh)(δa+μh) < 0,

Λ
�0l
μh = ∂�0l

∂μh
× μh

�0l
= – μh(kηa(k+δa+2μh)+(δa+μh)2)

(k+μh)(δa+μh)(ηak+δa+μh) < 0.
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