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Abstract
In this paper, we consider the biparabolic problem under nonlocal conditions with
both linear and nonlinear source terms. We derive the regularity property of the mild
solution for the linear source term while we apply the Banach fixed-point theorem to
study the existence and uniqueness of the mild solution for the nonlinear source
term. In both cases, we show that the mild solution of our problem converges to the
solution of an initial value problem as the parameter epsilon tends to zero. The
novelty in our study can be considered as one of the first results on biparabolic
equations with nonlocal conditions.
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1 Introduction
Let � be a bounded domain in R

N (N ≥ 1) with sufficiently smooth boundary ∂�. In this
paper, we consider the following biparabolic equation:

⎧
⎪⎪⎨

⎪⎪⎩

utt(x, t) + 2�ut(x, t) + �2u(x, t) = F(u(x, t)) in � × (0, T],

u|∂� = �u|∂� = 0 in �,

ut(x, 0) = 0 in ∂�,

(1.1)

under temporal nonlocal condition

u(x, 0) + εu(x, T) = f (x), x ∈ ∂�. (1.2)

Here u(x, t) is a function of temperature or concentration, F(u) is a source function, ε is a
parameter, and f ∈ L2(�)∩H

s(�). When ε = 0, the problem becomes an initial conditional
problem.

The main equation of problem (1.1) is equivalent to

P2u = P(Pu) =
∂2

∂t2 u + 2
∂

∂t
Au + A2u = G(x, t; u),
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where P is the main operator for the classical parabolic equation,

Pu =
(

∂

∂t
+ A

)

u = G(x, t; u).

As mentioned by Fushchich, Galitsyn, and Polubinskii [9], the new fourth-order partial
differential equation (1.1) is invariant with respect to the Galilei group. From the results
in [9] we realize that the classical heat equations

ut – �u = 0

do not completely describe heat and mass transfer processes. Therefore, in many situa-
tions of heat conduction, it tends to replace the classical thermal equation by one of the
hyperbolic form, such as problem (1.1). Problem (1.1) is a form of quadratic PDEs equa-
tions, which have a wide range of applications in various scientific and engineering disci-
plines, such as conduction of heat [7, 9, 24, 33], dynamics of filtration consolidation [6, 8],
strongly damped wave equations [14, 23, 34], ice formulation and accretion problems on
structures, ships, and aircraft [19–21], the transport of liquids and insoluble surfactant
through the lung airways [11, 12], brain imaging for the detection and mapping of sub-
tle abnormalities of shape and volume in the brains of patients with metastatic tumors
[18, 26, 27], and so on.

Whereas there were a number of studies focused on parabolic equations [1–4, 10, 13, 15,
22, 25, 28], the studies on biparabolic equations are still limited. Let us mention previous
works related to biparabolic equation (1.1). Lakhdari and Boussetila [16] applied Kozlov–
Maz’ya iteration method for approximating the final value problem for biparabolic equa-
tion. Bulavatsky [7] studied some boundary value problems for biparabolic equations with
nonlocal boundary conditions. Besma et al. [5] considered the problem of approximating
a solution of an ill-posed biparabolic problem in the abstract Hilbert space. They intro-
duced a modified quasi-boundary value method to get stable solutions for regularizing
the ill-posedness of a biparabolic equation. Tuan et al. [32] studied the problem of finding
the initial distribution for a linear inhomogeneous or nonlinear biparabolic equation. Re-
cently, Phuong et al. [25] studied an inverse source problem of the biparabolic equation.
Very recently, Tuan et al. [31] investigated two terminal value problems for stochastic bi-
parabolic equations perturbed by a standard Brownian motion or a fractional Brownian
motion.

The nonlocal problem focused in this paper is considered as one of the most interest-
ing areas for the readers in various applications, such as chaos, chemistry, biology, and
physics; see [30]. In comparison with the initial or final conditions, the nonlocal condi-
tions are more difficult to handle. The novelty of our problem is the presence of condition
of nonlocal type (1.2). In many real-world applications, it is difficult to collect accurate
data at the beginning or at the end of a process. In addition, many processes happen so
fast and in a short period, in which we only can observe the data at the beginning and the
end of a process, not the data at a specific time in the range of (0,T). Therefore studies on
nonlocal conditional problems can help us to track down a process in more detail and in
an effective way.



Long et al. Advances in Difference Equations        (2021) 2021:434 Page 3 of 16

To the best of our knowledge, up to date, there is still no any study considering problem
(1.1) under the nonlocal condition (1.2). This motivates us to focus on problems (1.1)–
(1.2). The main contributions of the paper are as follows.

• For the linear source function, we give the well-posedness and investigate the
convergence of the mild solution to problem (1.1)–(1.2) as ε approaches 0. In more
detail, we prove that the solution of problem (1.1)–(1.2) converges to a mild solution
with the initial value problem for (1.1).

• For nonlinear source functions, we prove the existence and uniqueness of mild
solutions. In the main analysis, we apply the Banach fixed point theorem. Our next
aim is to demonstrate the convergence of the mild solution as the parameter ε tends
to 0.

The main techniques to handle the above problem are based on the ideas of some recent
publications [17, 29, 30]. We overcome some difficulties by setting up complex evaluations
on Hilbert scale spaces. Choosing the right spaces for the input f and for the solution is
also not simple task.

This paper is organized as follows. In Sect. 2, we provide some useful notations and the
definition of a solution in the mild sense. In Sect. 3, we focus on the well-posed results
for the linear case and discuss on what happens as ε → 0. The well-posed results for the
nonlinear source term are introduced in Sect. 4. Eventually, the results are summarized in
Sect. 5.

2 Preliminary results and mild solution
In this section, we introduce the notation and the functional setting used in our paper.
Recall that the spectral problem

⎧
⎨

⎩

�ψn(x) = –λnψn(x), x ∈ �,

ψn(x) = 0, x ∈ ∂�,

admits eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · with λn → ∞ as n → ∞. The correspond-
ing eigenfunctions are ψn ∈ H1

0 (�).

Definition 2.1 (Hilbert scale space) We recall the Hilbert scale space given as follows:

H
s(�) =

{

f ∈ L2(�),
∞∑

n=1

λ2s
n

(∫

�

f (x)ψn(x) dx
)2

< ∞
}

for s ≥ 0. It is well known that Hs(�) is the Hilbert space corresponding to the norm

‖f ‖Hs(�) =

( ∞∑

j=1

λ2s
j

(∫

�

f (x)ψn(x) dx
)2

)1/2

, f ∈H
s(�).

Let us give an explicit formula of the mild solution. First, taking the inner product of
both sides of (1.1) with ψn(x), we find that

d2

dt2

(∫

�

u(x, t)ψn(x) dx
)

+ 2λn

(∫

�

u(x, t)ψn(x) dx
)

+ λ2
n

(∫

�

u(x, t)ψn(x) dx
)

=
∫

�

F
(
u(x, t)

)
ψn(x) dx. (2.1)
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It is easy to see that the latter problem has a solution given by

∫

�

u(x, t)ψn(x) dx = e–tλn (1 + tλn)
∫

�

u(x, 0)ψn(x) dx

+
∫ t

0
(t – r)e–(t–r)λn

(∫

�

F
(
u(x, r)

)
ψn(x) dx

)

dr. (2.2)

The condition u(x, 0) + εu(x, T) = f (x) implies that

∫

�

u(x, 0)ψn(x) dx + ε

∫

�

u(x, T)ψn(x) dx

=
(
1 + εe–Tλn (1 + Tλn)

)
∫

�

u(x, 0)ψn(x) dx

+ ε

∫ T

0
(T – r)e–(T–r)λn

(∫

�

F
(
u(x, r)

)
ψn(x) dx

)

dr

=
∫

�

f (x)ψn(x) dx. (2.3)

We rewrite it as

∫

�

u(x, 0)ψn(x) dx

=
∫

�
f (x)ψn(x) dx – ε

∫ T
0 (T – r)e–(T–r)λn (

∫

�
F(u(x, r))ψn(x) dx) dr

1 + εe–Tλn (1 + Tλn)
. (2.4)

Combining (2.2) and (2.4), we find that

∫

�

u(x, t)ψn(x) dx =
e–tλn (1 + tλn)

1 + εe–Tλn (1 + Tλn)

∫

�

f (x)ψn(x) dx

–
εe–tλn (1 + tλn)

∫ T
0 (T – r)e–(T–r)λn (

∫

�
F(u(x, r))ψn(x) dx) dr

1 + εe–Tλn (1 + Tλn)

+
∫ t

0
(t – r)e–(t–r)λn

(∫

�

F
(
u(x, r)

)
ψn(x) dx

)

dr. (2.5)

For any f ∈ L2(�), we define

Qε(t)f =
∞∑

n=1

e–tλn (1 + tλn)
1 + εe–Tλn (1 + Tλn)

(∫

�

f (x)ψn(x) dx
)

ψn(x) (2.6)

and

S(t)f = e–t�f =
∞∑

n=1

e–tλn

(∫

�

f (x)ψn(x) dx
)

ψn(x). (2.7)
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From (2.5) we give an explicit formula of the solution to problem (1.1)–(1.2) in the mild
setting:

uε(t) = Qε(t)f +
∫ t

0
(t – r)S(t – r)F

(
uε(r)

)
dr

– εQε(t)
∫ T

0
(T – r)S(T – r)F

(
uε(r)

)
dr. (2.8)

3 Well-posed results for linear case
In this section, we focus on the case F(t, u) = F(t). Under the linear case, we recall the mild
solution uε to problem (1.1)–(1.2):

uε(t) = Qε(t)f +
∫ t

0
(t – r)S(t – r)F(r) dr – εQε(t)

∫ T

0
(T – r)S(T – r)F(r) dr. (3.1)

Lemma 3.1 Let f ∈ H
s(�).

a) If s < m + 1, then

∥
∥Qε(t)f

∥
∥
Hm(�) ≤ C(s, m)ts–m–1‖f ‖Hs(�). (3.2)

b) If s < m, then

∥
∥S(t)f

∥
∥
Hm(�) ≤ C(s, m)ts–m‖f ‖Hs(�). (3.3)

Proof Using Parseval’s equality, we find that

∥
∥Q(t)f

∥
∥2
Hm(�) =

∞∑

n=1

λ2m
n

(
e–tλn (1 + tλn)

1 + εe–Tλn (1 + Tλn)

)2(∫

�

f (x)ψn(x) dx
)2

≤ 2
∞∑

n=1

λ2m
n e–2tλn

(
1 + t2λ2

n
)
(∫

�

f (x)ψn(x) dx
)2

≤ 2CT

∞∑

n=1

λ2m+2
n e–2tλn

(∫

�

f (x)ψn(x) dx
)2

. (3.4)

In view of the inequality e–z ≤ Cνz–ν for all ν > 0, we know that

λ2m+2
n e–2tλn ≤ Cνλ

2m+2
n (tλn)–2ν = t–2νλ2m+2–2ν

n .

It follows from (3.4) that

∥
∥Qε(t)f

∥
∥2
Hm(�) ≤ t–2ν

∞∑

n=1

λ2m+2–2ν
n

(∫

�

f (x)ψn(x) dx
)2

, (3.5)

which gives the estimate

∥
∥Qε(t)f

∥
∥
Hm(�) ≤ CT t–ν‖f ‖Hm+1–ν (�). (3.6)
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Setting ν = m + 1 – s > 0, we know that

∥
∥Qε(t)f

∥
∥
Hm(�) ≤ C(m, s)ts–m–1‖f ‖Hs(�). (3.7)

Using again e–z ≤ Cνz–ν for all ν > 0, we find that

∥
∥S(t)f

∥
∥2
Hm(�) =

∥
∥e–t�f

∥
∥2
Hm(�) =

∞∑

n=1

λ2m
n e–2tλn

(∫

�

f (x)ψn(x) dx
)2

≤ Cνt–2νλ2m–2ν
n

(∫

�

f (x)ψn(x) dx
)2

= Cνt–2ν‖f ‖2
Hm–ν (�). (3.8)

Setting ν = m – s for s < m, we get

∥
∥S(t)f

∥
∥
Hm(�) ≤ C(s, m)ts–m‖f ‖Hs(�). (3.9)

�

Theorem 3.1 Let F ∈ L∞(0, T ;Hs–1(�)) and f ∈ H
s(�). Then

‖uε‖Lμ(0,T ;Hm(�)) ≤ C(T , s, m,μ)
(‖f ‖Hs(�) + ‖F‖L∞(0,T ;Hs–1(�))

)
. (3.10)

Proof Applying Lemma 3.1 and noting that m < s < m + 1, we find that

∥
∥uε(·, t)

∥
∥
Hm(�) ≤ ∥

∥Qε(t)f
∥
∥
Hm(�) +

∫ t

0
(t – r)

∥
∥S(t – r)F(r)

∥
∥
Hm(�) dr

+ ε

∥
∥
∥
∥Qε(t)

∫ T

0
(T – r)S(T – r)F(r) dr

∥
∥
∥
∥
Hm(�)

≤ C(m, s)ts–m–1‖f ‖Hs(�) +
∫ t

0
(t – r)s–m∥

∥F(r)
∥
∥
Hs–1(�) dr

+ εts–m–1
∫ T

0
(T – r)

∥
∥S(T – r)F(r)

∥
∥
Hs(�) dr

= I1(t) + I2(t) + I3(t). (3.11)

Let μ be such that 1 < μ < 1
m+1–s . The first term I1 is bounded by

‖I1‖Lμ(0,T ;Hm(�)) ≤
(∫ T

0

∣
∣C(m, s)ts–m–1‖f ‖Hs(�)

∣
∣μ dt

)1/μ

=
(

T (s–m–1)μ+1

(s – m – 1)μ + 1

)1/μ

C(m, s)‖f ‖Hs(�). (3.12)

For the second term I2, we easily observe that

I2(t) ≤
(∫ t

0
(t – r)s–m dr

)

‖F‖L∞(0,T ;Hs–1(�)) =
Ts–m+1

s – m + 1
‖F‖L∞(0,T ;Hs–1(�)). (3.13)
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Then we get the bound

‖I2‖Lμ(0,T ;Hm(�)) ≤
(∫ T

0

∣
∣
∣
∣

Ts–m+1

s – m + 1
‖F‖L∞(0,T ;Hs–1(�))

∣
∣
∣
∣

μ

dt
)1/μ

=
Ts–m+1

s – m + 1 + 1μ
‖F‖L∞(0,T ;Hs–1(�)). (3.14)

For the third term I3, using Lemma (3.1), we have that

I3 ≤ εts–m–1
∫ T

0
(T – r)

∥
∥S(T – r)F(r)

∥
∥
Hs(�) dr

≤ εC(m, s)ts–m–1
∫ T

0
(T – r)(T – r)–1∥∥F(r)

∥
∥
Hs–1(�) dr

≤ εC(m, s)T‖F‖L∞(0,T ;Hs–1(�))ts–m–1. (3.15)

This immediately implies that

‖I3‖Lμ(0,T ;Hm(�)) ≤
(∫ T

0

∣
∣εC(m, s)T‖F‖L∞(0,T ;Hs–1(�))ts–m–1∣∣μ dt

)1/μ

= εC(m, s)T‖F‖L∞(0,T ;Hs–1(�))

(
T (s–m–1)μ+1

(s – m – 1)μ + 1

)1/μ

. (3.16)

Combining (3.11), (3.12), (3.14), and (3.16), we find that

‖uε‖Lμ(0,T ;Hm(�)) ≤ ‖I1‖Lμ(0,T ;Hm(�)) + ‖I2‖Lμ(0,T ;Hm(�)) + ‖I3‖Lμ(0,T ;Hm(�))

≤ C(T , s, m,μ)
(‖f ‖Hs(�) + ‖F‖L∞(0,T ;Hs–1(�))

)
. (3.17)

Let us recall the formula

u(t) = S(t)f +
∫ t

0
(t – r)S(t – r)F(r) dr. (3.18)

Since (3.1), we get that

uε(t) – u(t) =
(
Qε(t) – S(t)

)
f – εQε(t)

∫ T

0
(T – r)S(T – r)F(r) dr. (3.19)

From (3.16) we know that

∥
∥
∥
∥εQε(t)

∫ T

0
(T – r)S(T – r)F(r) dr

∥
∥
∥
∥

Lμ(0,T ;Hm(�))

≤ εC(m, s)T‖F‖L∞(0,T ;Hs–1(�))

(
T (s–m–1)μ+1

(s – m – 1)μ + 1

)1/μ

. (3.20)

Our next aim is estimating the term (Qε(t) – S(t))f . We clearly see that

(
Qε(t) – S(t)

)
f =

∞∑

n=1

[
e–tλn (1 + tλn)

1 + εe–Tλn (1 + Tλn)
– e–tλn (1 + tλn)

](∫

�

f (x)ψn(x) dx
)

ψn(x)
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=
∞∑

n=1

[
εe–Tλn (1 + Tλn)e–tλn (1 + tλn)

1 + εe–Tλn (1 + Tλn)

](∫

�

f (x)ψn(x) dx
)

ψn(x).

Parseval’s equality implies that

∥
∥
(
Qε(t) – S(t)

)
f
∥
∥2
Hm(�)

=
∞∑

n=1

λ2m
n

[
εe–Tλn (1 + Tλn)e–tλn (1 + tλn)

1 + εe–Tλn (1 + Tλn)

]2(∫

�

f (x)ψn(x) dx
)2

≤ ε2
∞∑

n=1

λ2m
n e–2Tλn (1 + Tλn)2e–2tλn

(∫

�

f (x)ψn(x) dx
)2

. (3.21)

Using the inequality e–z ≤ Cνz–ν for all ν > 0, we arrive at

e–2tλn ≤ C(m, s)(tλn)–2(m+1–s). (3.22)

It is obvious that

e–2Tλn (1 + Tλn)2 ≤ C.

It follows from (3.21) that

∥
∥
(
Qε(t) – S(t)

)
f
∥
∥2
Hm(�) ≤ Cε2t2m–2s

∞∑

n=1

λ2s–2
n

(∫

�

f (x)ψn(x) dx
)2

= C(m, s)ε2t2s–2m–2‖f ‖2
Hs–1(�). (3.23)

This implies that

∥
∥(Qε – S)f

∥
∥

Lμ(0,T ;Hm(�)) ≤ C(m, s)ε‖f ‖Hs–1(�)

(∫ T

0
t(s–m–1)μ dt

)1/μ

= C(m, s)ε‖f ‖Hs–1(�)

(
T (s–m–1)μ+1

(s – m – 1)μ + 1

)1/μ

, (3.24)

where we recall that 1 < μ < 1
m+1–s . Combining (3.19), (3.20), and (3.24), we arrive at

‖uε – u‖Lμ(0,T ;Hm(�))

≤ ∥
∥(Qε – S)f

∥
∥

Lμ(0,T ;Hm(�)) +
∥
∥
∥
∥εQε(t)

∫ T

0
(T – r)S(T – r)F(r) dr

∥
∥
∥
∥

Lμ(0,T ;Hm(�))

≤ C(m, s)ε‖f ‖Hs–1(�)

(
T (s–m–1)μ+1

(s – m – 1)μ + 1

)1/μ

+ εC(m, s)T‖F‖L∞(0,T ;Hs–1(�))

(
T (s–m–1)μ+1

(s – m – 1)μ + 1

)1/μ

. (3.25)

�
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4 Well-posed results for nonlinear case
Theorem 4.1 Let f ∈H

s(�) for s ≥ p. Let F be such that

∥
∥F(ϕ) – F(ψ)

∥
∥
Hq(�) ≤ Kf ‖ϕ – ψ‖Hp(�) (4.1)

for all ϕ,ψ ∈ H
p(�) and p < q < p + 1. Then for any ε > 0 and Kf small enough, problem

(1.1)–(1.2) has a unique mild solution in Xa,∞((0, T];Hp(�)), which satisfies

uε(t) = Qε(t)f +
∫ t

0
(t – r)S(t – r)F

(
uε(r)

)
dr

– εQε(t)
∫ T

0
(T – r)S(T – r)F

(
uε(r)

)
dr, (4.2)

where

max(0, p + 1 – s) ≤ a < 1. (4.3)

In addition,

‖uε‖Lμ(0,T ;Hp(�)) ≤ 2CT T
1
μ +s–p–1

(1 – aμ)1/μ ‖f ‖Hs(�) (4.4)

for 1 < μ < 1
a .

Proof We look for the solution in the space Xa,∞((0, T];Hp(�)). Let us define the function

Bε(ψ)(t) = Qε(t)f +
∫ t

0
(t – r)S(t – r)F

(
ψ(r)

)
dr

– εQε(t)
∫ T

0
(T – r)S(T – r)F

(
ψ(r)

)
dr. (4.5)

If ψ = 0, then by the assumption F(0) = 0 we have that

ta∥∥Bεψ(t)
∥
∥
Hp(�) = ta∥∥Qε(t)f

∥
∥
Hp(�) ≤ CT ta–ν‖f ‖Hp+1–ν (�). (4.6)

Since s < p + 1, we set ν = p + 1 – s. Then it follows from (4.6) that

ta∥∥Bεψ(t)
∥
∥
Hp(�) ≤ CT ts+a–p–1‖f ‖Hs(�). (4.7)

Under the assumption p + 1 ≤ s + a, if ψ = 0, then we find that for any 0 ≤ t ≤ T ,

ta∥∥Bε

(
ψ(t) = 0

)∥
∥
Hp(�) ≤ CT Ts+a–p–1‖f ‖Hs(�), (4.8)

which allows us to derive that Bεψ belongs to the space Xa,∞((0, T];Hp(�)) if ψ = 0.
Let ϕ,ψ ∈ Xa,∞((0, T];Hp(�)). It is obvious that

Bε(ψ)(t) – Bε(ϕ)(t) =
∫ t

0
(t – r)S(t – r)

(
F
(
ψ(r)

)
– F

(
ϕ(r)

))
dr
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– εQε(t)
∫ T

0
(T – r)S(T – r)

(
F
(
ψ(r)

)
– F

(
ϕ(r)

))
dr

= J1(t) + J2(t). (4.9)

By the second part of Lemma 3.1 the term J1 is bounded by

∥
∥J1(t)

∥
∥
Hp(�) ≤

∫ t

0
(t – r)

∥
∥S(t – r)

(
F
(
ψ(r)

)
– F

(
ϕ(r)

))∥
∥
Hp(�) dr

≤
∫ t

0
(t – r)(t – r)q–p∥∥F

(
ψ(r)

)
– F

(
ϕ(r)

)∥
∥
Hq(�) dr, (4.10)

where we note that p > q. Since F is globally Lipschitz as in (4.1), we infer that

∥
∥J1(t)

∥
∥
Hp(�) ≤ Kf

∫ t

0
(t – r)q–p+1∥∥ψ(r) – ϕ(r)

∥
∥
Hp(�) dr

≤ Kf

(∫ t

0
(t – r)q–p+1r–a dr

)(
sup

0≤t≤T
ra∥∥ψ(r) – ϕ(r)

∥
∥
Hp(�)

)

= Kf B(2 + q – p, 1 – a)t2–a+q–p‖ψ – ϕ‖Xa,∞((0,T];Hp(�)), (4.11)

where we note that q + 2 > p and a < 1. This implies that

ta∥∥J1(t)
∥
∥
Hp(�) ≤ Kf B(2 + q – p, 1 – a)t2+q–p‖ψ – ϕ‖Xa,∞((0,T];Hp(�))

≤ Kf B(2 + q – p, 1 – a)T2+q–p‖ψ – ϕ‖Xa,∞((0,T];Hp(�)). (4.12)

The right-hand side of this expression is independent of t, and we deduce that

‖J1‖Xa,∞((0,T];Hp(�)) ≤ Kf B(2 + q – p, 1 – a)T2+q–p‖ψ – ϕ‖Xa,∞((0,T];Hp(�)). (4.13)

Since q < p + 1 and a > 0, we can choose a real number s′ such that

max(p + 1 – a, q) ≤ s′ < p + 1.

Then we find that

∥
∥
∥
∥Qε(t)

∫ T

0
(T – r)S(T – r)

(
F
(
ψ(r)

)
– F

(
ϕ(r)

))
dr

∥
∥
∥
∥
Hp(�)

≤ ts′–p–1
∥
∥
∥
∥

∫ T

0
(T – r)S(T – r)

(
F
(
ψ(r)

)
– F

(
ϕ(r)

))
dr

∥
∥
∥
∥
Hs(�)

. (4.14)

Since s′ > q, we get that

∥
∥
∥
∥

∫ T

0
(T – r)S(T – r)

(
F
(
ψ(r)

)
– F

(
ϕ(r)

))
dr

∥
∥
∥
∥
Hs(�)

≤
∫ T

0
(T – r)q–s′+1∥∥

(
F
(
ψ(r)

)
– F

(
ϕ(r)

))∥
∥
Hq(�) dr
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≤ Kf

∫ T

0
(T – r)q–s′+1∥∥ψ(r) – ϕ(r)

∥
∥
Hp(�) dr

= Kf

∫ T

0
(T – r)q–s′+1r–ara∥∥ψ(r) – ϕ(r)

∥
∥
Hp(�) dr

≤ Kf B
(
2 + q – s′, 1 – a

)
T2+q–s′–a‖ψ – ϕ‖Xa,∞((0,T];Hp(�)). (4.15)

Combining (4.14) and (4.15) and noting that s′ + a ≥ p + 1, we obtain that

ta∥∥J2(t)
∥
∥
Hp(�) ≤ εta+s′–p–1Kf B

(
2 + q – s′, 1 – a

)
T2+q–s′–a‖ψ – ϕ‖Xa,∞((0,T];Hp(�))

≤ εKf B
(
2 + q – s′, 1 – a

)
Tq+1–p‖ψ – ϕ‖Xa,∞((0,T];Hp(�)). (4.16)

The condition q + 1 > p ensures that the right-hand side is defined. Therefore we can de-
duce that

‖J2‖Xa,∞((0,T];Hp(�)) ≤ εKf B
(
2 + q – s′, 1 – a

)
Tq+1–p‖ψ – ϕ‖Xa,∞((0,T];Hp(�)). (4.17)

Combining (4.9), (4.13), and (4.17), we arrive at

∥
∥Bε(ψ) – Bε(ϕ)

∥
∥

Xa,∞((0,T];Hp(�))

≤ ‖J1‖Xa,∞((0,T];Hp(�)) + ‖J2‖Xa,∞((0,T];Hp(�))

≤ Kf B(2 + q – p, 1 – a)T2+q–p‖ψ – ϕ‖Xa,∞((0,T];Hp(�))

+ εKf B
(
2 + q – s′, 1 – a

)
Tq+1–p‖ψ – ϕ‖Xa,∞((0,T];Hp(�)). (4.18)

Let Kf be small enough such that

MT = Kf B(2 + q – p, 1 – a)T2+q–p + εKf B
(
2 + q – s′, 1 – a

)
Tq+1–p < 1/2.

It follows from (4.7) that

Bε(Xa,∞((
0, T];Hp(�)

)) ⊂ Xa,∞(
(
0, T];Hp(�)

)
,

and together with (4.18), we find that Bε is a contraction mapping. By using the Ba-
nach fixed point theorem we deduce that roblem (1.1)–(1.2) has a unique solution uε ∈
Xa,∞((0, T];Hp(�)).

It follows from (4.8) that

‖uε‖Xa,∞((0,T];Hp(�)) =
∥
∥Bε(uε)

∥
∥

Xa,∞((0,T];Hp(�))

≤ MT‖uε‖Xa,∞((0,T];Hp(�)) + CT Ts+a–p–1‖f ‖Hs(�). (4.19)

Therefore we get that

‖uε‖Xa,∞((0,T];Hp(�)) ≤ CT Ts+a–p–1‖f ‖Hs(�)

1 – MT
≤ 2CT Ts+a–p–1‖f ‖Hs(�). (4.20)
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This estimate implies that

∥
∥uε(t)

∥
∥
Hp(�) ≤ 2CT Ts+a–p–1t–a‖f ‖Hs(�). (4.21)

Since a < 1, we can find that 0 < μ < 1
a . Thus we arrive at

‖uε‖Lμ(0,T ;Hp(�)) =
(∫ T

0

∥
∥uε(t)

∥
∥μ

Hp(�) dt
)1/μ

≤ 2CT Ts+a–p–1‖f ‖Hs(�)

(∫ T

0
t–aμ dt

)1/μ

, (4.22)

which allows us to get that

‖uε‖Lμ(0,T ;Hp(�)) ≤ 2CT T
1
μ +s–p–1

(1 – aμ)1/μ ‖f ‖Hs(�). (4.23)

The proof is completed. �

Theorem 4.2 Let F be as in (4.1). Let f ∈ H
s(�) for p < s < p + 1. Let Kf be small enough

such that Kf Tq–p+2 ≤ 1
2 . Then

‖uε – u‖Lμ(0,T ;Hp(�)) ≤ 2C(p, s)ε‖f ‖Hs–1(�)

(
T (s–p–1)μ+1

(s – p – 1)μ + 1

)1/μ

+ 4εKf Tq–p‖f ‖Hs(�)

(
T (s–p–1)μ+1

(s – p – 1)μ + 1

)1/μ

, (4.24)

where 1 < μ < 1
p+1–s .

Proof Let us recall that

u(t) = S(t)f +
∫ t

0
(t – r)S(t – r)F

(
u(r)

)
dr, (4.25)

where we recall that

S(t)f =
∞∑

n=1

e–tλn (1 + tλn)
(∫

�

f (x)ψn(x) dx
)

ψn(x).

By (4.2) we immediately have the result on the difference between uε(t) and u(t) which is
split as the sum of three terms

uε(t) – u(t) = Qε(t)f – S(t)f +
∫ t

0
(t – r)S(t – r)

(
F
(
uε(r)

)
– F

(
u(r)

))
dr

– εQε(t)
∫ T

0
(T – r)S(T – r)F

(
uε(r)

)
dr

= H1(t) + H2(t) + H3(t). (4.26)
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Let us first treat the first term H1(t). By applying (3.24) we find that

∥
∥(Qε – S)f

∥
∥

Lμ(0,T ;Hp(�)) ≤ C(p, s)ε‖f ‖Hs–1(�)

(∫ T

0
t(s–p–1)μ dt

)1/μ

= C(p, s)ε‖f ‖Hs–1(�)

(
T (s–p–1)μ+1

(s – p – 1)μ + 1

)1/μ

, (4.27)

where we recall that p + 1 > s > p and 1 < μ < 1
p+1–s .

The second term H2(t) by the second part of Lemma 3.1 is bounded by

∥
∥H2(t)

∥
∥
Hp(�) ≤

∫ t

0
(t – r)

∥
∥S(t – r)

(
F
(
uε(r)

)
– F

(
u(r)

))∥
∥
Hp(�) dr

≤
∫ t

0
(t – r)(t – r)q–p∥∥F

(
uε(r)

)
– F

(
u(r)

)∥
∥
Hq(�) dr, (4.28)

where we note that p > q. Since F is globally Lipschitz as in (4.1), we infer that

∫ t

0
(t – r)(t – r)q–p∥∥F

(
uε(r)

)
– F

(
u(r)

)∥
∥
Hq(�) dr

≤ Kf

∫ t

0
(t – r)q–p+1∥∥uε(r) – u(r)

∥
∥
Hp(�) dr.

This implies that

∥
∥H2(t)

∥
∥
Hp(�) ≤ Kf

∫ t

0
(t – r)q–p+1∥∥uε(r) – u(r)

∥
∥
Hp(�) dr

≤ Kf Tq–p+1
∫ t

0

∥
∥uε(r) – u(r)

∥
∥
Hp(�) dr

≤ Kf Tq–p+2
(∫ t

0

∥
∥uε(r) – u(r)

∥
∥μ

Hp(�) dr
)1/μ

≤ Kf Tq–p+2‖uε – u‖Lμ(0,T ;Hp(�)). (4.29)

Thus we obtain that

‖H2‖Lμ(0,T ;Hp(�)) ≤
(∫ T

0

(
Kf Tq–p+2‖uε – u‖Lμ(0,T ;Hp(�))

)μ

)1/μ

= Kf Tq–p+2+ 1
μ ‖uε – u‖Lμ(0,T ;Hp(�)). (4.30)

For the third term H3(t), we apply Lemma 3.1 (noting that s < p + 1) to get that

∥
∥
∥
∥Qε(t)

∫ T

0
(T – r)S(T – r)F

(
uε(r)

)
dr

∥
∥
∥
∥
Hp(�)

≤ ts–p–1
∥
∥
∥
∥

∫ T

0
(T – r)S(T – r)F

(
uε(r)

)
dr

∥
∥
∥
∥
Hs(�)

. (4.31)
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Since s > q, it follows from this estimate that

∥
∥
∥
∥

∫ T

0
(T – r)S(T – r)F

(
uε(r)

)
dr

∥
∥
∥
∥
Hs(�)

≤
∫ T

0
(T – r)q–s+1∥∥F

(
uε(r)

)∥
∥
Hq(�) dr

≤ Kf

∫ T

0
(T – r)q–s+1∥∥uε(r)

∥
∥
Hp(�) dr, (4.32)

where in the last line, we have used that F is globally Lipschitz. Recalling (4.21), we find
that the right-hand side of (4.32) is bounded by

Kf

∫ T

0
(T – r)q–s+1∥∥uε(r)

∥
∥
Hp(�) dr

≤ 2Kf CT Ts+a–p–1‖f ‖Hs(�)

∫ T

0
(T – r)q–s+1r–a dr

= 2Kf CT Ts+a–p–1‖f ‖Hs(�)Tq–s+1–aB(q – s + 2, 1 – a) = 2Kf Tq–p‖f ‖Hs(�). (4.33)

Combining (4.31), (4.32), and (4.33), we arrive at

∥
∥H3(t)

∥
∥
Hp(�) ≤ ε

∥
∥
∥
∥

∫ T

0
(T – r)S(T – r)F

(
uε(r)

)
dr

∥
∥
∥
∥
Hs(�)

≤ 2εKf Tq–pts–p–1‖f ‖Hs(�). (4.34)

This leads to

‖H3‖Lμ(0,T ;Hp(�)) ≤ 2εKf Tq–p‖f ‖Hs(�)

(∫ T

0
t(s–p–1)μ dt

)1/μ

= 2εKf Tq–p‖f ‖Hs(�)

(
T (s–p–1)μ+1

(s – p – 1)μ + 1

)1/μ

, (4.35)

where we recall that p + 1 > s > p and 1 < μ < 1
p+1–s . Combining (4.26), (4.27), (4.30), and

(4.35), we deduce that

‖uε – u‖Lμ(0,T ;Hp(�)) ≤
3∑

j=1

‖Hj‖Lμ(0,T ;Hp(�))

≤ C(p, s)ε‖f ‖Hs–1(�)

(
T (s–p–1)μ+1

(s – p – 1)μ + 1

)1/μ

+ 2εKf Tq–p‖f ‖Hs(�)

(
T (s–p–1)μ+1

(s – p – 1)μ + 1

)1/μ

+ Kf Tq–p+2‖uε – u‖Lμ(0,T ;Hp(�)). (4.36)

Let Kf be small enough such that Kf Tq–p+2 ≤ 1
2 . Then from (4.36) the desired result fol-

lows. The proof is completed. �

5 Conclusion
In this paper, we considered a biparabolic equation under temporal nonlocal conditions
with linear and nonlinear source terms. We derived the regularity of the mild solution
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for the linear source term and applied the Banach fixed point theorem to study the exis-
tence and uniqueness of a mild solution for the nonlinear source term. In both cases, we
demonstrated that the mild solution of our problem converges to the solution of an initial
value problem as the parameter ε → 0. The most compelling findings of our study can be
considered as one of the first results on biparabolic equations with nonlocal conditions.
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