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Abstract
In this paper, we consider a fractional-order model of a brushless DC motor. To
develop a mathematical model, we use the concept of the Liouville–Caputo
noninteger derivative with the Mittag-Lefler kernel. We find that the fractional-order
brushless DC motor system exhibits the character of chaos. For the proposed system,
we show the largest exponent to be 0.711625. We calculate the equilibrium points of
the model and discuss their local stability. We apply an iterative scheme by using the
Laplace transform to find a special solution in this case. By taking into account the
rule of trapezoidal product integration we develop two iterative methods to find an
approximate solution of the system. We also study the existence and uniqueness of
solutions. We take into account the numerical solutions for Caputo Liouville product
integration and Atangana–Baleanu Caputo product integration. This scheme has an
implicit structure. The numerical simulations indicate that the obtained approximate
solutions are in excellent agreement with the expected theoretical results.
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1 Introduction
The newly emerging field has many applications to model the real-world phenomena
such as electrode–electrolyte, diffusion wave, electromagnetic waves, dielectric polariza-
tion, and superdiffusion equations [1–3]. Similarly, a fractional-order system is used to
model many complex chaotic behaviors such as noninteger-order gyroscopes [4]. More-
over, fractional-order models are used to model microelectromechanical structures [5].
Also, noninteger-order electronic circuits [6, 7], chaotic communications [8], and authen-
ticated encryption schemes [9] have been modeled by using FDEs.

Moreover, BLDCM has many recompenses over brushed DC motor [10–13] and prac-
ticed generally in manufacturing industrial engineering and automation design, for exam-
ple, ventilations and heating, radio-controlled cars, and motion control systems. Further,
BLDCM reveals undesirable chaotic phenomena [11–16]. To find novel means to suppress
and control chaos more competently, numerous researchers have paid more and more at-
tention, for instance, to multiple controllers, multiple state variables, and the nonlinear
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feedback controllers. However, these control strategies require heavy computational ef-
forts and are difficult to use in practice [17, 18].

Fractional calculus has attracted the focus of many researchers in the modern century
[19–34]. Solving the problems of fractional order is very complicated. Therefore many
approximate methods have been taken into account in recent decades. Despite the range
of approaches, innovative concepts are needed in this field. Another important feature of
this is the existence of demarcations of the integrals and derivatives, among which the
prevalent demarcations are Riemann–Liouville–Caputo [17], Hadamard [35], Hilfer [36],
Atangana–Baleanu [37], and Gomez–Atangana [38]. The most valid definition is that of
Atangana and Baleanu for fractional derivatives [24, 39–44]. These were demarcated as
a convolution integral with a Mittag-Leffler kernel. The presence of this property in the
definition makes it a resilient technique to retain the valuable facts of the phenomenon in
memory over time. In the recent papers [45–55], various interesting qualitative results for
a number of differential equations, fractional differential equations, impulsive differential
equations, and so on are obtained, and some related examples are given. The novelty of
this paper is that we are pioneers to use this latest technique on this model. The system is
closely resembling to the Lorenz attractor. The simulations of the first example show the
butterfly effect.

In this paper, we introduce BLDCM model of noninteger order, which displays the
chaotic behavior too. The maximum Lyapunov exponent and chaotic attractors are found
by numerical calculation. Next, we consider two numerical schemes for the stabilization
of noninteger-order chaotic BLDCMs. We carry out numerical imitations to present au-
thenticity, validity, and feasibility of the developed schemes.

2 Preliminaries
The noninteger derivative of function h(t) using the Riemann–Liouville operator is de-
fined as

RL
0 Dτ1

t
[
h(t)
]

=
1

�(n – τ1)
dn

dtn

∫ t

0
h(ξ )(t – ξ )n–τ1–1 dξ , n – 1 < τ1 ≤ n ∈ N . (1)

The Laplace transform of the Caputo derivative is given by

RL
0 Dτ1

t
[
h(t)
]

= sτ1 H(s) –
n–1∑

j=0

sj[
0Dτ1–j–1

t h(t)
]
, n – 1 < τ1 ≤ n ∈ N . (2)

The noninteger derivative of a function h(t) using the Liouville–Caputo operator is defined
as [20]

LC
0 Dτ1

t
[
h(t)
]

=
1

�(n – τ1)

∫ t

0

d[h(ξ )]
dt

(t – ξ )n–τ1–1 dξ , n – 1 < τ1 ≤ n ∈ N . (3)

The Laplace transform of the Caputo derivative is given by

LC
0 Dτ1

t
[
h(t)
]

= sτ1 H(s) –
n–1∑

j=0

sτ1–j–1hj(0), n – 1 < τ1 ≤ n ∈ N . (4)
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A new significant fractional Atangana–Baleanu Caputo derivative (FABC) was discussed
in [38]:

ABC
0 Dτ1

t z(t) =
Z(τ1)

�(n – τ1)

∫ t

0

d[h(ξ )]
dt

Eτ1

[
τ1(t – ξ )τ1

τ1 – n

]
dξ , n – 1 < τ1 ≤ n ∈ N , (5)

where Z(τ1) is a normalization function, and Z(0) = 1 = Z(1). We can observe from the
structure of this functional operator that the Mittag-Leffler fraction is applied. As we can
see, in the system of this fractional operator the fraction of Mittag-Leffler is used, as this
would make the definition have both nonsingular and nonlocal kernel properties, and Eτ1

denotes the one-parameter Mittag-Leffler function expressed in terms of power series:

u(z) = Eτ1 (z) =
∞∑

j=0

zj

�(τ1j + 1)
, τ1 > 0. (6)

The Mittag-Leffler function in two parameters has the following form:

Eτ1,τ2 (z) =
∞∑

j=0

zj

�(τ1j + τ2)
, τ1 > 0, (7)

where τ1 and τ2 are arbitrary complex numbers. When τ1 > 0 and τ2 = 1, Eτ1 (z) = Eτ1,1(z).

3 Mathematical model
The mathematical exemplary of brushless DC motor (BLDCM) [13, 18] with no loading
conditions is given by

⎧
⎪⎪⎨

⎪⎪⎩

Dtud(t) = –σud + uqua,

Dtuq(t) = –uq + βua – udua,

Dtua(t) = γ uq – γ ua.

(8)

The discrete axis current is denoted by ud , whereas that quadrant axis current by uq, and
the angular velocity of the motor is denoted by ua. Note that Dt = d

dt . Here the parameters
σ , β , and γ are calculated by the brushless DC motor type, and these are positive in nature.
It was demonstrated that the structure (8) is chaotic when the parameters are

σ = 0.875, β = 55, and γ = 4. (9)

For the numerical simulation of the chaotic framework (8), we have taken (9) and the initial
conditions as ud(0) = 10, uq(0) = 10, and ua(0) = 10.

The FBLDCM system in Liouville–Caputo sense is

⎧
⎪⎪⎨

⎪⎪⎩

LC
0 Dτ

t ud(t) = –σud + uqua,
LC
0 Dτ

t uq(t) = –uq + βua – udua,
LC
0 Dτ

t ua(t) = γ uq – γ ua,

(10)
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and, in the ABC sense, it is

⎧
⎪⎪⎨

⎪⎪⎩

ABC
0 Dτ

t ud(t) = –σud + uqua,
ABC
0 Dτ

t uq(t) = –uq + βua – udua,
ABC
0 Dτ

t ua(t) = γ uq – γ ua,

(11)

where 0 < τ ≤ 1 is the noninteger order.

4 Chaotic system properties
In this segment, we dissect the chaotic framework (10) and detail its essential properties
similar to dissipativity, equilibria, Lyapunov exponents, and Kaplan–Yorke dimension.

4.1 Dissipativity
In vector notation, we may communicate the framework (10) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

LC
0 Dτ

t ud(t) = f1(ud, uq, ua),
LC
0 Dτ

t uq(t) = f2(ud, uq, ua),
LC
0 Dτ

t ua(t) = f3(ud, uq, ua),

(12)

where

⎧
⎪⎪⎨

⎪⎪⎩

f1(ud, uq, ua) = –σud + uqua,

f2(ud, uq, ua) = –uq + βua – udua,

f3(ud, uq, ua) = γ uq – γ ua.

(13)

Let � be any set in R3 with smooth boundary, and, moreover, let �(t) = 	t(�), where 	t

is the flow of f = (f1, f2, f3).
Besides, let V (t) denote the volume of �(t). Then by Liouville’s theorem we have

Dτ =
∫

�(t)
(∇ .f ) dud duq dua. (14)

It is easy to see the divergence of the chaotic structure (10) as

∇ .f =
∂f1

∂ud
+

∂f2

∂uq
+

∂f3

∂ua
= –σ – 1 – γ = –δ < 0, (15)

where

σ + 1 + γ = δ > 0, (16)

as σ and γ are positive parameters. So the structure is dissipative. Substituting (15) into
(14), we obtain

Dτ = –δV (t). (17)

To get the solution of (17), we need the following lemma.
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Lemma 1 ([56]) Let u(t) be a continuous function on [t0,∞], Suppose that

dχ

dtχ
g(t) ≤ μ – λg(t), g(t0) = gt0 ,

where 0 < χ < 1, (λ,μ) ∈ R2, λ �= 0, and t0 ≥ 0 is the initial time. Then its elucidation has
the arrangement

g(t) ≤
(

gt0 –
μ

λ

)
Eχ

[
–λ(t – t0)

]
+

μ

λ
,

where Eχ [z] is the Mittag-Leffler function with parameter χ .

According to this lemma, we can say that the structure (10) is chaotic. Therefore the
structure limit sets are eventually restricted into a specific limit set of zero volume, and the
asymptotic motion of the chaotic structure (10) settles down onto an eccentric attractor
of the framework.

5 Equilibrium points
The steadiness points of the chaotic structure (10) are achieved by deciphering the follow-
ing system of equations:

⎧
⎪⎪⎨

⎪⎪⎩

–σud + uqua = 0,

–uq + βua – udua = 0,

γ uq – γ ua = 0.

(18)

We obtain three equilibrium points of systems (10) and (11):

⎧
⎪⎪⎨

⎪⎪⎩

E0 = (0, 0, 0),

E1 = (β – 1,
√

σ (β – 1),
√

σ (β – 1)),

E2 = (β – 1, –
√

(σ (β – 1), –
√

(σ (β – 1))).

(19)

The Jacobian of systems (10) and (11) at u∗ is given by

J
(
u∗) =

⎛

⎜
⎝

–σ u∗
a u∗

q

–u∗
a –1 β – u∗

d
0 γ –γ

⎞

⎟
⎠ . (20)

The Jacobian matrix at E0 is obtained as follows:

J(E0) =

⎛

⎜
⎝

–σ 0 0
0 –1 β

0 γ –γ

⎞

⎟
⎠ , (21)

(λ + σ )
(
λ2 + p1λ + p2

)
= 0,

where p1 = 1 + γ , p2 = γ – βγ .
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So the three eigenvalues are

⎧
⎪⎪⎨

⎪⎪⎩

λ1 = –σ ,

λ2 = – γ

2 – 1
2 + 1

2

√
4βγ + (γ – 1)2,

λ2 = – γ

2 – 1
2 – 1

2

√
4βγ + (γ – 1)2.

By the Routh–Hurwitz criteria the first root is λ1 = –σ , whereas the other two can be
obtained from λ2 + p1λ + p2 = 0. Since the equation is quadratic in nature, for stability, the
Routh–Hurwitz norms show that all the coefficients of the quadratic structure should be
nonnegative. If p2 > 0, then the threshold parameter R0 is less than 1. So

γ – βγ > 0, 1 > β 
⇒ R0 = β < 1.

Since all the parameters are nonnegative and all the terms in p1 are positive, we have p1 > 0.
Then the Routh–Hurwitz norms ensure that E0 is locally asymptotically stable if β < 1.

The Jacobian matrix at E1 is

J(E1) =

⎛

⎜
⎝

–σ
√

σ (β – 1)
√

σ (β – 1)
–
√

σ (β – 1) –1 β – β + 1
0 γ –γ

⎞

⎟
⎠ . (22)

Definition 1 ([57]) The discriminant of a polynomial R(λ) = λ3 + c1λ
2 + c2λ + c3 is defined

as

D(p) = 18c1c2c3 + (c1c2)2 – 4c3(c1)2 – 4(c2)3 – 27(c3)2. (23)

The auxiliary equation of structure (14) about E1 is

λ3 + c1λ
2 + c2λ + c3 = 0, (24)

where

c1 = γ + σ + 1, c2 = σγ + σβ , c3 = 2σγ (β – 1). (25)

Theorem 1 For R0 > 1 in structure (3), the equilibrium point E1 is asymptotically stable if

D(p) > 0, c1c2 > c3, γ ∈ (0, 1], (26)

or

D(p) < 0, γ ∈
(

0,
2
3

]
, (27)

where D(p), c1, c2, and c3 are defined in (23) and (25).

Proof For D(p) > 0, c1c2 > c3; then c1 > 0 and c3 > 0, via the Routh–Hurwitz norms. Then
|arg(λ)| > qπ

2 , and the under observed system will be locally asymptotically stable about
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E1. It is clear from that c1 > 0, c2 > 0, and c1c2 > c3. Then the states for stability of the
noninteger order framework are satisfied [24], and so E1 is locally asymptotically stable.

The Jacobian matrix at E2 is

J(E1) =

⎛

⎜
⎝

–σ –
√

σ (β – 1) –
√

σ (β – 1)√
σ (β – 1) –1 β – β + 1

0 γ –γ

⎞

⎟
⎠ . (28)

The characteristic equation of (28) is given by (24) and (25). So E1 and E2 are stable when
R0 > 1. �

6 Lyapunov exponents and Kaplan–Yorke dimension
For the selected values (9), the Lyapunov exponents of the framework (8) are obtained via
Matlab as

L1 = 0.711625, L2 = –0.000227, L3 = –6.586898. (29)

Since the spectrum of Lyapunov exponents (29) has a positive term L1, it follows that the
3D system (8) is chaotic. The maximal Lyapunov exponent (MLE) of the framework (8) is
L1 = 0.711625. We accomplish that our 3D structure (8) is a highly chaotic framework. It
can be observed from equation (9) that the totality of the Lyapunov exponents is not pos-
itive. This shows that structure (8) is dissipative. Moreover, the Kaplan–Yorke dimension
of (8) is deliberated as

DKY = 2 +
L1 + L1

|L3| = 2.1080,

which is fractional. See Fig. 1.

7 Brushless DC motor model using Liouville–Caputo noninteger derivative
Here the approximated result of the problem is calculated using the iterative process. This
approach uses the Laplace transform and its inverse.

The Liouville–Caputo noninteger-order brushless DC motor exemplary is defined in
equation (10). The model initial conditions are

ud,0 = ud(0), uq,0 = uq(0), ua,0 = ua(0). (30)

Figure 1 Maximal Lyapunov exponent
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After applying the Laplace transform to all sides of the Liouville–Caputo derivative spec-
ified by Eq. (3), we have [20]

L
(LC

0 Dτ
t
(
U(t)
))

(p) = pτ U(p) –
m–1∑

k=0

pτ–k–1U (k)(0). (31)

The following iterative scheme is obtained by applying the Laplace transform to Eq. (31)
and then applying the inverse Laplace transform to all sides of (10):

⎧
⎪⎪⎨

⎪⎪⎩

ud,n(t) – ud(0) = L–1( 1
pτ L(–σud(t) + uq(t)ua(t))(p))(t),

uq,n(t) – uq(0) = L–1( 1
pτ L(–uq(t) + βua(t) – ud(t)ua(t))(p))(t),

ua,n(t) – ua(0) = L–1( 1
pτ L(γ uq(t) – γ ua(t))(p))(t)

(32)

with initial conditions (30).
The approximate solution is considered in the limit as n tends to infinity:

ud = lim
n→∞ ud,n, uq = lim

n→∞ uq,n and ua = lim
n→∞ ua,n. (33)

8 Stability study of equation (10)
Assume that there are three affirmative number A, B, and C such that for all 0 ≤ t ≤ T ≤
∞, ‖ud(t)‖ < A, ‖uq(t)‖ < B, and ‖ua(t)‖ < C. Now we define

Z =
{
ζ : (a, b)(0, T) → Z,

1
�(τ )

∫
(t – η)(τ–1)v(η)u(η) dη < ∞

}
. (34)

Now let us define the operator

�(ud, uq, ua) =

⎧
⎪⎪⎨

⎪⎪⎩

–σud + uqua,

–uq + βua – udua,

γ uq – γ ua.

(35)

Then

�(ud, uq, ua) – �(ud,1, uq,1, ua,1)

=

⎧
⎪⎪⎨

⎪⎪⎩

–σ (ud – ud,1) + (uq – uq,1)(ua – ua,1),

–(uq – uq,1) + β(ua – ua,1) – (ud – ud,1)(ua – ua,1),

γ (uq – uq,1) – γ (ua – ua,1),

where

ud �= ud,n, uq �= uq,n, and ua �= ua,n. (36)
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Now by the properties of the norm and absolute value we get

〈
�(ud, uq, ua) – �(ud,1, uq,1, ua,1), (ud – ud,1, uq – uq,1, ua – ua,1)

〉
(37)

<

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{–σ ( ‖ud–ud,1‖
‖ud–ud,1‖2 ) + ( ‖uq–uq,1‖

‖uq–uq,1‖2 )( ‖ua–ua,1‖
‖ua–ua,1‖2 )}‖ud – ud,1‖2,

{–( ‖uq–uq,1‖
‖uq–uq,1‖2 ) + β( ‖ua–ua,1‖

‖ua–ua,1‖2 ) – ( ‖ud–ud,1‖
‖ud–ud,1‖2 )( ‖ua–ua,1‖

‖ua–ua,1‖2 )}‖uq – uq,1‖2,

{γ ( ‖uq–uq,1‖
‖uq–uq,1‖2 ) – γ ( ‖ua–ua,1‖

‖ua–ua,1‖2 )}‖ua – ua,1‖2,

where

〈
�(ud, uq, ua) – �(ud,1, uq,1, ua,1), (ud – ud,1, uq – uq,1, ua – ua,1)

〉
(38)

<

⎧
⎪⎪⎨

⎪⎪⎩

A‖ud – ud,1‖2,

B‖uq – uq,1‖2,

C‖ua – ua,1‖2

with

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A = {–σ ( ‖ud–ud,1‖
‖ud–ud,1‖2 ) + ( ‖uq–uq,1‖

‖uq–uq,1‖2 )( ‖ua–ua,1‖
‖ua–ua,1‖2 )},

B = {–( ‖uq–uq,1‖
‖uq–uq,1‖2 ) + β( ‖ua–ua,1‖

‖ua–ua,1‖2 ) – ( ‖ud–ud,1‖
‖ud–ud,1‖2 )( ‖ua–ua,1‖

‖ua–ua,1‖2 )},
C = {γ ( ‖uq–uq,1‖

‖uq–uq,1‖2 ) – γ ( ‖ua–ua,1‖
‖ua–ua,1‖2 )}.

(39)

In view of a given nonzero vector (ud, uq, ua), by a similar routine as before we get

〈
�(ud, uq, ua) – �(ud,1, uq,1, ua,1), (ud – ud,1, uq – uq,1, ua – ua,1)

〉
(40)

<

⎧
⎪⎪⎨

⎪⎪⎩

A‖ud – ud,1‖‖ud‖,

B‖uq – uq,1‖‖uq‖,

C‖ua – ua,1‖‖ua‖.

The iterative scheme stability can be observed by considering equations (38) and (40).

9 Uniqueness and existence
Let ϒ be bounded closed convex subset of a Banach space �. Let μ : ϒ → ϒ be a con-
densing map, where � has a fixed point in ϒ . We are interested in the IVP (initial value
problem) on the cylinder δ = (t, m) ∈ R ×� : t ∈ [0, T], x ∈ ϒ(0,�) for some fixed T > 0
and � > 0 and suppose that there exist δ ∈ (0, ζ ), ud , uq, ua, L1 ∈ L1/δ([0, T], R+), and the
functions ud,0, uq,0, ua,0 ∈⊂ (R,�)∩L1

loc(R,�) such that ud,0 + ud,1 = ud , uq,0 + uq,1 = uq, and
ua,0 + ua,1 = ua and the following conditions are satisfied:

1. ud,0, uq,0, and ua,0 are bounded and Lipschitz.
2. ud,1, uq,1, and ua,1 are compact and bounded.
3. |R(t, n) – R(t, z)| ≤ L1(t)‖n – z‖ for all (t, n), (t, z) ∈ R.
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Applying the Riemann–Liouville integral [58] to all sides of equation (10), we get the
following system of integral equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ud(t) = ud(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1ud,0(ζ , ud(ζ )) dζ

+ 1
�(τ )
∫ t

0 (t – ζ )τ–1ud,1(ζ , ud(ζ )) dζ ,

uq(t) = uq(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1uq,0(ζ , uq(ζ )) dζ

+ 1
�(τ )
∫ t

0 (t – ζ )τ–1uq,1(ζ , uq(ζ )) dζ ,

ua(t) = ua(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1ua,0(ζ , ua(ζ )) dζ

+ 1
�(τ )
∫ t

0 (t – ζ )τ–1ua,1(ζ , ua(ζ )) dζ .

(41)

Theorem 2 Based on Hypotheses 1 and 2, the IVP has at least one elucidation in the in-
terval [0,T] according to the condition

K =
v‖L‖1/∇TM

�(τ )
< 1, (42)

where M = ζ – ∇ and ϒ = ( 1–∇
ζ–∇ )1–∇ .

Proof Considering X such that α(0) + 1/(�(τ ))v(‖Z1‖1/∇ + ‖Z2‖1/∇ )TM ≤ X and suppose
that ϒε = n : ‖n‖ ≤ X , the closed ball in the Banach space ([0, T],�) with sup‖ · ‖.

Now, we consider n : ϒX → a Banach space ([0, T],�), n → n(ud,0 + ud,1) along with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ud,0(t) = ud,0(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1ud,0(ζ , n(ζ )) dζ ,

ud,1(t) = ud,1(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1ud,1(ζ , n(ζ )) dζ ,

uq,0(t) = uq,0(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1uq,0(ζ , n(ζ )) dζ ,

uq,1(t) = uq,1(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1uq,1(ζ , n(ζ )) dζ ,

ua,0(t) = ua,0(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1ua,0(ζ , n(ζ )) dζ ,

ua,1(t) = ua,1(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1ua,1(ζ , n(ζ )) dζ .

(43)

Now we proved that ud , uq, and ua are condensing, and we can demonstrate the presence
of a fixed point of ud , uq, and ua.

1. We need to prove that ud(ϒε) ⊂ ϒε . From n ∈ ϒε we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖ud‖ ≤ |ud(0)| + 1
�(τ )
∫ t

0 (t – ζ )τ–1ud,0(ζ , n(ζ )) dζ

≤ |ud(0)| + 1
�(τ )
∫ t

0 (t – ζ )τ–1ud,0(ζ , n(ζ )) dζ + 1
�(τ )
∫ t

0 (t – ζ )τ–1ud,1(ζ , n(ζ )) dζ

≤ |ud(0)| + 1
�(τ ) (
∫ t

0 (t – ζ )
τ–1
1–∇ dζ )1–∇ (

∫ t
0 G1/∇

1 (ζ ) dζ )∇

+ 1
�(τ ) (
∫ t

0 (t – ζ )
τ–1
1–∇ dζ )1–∇(

∫ t
0 G1/∇

2 (ζ ) dζ )∇ ,

‖ud‖ ≤ ∣∣ud(0)
∣∣ +

v1(‖G1‖1/∇ + ‖G2‖1/∇ )
�(τ )

TM1 ≤ X1. (44)

Similarly, we have
⎧
⎨

⎩
‖uq‖ ≤ |uq(0)| + v2(‖G11‖1/∇ +‖G22‖1/∇ )

�(τ ) TM2 ≤ X2,

‖ua‖ ≤ |ua(0)| + v3(‖G111‖1/∇ +‖G222‖1/∇ )
�(τ ) TM3 ≤ X3,

(45)

and therefore ud(ϒε), uq(ϒε), ua(ϒε) ⊂ ϒε .
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2. We need to prove that ud,0, uq,0, and ua,0 are contractions. For n, z ∈ ϒε , we
have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ud,0(t) – ud,1(t)‖ ≤ 1
�(τ )
∫ t

0 (t – ζ )τ–1K(ζ )|n(ζ ) – z(ζ )|dζ

≤ 1
�(τ ) (
∫ t

0 (t – ζ )
τ–1
1–∇ )1–∇ (K1/∇ (ζ ) dζ )∇‖n – z‖ ≤ 	1‖n – z‖,

‖uq,0(t) – uq,1(t)‖ ≤ 1
�(τ )
∫ t

0 (t – ζ )τ–1K(ζ )|n(ζ ) – z(ζ )|dζ

≤ 1
�(τ ) (
∫ t

0 (t – ζ )
τ–1
1–∇ )1–∇(K1/∇ (ζ ) dζ )∇‖n – z‖ ≤ 	2‖n – z‖,

‖ua,0(t) – ua,1(t)‖ ≤ 1
�(τ )
∫ t

0 (t – ζ )τ–1K(ζ )|n(ζ ) – z(ζ )|dζ

≤ 1
�(τ ) (
∫ t

0 (t – ζ )
τ–1
1–∇ )1–∇(K1/∇ (ζ ) dζ )∇‖n – z‖ ≤ 	3‖n – z‖,

(46)

where

	i =
1

�(τ )
vi‖L‖1/∇TMi < 1 for i = 1, 2, 3. (47)

The overhead equation proves that ud,0, uq,0, and ua,0 are contractions such that
‖ud,0(n) – ud,1(n)‖ ≤ 	1‖n – z‖, ‖uq,0(n) – uq,1(n)‖ ≤ 	2‖n – z‖, and ‖ua,0(n) – ua,1(n)‖ ≤
	3‖n – z‖.

3. We need to prove that ud,1, uq,1, and ua,1 are compact. For 0 ≤ l1 ≤ l2 ≤ T , we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ud,1r(l1) – ud,1z(l2)‖
≤ 1

�(τ ) |
∫ l2

0 (l2 – ζ )τ–1ud,1(ζ – n(ζ ) dζ –
∫ l1

0 (l1 – ζ )τ–1ud,1(ζ – n(ζ ) dζ |
≤ 1

�(τ )
∫ l1

0 ((l1 – ζ )τ–1 – (j2 – ζ )τ–1)F1(ζ ) dζ + 1
�(τ )
∫ l2

l1
(j2 – ζ )τ–1F1(ζ ) dζ

≤ 1
�(τ ) [
∫ l1

0 ((l1 – ζ )τ–1 – (j2 – ζ )τ–1)
1

1–∇ dζ ](F1/∇
1 (ζ ) dζ )∇+

1
�(τ ) (
∫ l2

l1
(j2 – ζ )

τ–1
1–∇ dζ )1–∇ (F1/∇

1 (ζ ) dζ )∇

≤ v1
�(τ ) [l

τ–∇
1–∇
1 – l

τ–∇
1–∇
2 + (l2 – l1)

τ–∇
1–∇ ]1–∇‖F1‖1/∇ + v1

�(τ ) (l2 – l1)τ–∇‖F1‖1/∇
≤ v1

�(τ ) [(l2 – l1)
τ–∇
1–∇ ]1–∇‖F1‖1/∇ + v1

�(τ ) (l2 – l1)τ–∇‖F1‖1/∇
≤ 2v1‖F1‖1/∇

�(τ ) (l2 – l1)τ–∇ .

(48)

Following the same procedure, we get
⎧
⎨

⎩
‖uq,1r(l1) – uq,1z(l2)‖ ≤ 2v2‖F11‖1/∇

�(τ ) (l2 – l1)τ–∇ ,

‖ua,1r(l1) – ua,1z(l2)‖ ≤ 2v3‖F111‖1/∇
�(τ ) (l2 – l1)τ–∇ .

(49)

By the Arzelà–Ascoli principle [59] we infer that u(d, 1)(ϒς ), u(q, 1)(ϒς ), and u(a, 1)(ϒς )
are relatively compact, which infers that ud,1, uq,1, and ua,1 are compact.

Then ud,1, uq,1, and ua,1 are compact, and ud,0, uq,0 and ua,0 are contractions and hence
completely continuous [60], so the maps ud,0 + ud,1 = ud , uq,0 + uq,1 = uq, and ua,0 + ua,1 = ua

are condensing on ϒς , and thus we have the existence of fixed points of ud , uq, and ua.
4. We want to verify that the assumed IVP has the elucidation on the real interval [0, T].

For this, we are interested in Hypothesis 3, condition (47), and the map W specified by

⎧
⎪⎪⎨

⎪⎪⎩

W [ud(t)] = ud(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1ud(ζ , ud(ζ ),

W [uq(t)] = uq(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1uq(ζ , uq(ζ ),

W [ua(t)] = ua(0) + 1
�(τ )
∫ t

0 (t – ζ )τ–1ua(ζ , ua(ζ ).

(50)
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For ud,0, ud,1, uq,0, uq,1, ua,0, ua,1 ∈ ϒς , we get

⎧
⎨

⎩
|W [ud,0(t)] – W [ud,1(t)]| ≤ 1

�(τ )
∫ t

0 (t – ζ )τ–1|ud,0(ζ ) – ud,1(ζ )|dζ ,

≤ 1
�(τ ) (
∫ t

0 (t – ζ )
τ–1
1–∇ dζ )1–∇(L1/∇(ζ )

1 dζ )∇ ,
{
|W [ud,0(t)] – W [ud,1(t)]|≤ TM1 v1‖L1‖1/∇

�(τ ) |ud,0 – ud,1|. (51)

Following the same procedure, we have

⎧
⎨

⎩
|W [uq,0(t)] – W [uq,1(t)]|≤ TM2 v2‖L2‖1/∇

�(τ ) |uq,0 – uq,1|,
|W [ua,0(t)] – W [ua,1(t)]|≤ TM3 v3‖L3‖1/∇

�(τ ) |ua,0 – ua,1|.

In the above cases, condition (47) is ensured. Thus the existence of the particular elucida-
tion for the exemplary is verified. �

10 The proposed numerical technique for equation (10)
Here we take into account an important numerical arrangement, which is based on the
special rule, called PI rule [61], for the solution of the Liouville–Caputo noninteger model
(10).

Let us consider the Liouville–Caputo noninteger initial value problem

LC
0 Dτ

t U(t) = H
(
t, U(t)

)
(52)

along with the initial condition U(t0) = U0, where H(t, U(t)) is continuous.
Applying the integral operator (6) to all sides of equation (52) and utilizing the definition

of the noninteger LC integral, we have the integral equation

U(t) – U(0) =
1

�(τ )

∫ t

0
H
(
ζ , U(ζ )

)
dζ , (53)

which is a Volterra integral equation obtained by an integral operator applied to equation
(52) utilizing the definition of the Caputo noninteger integral.

Taking t = tn = nh in (53), where h is the step size, we get

U(tn) – U(t0) =
1

�(τ )

n–1∑

0

∫

ti

ti+1(tn – ζ )τ–1H
(
ζ , U(ζ )

)
dζ . (54)

Now we can estimate the function H(ζ , U(ζ )) with the help of the first-order Lagrange
interpolation:

H
(
ζ , U(ζ )

)≈ H(ti+1, Ui+1) +
ζ – ti+1

h
(
H(ti+1, Ui+1) – H(ti, Ui)

)
, ζ ∈ [ti, ti+1]. (55)

The following Liouville–Caputo product-integration (LC-PI) formula is obtained by sub-
stituting (55) into (54) along with certain algebraic manipulations [62]:

Un = U0 + hτ

(

�nH(t0, U0) +
n∑

i=1

�n–iH(ti, Ui)

)

, n ≥ 1, (56)
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where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�n = (n–1)τ –nτ (n–τ–1)
�(τ+2) ,

�j =

⎧
⎨

⎩

1
�(τ+2) , j = 0,
(j–1)τ+1–2jτ+1+(j+1)τ+1

�(τ+2) , j = 1, 2, . . . , n – 1.

(57)

We use the well-known Newton–Raphson iterative method to evaluate Un in equation
(56). During the process, discrete convolutions are tested by considering the algorithm of
the fast Fourier transform. One of the returns of this technique is the low computing cost,
which is directly proportional to O(N log2 N) subject to O(N2) as in some other prevalent
discretization. The core concept was suggested in [63] and included in some recent papers
[64–66].

11 Numerical implementations for LC-PI method on equation (10)
This section is devoted to numerical imitations for the time-fractional brushless DC motor
(10) in the Liouville–Caputo sense. Let us consider the numerical arrangements (56) and
(57) to system (10):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ud,n = ud,0 + hτ (�n(–σud,0 + uq,0ua,0) +
∑n

i=1 �n–i(–σud,i + uq,iua,i)),

uq,n = uq,0 + hτ (�n(–uq,0 + βua,0 – ud,0ua,0)

+
∑n

i=1 �n–i(–uq,i + βua,i – ud,iua,i)),

ua,n = ua,0 + hτ (�n(γ uq,0 – γ ua,0) +
∑n

i=1 �n–i(γ uq,i – γ ua,i)).

(58)

Example 1 Taking the iterative arrangement (58), we consider the following values of the
parameters [13, 18]: σ = 0.875, β = 55, and γ = 4 with initial conditions ud(0) = 10, uq(0) =
10, and ua(0) = 10. See Fig. 2.

Example 2 Taking the iterative arrangement (58), we consider the following values of the
parameters: σ = 0.875, β = 25, and γ = 42 with initial conditions ud(0) = 20, uq(0) = 20,
and ua(0) = 20. See Fig. 3.

Example 3 Taking the iterative arrangement (58), we consider the following values of the
parameters: σ = 1.25, β = 25, and γ = 42 with initial conditions ud(0) = 12, uq(0) = 4, and
ua(0) = 3. See Fig. 4.

Example 4 Taking the iterative arrangement (58), we consider the following values of the
parameters: σ = 0.875, β = 0.786, and γ = 4 with the initial conditions ud(0) = 10, uq(0) =
10, and ua(0) = 10. See Fig. 5.

12 Brushless DC motor model via AB–Caputo fractional derivative
The AB–Caputo fractional order brushless DC motor model is defined by equation (11).
We will use it with the initial conditions given in (30).
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Figure 2 Simulations of Example 1 for time-fractional brushless DC motor (10) in the Liouville–Caputo sense

12.1 Existence and uniqueness of elucidation of model (11) for the ABC-PI
method

Using the noninteger integral operator of Atangana-Baleanu in equation (3), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ud(t) – ud(0) = 1–τ
Z(τ ) (–σud(t) + uq(t)ua(t))

+ τ
Z(τ )�(τ )

∫ t
0 (t – ζ )τ–1(–σud(ζ ) + uq(ζ )ua(ζ )) dζ ,

uq(t) – uq(0) = 1–τ
Z(τ ) (–uq(t) – ud(t)ua(t) + βua(t))

+ τ
Z(τ )�(τ )

∫ t
0 (t – ζ )τ–1(–σud(–uq(ζ ) – ud(ζ )ua(ζ ) + βua(ζ )) dζ ,

ua(t) – ua(0) = 1–τ
Z(τ ) (–γ ua(t) + γ uq(t))

+ τ
Z(τ )�(τ )

∫ t
0 (t – ζ )τ–1(–γ ua(ζ ) + γ uq(ζ )) dζ .

(59)

Let the kernels of system (59) be defined as

⎧
⎪⎪⎨

⎪⎪⎩

K1 = –σud(t) + uq(t)ua(t),

K2 = –uq(t) – ud(t)ua(t) + βua(t),

K3 = –γ ua(t) + γ uq(t).

(60)

First of all, we show that the kernels K1, K2, and K3 satisfy the Lipschitz condition.

Theorem 3 The kernels given in equation (60) satisfy the Lipschitz condition and contrac-
tion for 0 ≤ ηi < 1, i = 1, 2, 3.
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Figure 3 Simulations of Example 2 for time-fractional brushless DC motor (10) in the Liouville–Caputo sense

Proof Consider the first equation from (60) and let ud and ud,1 be two functions. Then

∥
∥K1(t, ud) – K1(t, ud,1)

∥
∥ =
∥
∥(uqua – σud) – (uqua – σud,1)

∥
∥

= ‖σud,1 – σud‖
≤ σ‖ud,1 – ud‖ = η1‖ud,1 – ud‖,

where η1 = σ , that is,

∥∥K1(t, ud) – K1(t, ud,1)
∥∥≤ η1‖ud,1 – ud‖, (61)

which shows that the Lipschitz condition holds for K1. Besides, if 0 ≤ η1 < 1, then it also a
contraction for K1. Similarly, we obtain

∥∥K2(t, uq) – K2(t, uq,1)
∥∥≤ η2‖uq,1 – uq‖,

∥∥K3(t, ua) – K3(t, ua,1)
∥∥≤ η3‖ua,1 – ua‖.

(62)

Now let l = K(m) × m, and let K(m) be a Banach space of real-valued functions R → R
on m with the norm ‖ud, uq, ua‖ = ‖ud‖ + ‖uq‖ + ‖ua‖, where ‖ud‖ = sup |ud(t)| : t ∈ m),
‖uq‖ = sup |uq(t)| : t ∈ m), and ‖ua‖ = sup |ua(t)| : t ∈ m). Equation (11) can be written in
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Figure 4 Simulations of Example 3 for time-fractional brushless DC motor (10) in the Liouville–Caputo sense

the Volterra-type integral form as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ud(t) – ud(0) = 1–τ
Z(τ ) (–σud(t) + uq(t)ua(t))

+ τ
Z(τ )�(τ )

∫ t
0 (t – ζ )τ–1(–σud(ζ ) + uq(ζ )ua(ζ )) dζ ,

uq(t) – uq(0) = 1–τ
Z(τ ) (–uq(t) – ud(t)ua(t) + βua(t))

+ τ
Z(τ )�(τ )

∫ t
0 (t – ζ )τ–1(–σud(–uq(ζ ) – ud(ζ )ua(ζ ) + βua(ζ )) dζ ,

ua(t) – ua(0) = 1–τ
Z(τ ) (–γ ua(t) + γ uq(t))

+ τ
Z(τ )�(τ )

∫ t
0 (t – ζ )τ–1(–γ ua(ζ ) + γ uq(ζ )) dζ .

(63)

Equation (63) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

ud(t) – ud(0) = 1–τ
Z(τ ) K1(t, ud) + τ

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1K1(ζ , ud) dζ ,

uq(t) – uq(0) = 1–τ
Z(τ ) K2(t, uq) + τ

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1K2(ζ , uq) dζ ,

ua(t) – ua(0) = 1–τ
Z(τ ) K3(t, ua) + τ

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1K3(ζ , ua) dζ .

(64)

The recursive formula of equation (64) takes the following form:

⎧
⎪⎪⎨

⎪⎪⎩

ud,n(t) – ud(0) = 1–τ
Z(τ ) K1(t, ud,n–1) + τ

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1K1(ζ , ud,n–1) dζ ,

uq,n(t) – uq(0) = 1–τ
Z(τ ) K2(t, uq,n–1) + τ

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1K2(ζ , uq,n–1) dζ ,

ua,n(t) – ua(0) = 1–τ
Z(τ ) K3(t, ua,n–1) + τ

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1K3(ζ , ua,n–1) dζ ,

(65)

where ud(0), uq(0), and ua(0) ≥ 0.
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Figure 5 Simulations of Example 4 for time-fractional brushless DC motor (10) in the Liouville–Caputo sense

Let the difference between successive components of system (65) be denoted by W (n, i),
i = 1, 2, 3. Then from system (65) and the kernel equations satisfying the Lipschitz condi-
tion we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖Wn,1‖ = ‖ud,n(t) – ud,n–1(t)‖
≤ (1–τ )η1

Z(τ ) ‖ud,n–1(t) – ud,n–2(t)‖
+ τη1

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1‖ud,n–1(ζ ) – ud,n–2(ζ )‖dζ ,

‖Wn,2‖ = ‖uq,n(t) – uq,n–1(t)‖
≤ (1–τ )η2

Z(τ ) ‖uq,n–1(t) – uq,n–2(t)‖
+ τη2

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1‖uq,n–1(ζ ) – uq,n–2(ζ )‖dζ ,

‖Wn,3‖ = ‖ua,n(t) – ua,n–1(t)‖
≤ (1–τ )η3

Z(τ ) ‖ua,n–1(t) – ua,n–2(t)‖
+ τη3

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1‖ua,n–1(ζ ) – ua,n–2(ζ )‖dζ

(66)

or

⎧
⎪⎪⎨

⎪⎪⎩

‖Wn,1‖ ≤ (1–τ )η1
Z(τ ) ‖Wn–1,1(t)‖ + τη1

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1‖Wn–1,1(ζ )‖dζ ,

‖Wn,2‖ ≤ (1–τ )η2
Z(τ ) ‖Wn–1,2(t)‖ + τη2

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1‖Wn–1,2(ζ )‖dζ ,

‖Wn,3‖ ≤ (1–τ )η3
Z(τ ) ‖Wn–1,3(t)‖ + τη3

Z(τ )�(τ )
∫ t

0 (t – ζ )τ–1‖Wn–1,3(ζ )‖dζ .

(67)

Using consequences (67), we can confirm the existence of the solution. �
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Theorem 4 Model (11) has a unique solution if

1 – τ

Z(τ )
ηi +

tτ+1
max

�(τ )Z(τ )
ηi < 1 or 0 < 1 –

tτ+1
max

�(τ )Z(τ )
ηi –

1 – τ

Z(τ )
ηi, i = 1, 2, 3.

Proof For the first equation in (11), let ud(t) and ud,1(t) be two solutions. Then

ud(t) – ud,1(t) =
1 – τ

Z(τ )
(
K1(t, ud) – K1(t, ud,1)

)

+
τ

�(τ )Z(τ )

∫ t

0
(t – ζ )τ–1(K1(ζ , ud) – K1(ζ , ud,1)

)
dζ ,

∥
∥ud(t) – ud,1(t)

∥
∥≤ 1 – τ

Z(τ )
∥
∥K1(t, ud) – K1(t, ud,1)

∥
∥

+
τ

�(τ )Z(τ )

∫ t

0
(t – ζ )τ–1∥∥K1(ζ , ud) – K1(ζ , ud,1)

∥∥dζ ,

∥
∥ud(t) – ud,1(t)

∥
∥≤ (1 – τ )η1

Z(τ )
‖ud – ud,1‖ +

tτ η1

�(τ )Z(τ )
∥
∥ud(ζ ) – ud,1(ζ )

∥
∥.

This implies

(
1 –

(1 – τ )η1

Z(τ )
η1 –

(tτ )η1

Z(τ )�(τ )

)∥∥ud(ζ ) – ud,1(ζ )
∥∥≤ 0,

which implies that

∥
∥ud(ζ ) – ud,1(ζ )

∥
∥ = 0, ⇒ ud(ζ ) = ud,1(ζ ).

Applying the same procedure to the remaining equations of (11), we obtain

∥∥uq(ζ ) – uq,1(ζ )
∥∥ = 0, ⇒ uq(ζ ) = uq,1(ζ ),

∥∥ua(ζ ) – ua,1(ζ )
∥∥ = 0, ⇒ ua(ζ ) = ua,1(ζ ).

Thus the uniqueness of the fractional-order model is verified. �

13 The proposed numerical technique for Eq. (11)
This section is devoted to the numerical scheme, which is based on the rule [61], to solve
the noninteger model (11). Let us consider ABC initial value problem of fractional (non-
integer) order.

Let us consider the Liouville–Caputo noninteger initial value problem

ABC
0 Dτ

t U(t) = H
(
t, U(t)

)
(68)

with initial condition U(t0) = U0, where H(t, U(t)) is a continuous function. Applying the
integral operator to all sides of equation (68) and the concept of ABC noninteger integral,
we get the following Volterra integral equation:

U(t) – U(0) =
1 – τ

Z(τ )
H
(
t, U(t)

)
+

τ

�(τ )Z(τ )

∫ t

0
(t – ζ )τ–1H

(
ζ , U(ζ )

)
dζ . (69)
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Taking t = tn = nh in (69), where h is the step size, we get

U(tn) – U(t0) =
1 – τ

Z(τ )
H
(
tn, U(tn)

)
+

τ

�(τ )Z(τ )

n–1∑

0

∫

t0

t(tn – ζ )τ–1H
(
ζ , U(ζ )

)
dζ . (70)

Now we can approximate the function H(ζ , U(ζ )) with the help of the first-order Lagrange
interpolation:

H
(
ζ , U(ζ )

)≈ H(ti+1, Ui+1) +
ζ – ti+1

h
(
H(ti+1, Ui+1) – H(ti, Ui)

)
, ζ ∈ [ti, ti+1], (71)

where Ui = U(ti). Replacing (71) in (70) with some algebraic manipulations, we get the
following ABC product-integration (ABCPI) formula [67]:

Un = U0 +
τhτ

Z(τ )

(

AnH(t0, U0) +
n∑

i=1

Bn–iH(ti, Ui)

)

, n ≥ 1, (72)

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

An = (n–1)τ –nτ (n–τ–1)
�(τ+2) ,

Bj =

⎧
⎨

⎩

1
�(τ+2) + 1–τ

τhτ , j = 0,
(j–1)τ+1–2jτ+1+(j+1)τ+1

�(τ+2) , j = 1, 2, . . . , n – 1.

(73)

The convergence order for the ABCPI rule is τ + 1, that is, the inaccuracy satisfies
|U(tn) – Un| = O(h1+τ ) [40, 67–70]. Note that we use discrete convolutions during the run
of this process, which are assessed by considering the algorithm of FFT. It has the bene-
fit that the computational cost is proportional to O(N log2 N) subject to O(N2) as in any
other prevalent discretization algorithm (see [26] and references therein).

14 Numerical implementation for ABC-PI method on equation (11)
The following recursive formulas are obtained by applying the computational algorithm
(72)–(73) to system (11):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ud,n = ud,0 + hτ τ
Z(τ ) (An(–σud,0 + uq,0ua,0) +

∑n
i=1 Bn–i(–σud,i + uq,iua,i)),

uq,n = uq,0 + hτ τ
Z(τ ) (An(–uq,0 + βua,0 – ud,0ua,0)

+
∑n

i=1 Bn–i(–uq,i + βua,i – ud,iua,i)),

ua,n = ua,0 + hτ τ
Z(τ ) (An(γ uq,0 – γ ua,0) +

∑n
i=1 Bn–i(γ uq,i – γ ua,i)).

(74)

Example 5 Taking the iterative arrangement (74), we consider the following values of the
parameters [13, 18]: σ = 0.875, β = 55, and γ = 4 with initial conditions ud(0) = 10, uq(0) =
10, and ua(0) = 10. See Fig. 6.

Example 6 Taking the iterative arrangement (74), we consider the following values of the
parameters: σ = 0.875, β = 25, and γ = 42 with initial conditions ud(0) = 20, uq(0) = 20,
and ua(0) = 20. See Fig. 7.
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Figure 6 Simulations of Example 5 for time-fractional brushless DC motor (11) in the AB–Caputo sense

Figure 7 Simulations of Example 6 for time-fractional brushless DC motor (11) in the AB–Caputo sense



Zafar et al. Advances in Difference Equations        (2021) 2021:433 Page 21 of 25

Figure 8 Simulations of Example 7 for time-fractional brushless DC motor (11) in the AB–Caputo sense

Example 7 Taking the iterative arrangement (74), we consider the following values of the
parameters: σ = 1.25, β = 25, and γ = 42 with initial conditions ud(0) = 12, uq(0) = 4, and
ua(0) = 3. See Fig. 8.

Example 8 Taking the iterative arrangement (74), we consider the following values of the
parameters: σ = 0.875, β = 0.786, and γ = 4 with initial conditions ud(0) = 10, uq(0) = 10,
and ua(0) = 10. See Fig. 9.

15 Discussion and outcomes
In Example 1 or 5 of LC-PI and ABCPI, the parameters used are σ = 0.875, β = 55, and
γ = 4. The simulations of both numerical techniques are shown in Figs. 2(a–g) and 6(a–g).
The system under observation converges to two equilibrium points E1 and E2 for different
values of fractional order τ . The simulations 2(a) and 6(a) for ud reveal that the system is
chaotic for τ = 1, and it is not an attractor, but when the fractional order lowers down by
5%, the simulations indicate that the system becomes an attractor and converges to the
equilibrium point E1. The simulations 2(b), 2(c), 6(b), and 6(c) for uq and ua reveal that
the system is chaotic for τ = 1, for the fractional orders τ = 0.95 and τ = 0.90, the system
converges to E2 but for τ = 0.85, the system converges to the other equilibrium point E1.
Also, these equilibrium points can easily be identified from 3D plots and 2D phase plots.
These plots show that the DC motor system exhibits the butterfly effect.

In Example 2 or 6 of LC-PI and ABCPI, the parameters used are σ = 0.875, β = 25,
and γ = 42. The simulations of both numerical techniques are shown in Figs. 3(a–g) and
7(a–g). The simulations 3(a) and 7(a) for ud reveal that the system is not chaotic for τ =
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Figure 9 Simulations of Example 8 for time-fractional brushless DC motor (11) in the AB–Caputo sense

1, 0.95, 0.90, and 0.85, and the system is an attractor and converges to the equilibrium
point E1. The simulations 3(b), 3(c), 7(b), and 7(c) for uq and ua reveal that the system
converges to two equilibrium points E1 and E2. These equilibrium points can easily be
seen in 3D and 2D phase plots. These plots show that the DC motor system exhibits two
wing simulations.

In Example 3 or 7 of LC-PI and ABCPI, the parameters used are σ = 1.25, β = 25,
and γ = 42. The simulations of both numerical methods are shown in Figs. 4(a–g) and
8(a–g). The fractional system (10)–(11) converges to one equilibrium point, that is, E1 =
(β – 1,

√
σ (β – 1),

√
σ (β – 1)) for different values of noninteger order τ . Figure 4(d–g) and

8(d–g) show the 2D and 3D effects, which are in spiral shape and converge to E1.
In Example 4 or 8 of LC-PI and ABCPI, the parameters used are σ = 0.875, β = 0.786,

and γ = 4. The simulations of both numerical methods are given in Figs. 5(a–g) and 9(a–
g). The fractional system (10)–(11) converges to one equilibrium point E0 for all values of
noninteger order τ . Here E0 is the trivial equilibrium point.

16 Conclusion
In this paper, we considered two iterative techniques, the Caputo–Liouville product in-
tegration (CL-PI) and Atangana–Baleanu–Caputo product integration (ABCPI) rules for
solving brushless DC motor model. The noninteger definitions of Liouville–Caputo and
Atangana–Baleanu types are taken into account to model the proposed system. More-
over, kernels considered in such classes of operators are the Mittag-Leffler and power-law
functions, respectively. Next, the order of the noninteger derivative discussed in both op-
erators has a very important part in the outcomes attained from the corresponding meth-
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ods. The numerical consequences and theoretical considerations are compared to infer
that both derivatives are very favorable tools to analyze the exemplary. The equilibrium
analysis of the system is discussed, which is useful to confirm the numerical imitations.
The operators used and the techniques offered in this paper can be used to solve many
other problems. The future research direction is to use the ABCPI technique in image
processing and stochastic differential equations.
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