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Abstract
In this paper, we propose the conditions on which a class of boundary value
problems, presented by fractional q-differential equations, is well-posed. First, under
the suitable conditions, we will prove the existence and uniqueness of solution by
means of the Schauder fixed point theorem. Then, the stability of solution will be
discussed under the perturbations of boundary condition, a function existing in the
problem, and the fractional order derivative. Examples involving algorithms and
illustrated graphs are presented to demonstrate the validity of our theoretical
findings.
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1 Introduction
In many applications fractional differential equations present more accurate models of
phenomena than the ordinary differential equations. Therefore they have obtained im-
portance due to their applications in science and engineering such as, physics, chemistry,
mechanics, fluid dynamic, etc. [1, 2]. Meanwhile, there have appeared many papers dealing
with the existence of solutions for different types of fractional boundary value problems;
see, for example, [3–19].

The quantum calculus was introduced by Jackson in 1910 [20]. Al-Salam started the
fitting of the concept of q-fractional calculus [21]. Then Agarwal continued by studying
certain q-fractional integrals and derivatives [22]. After it, some researchers studied q-
difference equations (for more details, see [23–36]). There are also many papers dealing
with the existence of solutions for q-fractional boundary value problems (see, for example,
[37–49]).

Existence of solutions to fractional differential equations has received considerable in-
terest in recent years. There are several papers dealing with the existence and unique-
ness of solutions to initial and boundary value problem of fractional order in Caputo or
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Riemann–Liouville sense (for more details, see [50–52] and the references therein). Some
authors have also investigated the existence and uniqueness solutions for a coupled sys-
tem of multi-term fractional differential equations [53, 54]. However, in general, the study
of well-posed conditions for fractional differential equations is less considered in the lit-
erature.

In 2015, Houas et al. [55] investigated the existence and uniqueness of solutions for
cDσ

q [y](t) + w(y(t), cDς
q [y](t)) = 0, for t ∈ J0 := [0, 1], where 2 < σ ≤ 3, ς ∈ J0 := (0, 1), under

the initial conditions y(0) = y0, y′(0) = 0, y′(1) = ηIζ y(e), where cDσ is the Caputo frac-
tional derivative, e ∈ J0, w is a continuous function on R

2, and η is a real constant [55].
In [56], authors studied the existence and uniqueness of solution for the fractional differ-
ential equation Dσ [y](t) = w(t, y(t),Dς [y](t)), where 2 < σ < 3, ς ∈ J0, via sum boundary
conditions y(0) = 0,

Dσ
q [y](1) =

m–2∑

i=1

aiDς
q [y](ei),

y′′(1) = 0, where, ai, ei ∈ J0 andDσ
q is the Caputo fractional derivative. In 2015, Akrami et al.

[57] proved the conditions on which the following class of fractional differential equations
CDσ [y](t) = w(y(t),Dς [y](t)) for t ∈ J0 is well-posed, where 2 < σ ≤ 3 and ς ∈ J0, and CDσ

q is
the Caputo fractional derivative subject to the boundary value conditions y(0) = y′(0) = 0,
y(1) = ay(e), where e ∈ J0, 0 ≤ a < 1

e2 .
In this article, we investigate the conditions on which the fractional q-differential equa-

tion

CDσ
q [y](t) = w

(
y(t), CDς

q [y](t)
)

(1)

for t ∈ J0 is well-posed, where 2 < σ ≤ 3, ς ∈ J0, and CDσ
q is the standard Caputo q-

derivative subject to the boundary value conditions

y(0) = y′(0) = 0, y′(1) = ay(e), (2)

where e ∈ J0 with 0 ≤ a < 1
e2 . We recall that a problem is said to be well-posed if it has a

uniqueness solution and this solution depends on a parameter in a continuous way. This
parameter, in the classical order differential equations, is dependent on the initial condi-
tions and the function exists in the problem; whereas in the FDEs this dependency and
the stability solution with respect to the perturbation of fractional order derivative should
be taken into the account too [58].

The rest of the paper is organized as follows. We first prove the existence solution of (1)
by means of the Schauder fixed point theorem on the interval J0 in Sect. 3. Then, we prove
the uniqueness by using the Banach contraction map theorem under a suitable condition
in Sect. 3. Also, Sect. 3 is devoted to investigating the stability of solutions under the per-
turbations on boundary condition, the function exists in the problem and the fractional
order derivative. Finally, in Sect. 4, we bring some examples to illustrate our results. Let
us start with some basic preliminaries in Sect. 2 that we will use in the sequel.
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2 Preliminaries and lemmas
This section is devoted to some notations and essential preliminaries that are acting as
necessary prerequisites for the results of the subsequent sections. Throughout the context,
we shall apply the notations of time scales calculus [59].

In fact, we consider the fractional q-calculus on the specific time scale Tt0 = {0} ∪ {t :
t = t0qn} for n ∈ N, t0 ∈ R, and q ∈ (0, 1). For brief, we shall denote Tt0 by T. Let a ∈ R.
Define [s]q = (1 – qs)/(1 – q) [20]. The q-factorial function (v – w)(n)

q with n ∈N0 := {0} ∪N

is defined by (v – w)(n)
q =

∏n–1
k=0(v – wqk), and (v – w)(0)

q = 1, where v, w are real numbers
[23]. Also, for σ ∈ R and s �= 0, we have (v – w)(σ )

q = vσ
∏∞

k=0(v – wqk)(v – wq–(σ+k)). In
the paper [60], the authors proved (v – w)(σ+ν)

q = (v – w)(σ )
q (v – qσ w)(ν)

q and (sv – sw)(σ )
q =

sσ (v – w)(σ )
q . If w = 0, then it is clear that v(σ ) = vσ . The q-gamma function is given by

�q(v) = (1–q)1–v(1–q)(v–1)
q , where z ∈R\{. . . , –2, –1, 0} [20]. Note that �q(z +1) = [z]q�q(z)

[60, Lemma 1]. For a function ℘ : T→ R, the q-derivative of ℘ is

Dq[℘](v) =
℘(v) – ℘(qv)

(1 – q)v

for all t ∈ T \ {0}, and Dq[℘](0) = limv→0 Dq℘(v) [23]. Also, the higher order q-derivative
of the function ℘ is defined by Dn

q℘(v) = Dq(Dn–1
q ℘)(v) for all n ≥ 1, where D0

q℘(v) = ℘(v)
[23]. The q-integral of the function ℘ is defined by

Iq℘(v) =
∫ v

0
℘(ξ ) dqξ = v(1 – q)

∞∑

k=0

qk℘
(
vqk)

for 0 ≤ v ≤ b, provided the series absolutely converges [23]. If v in [0, b], then

∫ v

a
℘(ξ ) dqξ = Iq℘(v) – Iq℘(a) = (1 – q)

∞∑

k=0

qk[v℘
(
vqk) – a℘

(
aqk)],

whenever the series exists [61]. The operator In
q is given by I0

q ℘(v) = ℘(v) and In
q ℘(v) =

Iq[In–1
q ℘](v) for n ≥ 1 and ℘ ∈ C([0, b]) [23]. It has been proved that Dq(Iq℘)(v) = ℘(v),

Iq(Dq℘)(v) = ℘(v) – ℘(0), whenever the function ℘ is continuous at v = 0 [23]. The frac-
tional Riemann–Liouville type q-integral of the function ℘ is defined by I0

q℘(v) = ℘(v)
and

Iσ
q ℘(v) =

1
�q(σ )

∫ v

0
(v – ξ )(σ–1)

q ℘(ξ ) dqξ

for v ∈ [0, 1] and σ > 0 [24, 29]. The Caputo fractional q-derivative of the function ℘ is
defined by

CDσ
q ℘(v) = I [σ ]–σ

q
[
D[σ ]

q ℘
]
(v) =

1
�q([σ ] – σ )

∫ v

0
(v – ξ )([σ ]–σ–1)

q D[σ ]
q ℘(ξ ) dqξ

for v ∈ [0, 1] and σ > 0 [29, 62]. It has been proved that Iν
q (Iσ

q ℘)(v) = Iσ+ν
q ℘(v) and

cDσ
q (Iσ

q ℘)(v) = ℘(v), where σ ,ν ≥ 0 [29]. The authors in [61] presented all algorithms and
MATLAB lines to simplify q-factorial functions (v – w)(n)

q , (v – w)(σ )
q , �q(v), Iq[℘](v), and

some necessary equations.
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Now, we introduce some basic definitions, lemmas, and theorems which are used in the
subsequent sections.

Lemma 2.1 ([63]) Let n ∈N, n–1 < α ≤ n, and ℘ ∈ ACn[a, b]. Then one has Iσ (cDσ
q ℘)(v) =

℘(v) +
∑n–1

i=0 ci(v – a)i, where c0, c1, . . . , cn–1 ∈R.

Lemma 2.2 Let σ1 > σ2 > 0. Then the formula CDσ1
q (Iσ2

q ℘)(v) = Iσ1–σ2
q ℘(v) holds al-

most everywhere on v ∈ [a, b] for ℘ ∈ L1[a, b], and it is valid at any point v ∈ [a, b] if
℘ ∈ C([a, b],R).

Lemma 2.3 ([1]) Let σ > 0 and ℘ ∈ C(0, 1) ∩ L1(0, 1) with a derivative of order n. Then
Iσ

q (CDσ
q ℘(v)) = ℘(v) + d0 + d1t + d2t2 + · · · + dn–1tn–1 for di ∈ R with i = 1, 2, . . . , n – 1, where

n – 1 < σ ≤ n.

Definition 2.4 A real function ℘(v), v > 0 is said to be in the space Cr , r ∈R, if there exists
a real number ν (> r) such that ℘(v) = vν℘1(v), where ℘1(v) ∈ C([0,∞),∞).

Theorem 2.5 (Banach contraction principle, [64]) Let X be a Banach space. If A : X →X
is the contraction map, then there exists x ∈X such that Ax = x.

3 Main results
First, we consider the following important lemmas in our article.

Lemma 3.1 Let v ∈ AC(0, 1) and 2 < σ ≤ 3. The fractional q-differential equation

CDσ
q [y](t) = v(t) (3)

for 2 < σ ≤ 3 under conditions y(0) = y′(0) = 0, y′(1) = ay(e), e ∈ J0 with 0 ≤ a < 1
e2 has a

solution

y(t) =
∫ 1

0
Gq(t, ξ )v(ξ ) dqξ +

at2

1 – ae2

∫ 1

0
Gq(e, ξ )v(ξ ) dqξ , (4)

where

Gq(t, ξ ) =

⎧
⎨

⎩

(t–ξ )(σ–1)
q –t2(1–ξ )(α–1)

q
�q(σ ) , ξ < t,

–t2(1–ξ )(σ–1)
q

�q(σ ) , t < ξ ,
(5)

for all t, ξ ∈ J0.

Proof By Lemma (2.3) the solution of Eq. (3) can be written as

y(t) =
∫ t

0
(t – ξ )(σ–1)

q v(ξ ) dqξ – d0 – d1t – d2t2.

Since y(0) = y′(0) = 0, a simple calculation gives d0 – d1 = 0, and from the boundary con-
dition, we get Iσ

q [v](1) – d2 = aIσ
q [v](e) – d2ae2. Hence,

d2 =
1

1 – ae2

(
Iσ

q [v](1) – aIσ
q [v](e)

)
.



Samei et al. Advances in Difference Equations        (2021) 2021:482 Page 5 of 26

Thus, the solution of boundary value problem (3) is

y(t) = Iσ
q [v](t) –

t2

1 – ae2

(
Iσ

q [v](1) – aIσ
q [v](e)

)

= Iσ
q [v](t) – t2Iσ

q [v](1) –
ae2t2

1 – ae2 I
σ
q [v](1) +

at2

1 – ae2 I
σ
q [v](e)

=
1

�q(σ )

∫ t

0

(
(t – ξ )(σ–1)

q – t2(1 – ξ )(σ–1)
q

)
v(ξ ) dqξ

–
1

�q(σ )

∫ t

1
t2(1 – ξ )(σ–1)

q v(ξ ) dqξ

+
at2

(1 – ae2)�q(σ )

[∫ e

0

(
(e – ξ )(σ–1)

q – e2(1 – ξ )(σ–1)
q

)
v(ξ ) dqξ

–
∫ t

e
e2(1 – ξ )(σ–1)

q v(ξ ) dqξ

]

=
∫ 1

0
Gq(t, ξ )v(ξ ) dqξ +

at2

1 – ae2

∫ 1

0
Gq(e, ξ )v(ξ ) dqξ ,

where Gq(t, ξ ) is defined in Eq. (5). This completes the proof. �

Now, in order to investigate the existence of solutions, we prove some properties of the
function Gq(t, ξ ).

Lemma 3.2 The functions Gq(t, ·) and ∂
∂t Gq(t, ·) are integrable for each t ∈ J0 and have the

following properties:

∫ 1

0

∣∣Gq(t, ξ )
∣∣dqξ ≤ 2

�q(σ + 1)
,
∫ 1

0

∣∣∣∣
∂

∂t
Gq(t, ξ )

∣∣∣∣dqξ ≤ 3
�q(σ )

.

Proof Let t ∈ J0. Then we have

∫ 1

0

∣∣Gq(t, ξ )
∣∣dqξ ≤ Iσ

q [I](t) + +t2Iσ
q [I](1)

≤ tσ

�q(σ + 1)
+

t2

�q(σ + 1)
≤ 2

�q(σ + 1)

and

∫ 1

0

∣∣∣∣
∂

∂t
Gq(t, ξ )

∣∣∣∣dqξ ≤ 2tIσ
q [I](1) + +Iσ–1

q [I](t)

≤ 2t
�q(σ + 1)

+
tσ–1

�q(σ )
≤ 3

�q(σ )
.

Hence, Gq(t, ·) and ∂
∂t Gq(t, ·) are integrable. �

Let C1(J0) be the class of all continuous functions. Since CDς
q [y](t) = I1–ς

q [y′](t) for ς ∈
J0, the operator CDς

q is continuous for any y ∈ C1(J0). Now, for y ∈ C1(J0), we define the
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space

A =
{

y(t) : y(t) ∈ C1(J0)
}

endowed with the maximum norm

‖y‖ = max
t∈J0

∣∣y(t)
∣∣ + max

t∈J0

∣∣CDς
q [y](t)

∣∣.

Lemma 3.3 (A,‖ · ‖) is a Banach space.

Proof Let {yn}∞n=1 be a Cauchy sequence in the space (A,‖ · ‖). Obviously, {yn}∞n=1 and
{CDς

q yn}∞n=1 are Cauchy sequences in the space C(J0). Since C(J0) is compact, {yn}∞n=1 and
{CDς

q yn}∞n=1 uniformly converge to some v, v′ on J0. Furthermore, v, v′ belong to C(J0). In
the following, we need to show that v′ = CDς

q v. Now, by the definition of fractional integral,

∣∣Iς
q
[CDς

q [yn]
]
(t) – Iς

q v′(t)
∣∣ ≤ Iς

q
[∣∣CDς

q yn – v′∣∣](t)

≤ 1
�q(ς + 1)

max
t∈J0

∣∣CDς
q yn – v′∣∣.

Therefore, using the convergence of {CDς
q yn}∞n=1 implies that

lim
n→∞Iς

q
[CDς

q [yn]
]
(t) = Iς

q
[
v′](t)

uniformly on J0. On the other hand, we know Iς
q [CDς

q [yn]](t) = yn for each t ∈ J0 and ς ∈ J0.
Hence, Iς

q [v′](t) = v, and this means v′ = CDς
q v. This completes the proof. �

Remark 3.1 Lemma (2.3) implies that the solution of problem (1) coincides with the fixed
point of the operator O defined as

Oy(t) =
∫ 1

0
Gq(t, ξ )w

(
y(t), CDς

q [y](t)
)

dqξ

+
at2

1 – ae2

∫ 1

0
Gq(e, ξ )w

(
y(t), CDς

q [y](t)
)

dqξ .

3.1 Existence and uniqueness
According to the Schauder fixed point theorem, the existence result has been stated.

Theorem 3.4 Suppose that w : R2 →R is a continuous function and there exist constants
m0, m1 ≥ 0, β0,β1 ∈ J0 such that one of the following conditions is satisfied:

(A1) There exists a nonnegative function μ(t) ∈ J0 such that

∣∣w(y, z)
∣∣ ≤ μ(t) + m0|y|β0 + m1|z|β1 . (6)

(A2) The function w satisfies

∣∣w(y, z)
∣∣ ≤ m0|y|β0 + m1|z|β1 . (7)

Then boundary value problem (1) has at least one solution y(t).
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Proof First, suppose that condition (A1) holds. Define the set B by

B =
{

y(t) :
∥∥y(t)

∥∥ ≤ δ, t ∈ J0
}

,

where

δ ≥ max

{
(6�m0)

1
1–β0 , (6�m1)

1
1–β1 , 6�M1,

(
12�m0

�q(2 – ς )

) 1
1–β0

,

(
12�m1

�q(2 – ς )

) 1
1–β1

,
16aM1

�q(2 – ς )(1 – ae2)
,

8M2

�q(2 – ς )

}
,

� =
(

1 +
a

1 – ae2

)
2

�q(σ + 1)
, (8)

and

M1 = max
t∈J0

{
1

�q(σ )

∫ 1

0

∣∣Gq(t, ξ )μ(ξ )
∣∣dqξ

}

M2 = max
t∈J0

{
1

�q(σ )

∫ 1

0

∣∣∣∣
∂

∂t
Gq(t, ξ )μ(ξ )

∣∣∣∣dqξ

}
. (9)

It is clear that B is a closed, bounded, and convex subset of Banach space A. Here, we
prove that O : B → B. For any y ∈ B, we obtain

∣∣Oy(t)
∣∣ ≤

∫ 1

0

∣∣Gq(t, ξ )w
(
y(t), CDς

q [y](t)
)∣∣dqξ

+
at2

1 – ae2

∫ 1

0

∣∣Gq(e, ξ )w
(
y(t), CDς

q [y](t)
)∣∣dqξ

≤
∫ 1

0

∣∣Gq(t, ξ )μ(ξ )
∣∣dqξ +

[
m0δ

β0 + m1δ
β1

] ∫ 1

0

∣∣Gq(t, ξ )
∣∣dqξ

+
a

1 – ae2

[∫ 1

0

∣∣Gq(e, ξ )μ(ξ )
∣∣dqξ

+
(
m0δ

β0 + m1δ
β1

)∫ 1

0

∣∣Gq(t, ξ )
∣∣dqξ

]

≤
(

1 +
a

1 – ae2

)[
M1 +

2
�q(σ + 1)

(
m0δ

β0 + m1δ
β1

)]

≤ �
[
M1 +

(
m0δ

β0 + m1δ
β1

)] ≤ 1
2
δ.

Thus, for almost all ς ∈ J0, we have

∣∣CDς
q [Oy](t)

∣∣ =
∣∣I1–ς

q
[
Oy′](t)

∣∣

≤ 1
�q(1 – ς )

∫ t

0
(t – ξ )(–ς )

q

×
(∫ 1

0

∣∣∣∣
∂

∂ξ
Gq(ξ , τ )w

(
τ , y(τ ), CDς

q [y](τ )
)∣∣∣∣dqτ
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+
2aξ

(1 – ae2)

∫ 1

0

∣∣Gq(e, τ )w
(
τ , y(τ ), CDς

q [y](τ )
)∣∣dqτ

)
dqξ

≤ 1
�q(1 – ς )

∫ t

0
(t – qξ )(–ς )

[∫ 1

0

∣∣∣∣
∂

∂ξ
Gq(ξ , τ )μ(τ )

∣∣∣∣

+
(
m0δ

β0 + m1δ
β1

)∫ 1

0

∣∣∣∣
∂

∂ξ
Gq(ξ , τ )

∣∣∣∣dqτ

+
2aξ

1 – ae2

(∫ 1

0

∣∣Gq(ξ , τ )μ(τ )
∣∣dqτ

+
(
m0δ

β0 + m0δ
β1

)∫ 1

0

∣∣Gq(e, τ )
∣∣dqτ

)]
dqξ

≤ 1
�q(1 – ς )

∫ t

0
(t – ξ )(–ς )

q

(
M2 +

3
�q(σ )

(
m0δ

β0 + m1δ
β1

))
dqξ

+
2a

(1 – ae2)�q(1 – ς )

∫ t

0
ξ (t – ξ )(–ς )

q

×
(

M1 +
2

�q(σ + 1)
(
m0δ

β0 + m1δ
β1

))
dqξ

≤ 1
�q(1 – ς )

(
M2 +

3
�q(σ )

(
m0δ

β0 + m1δ
β1

)) t1–ς

1 – ς

+
2a

(1 – ae2)�q(1 – ς )

(
M1 +

2
�q(σ + 1)

(
m0δ

β0 + m1δ
β1

))

× t2–ς

(1 – ς )�q(2 – ς )

≤ 1
�q(2 – ς )

(
M2 +

3
�q(σ )

(
m0δ

β0 + m1δ
β1

))

+
2a

(1 – ae2)�q(3 – ς )

(
M1 +

2
�q(σ + 1)

(
m0δ

β0 + m1δ
β1

))

≤ 3�

�q(2 – ς )
(
m0δ

β0
)

+
2aM1

(1 – ae2)�q(2 – ς )
+

M2

�q(2 – ς )

≤ 1
2
δ.

Clearly, Oy(t) and CDς
q [Oy](t) are continuous in J0. Therefore O : B → B. In the second

case, suppose that condition (A2) holds. Choose

0 < δ ≤ min

{(
1

4�m0

) 1
1–β0

,
(

1
4�m1

) 1
1–β1

,
(

�q(2 – ς )
6�m0

) 1
1–β0

,
(

�q(2 – ς )
6�m1

) 1
1–β1

}
.

Again, by a similar way, we get ‖Oy‖ ≤ δ, and therefore, in this case, O : B → B. Here, we
need to show that O is a completely continuous operator. First, the equicontinuity of O
will be shown as follows. Suppose that s1, s2 ∈ J0 with s1 < s2 and

N0 = 1 + max
t∈J0

{∣∣w
(
t, y(t), CDς

q [y](t)
)∣∣ : y ∈ B

}
.
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Then

∣∣Oy(s1) – Oy(s2)
∣∣

=
∣∣∣∣
∫ 1

0

(
Gq(s2, ξ ) – Gq(s1, ξ )

)
w

(
y(ξ ), CDς

q [y](ξ )
)

dqξ

+
a(s2

2 – s2
1)

1 – ae2

∫ 1

0
Gq(e, ξ )w

(
y(ξ ), CDς

q [y](ξ )
)

dqξ

∣∣∣∣

≤ N0

∫ 1

0

∣∣Gq(s2, ξ ) – Gq(s1, ξ )
∣∣dqξ +

2aN0

1 – ae2

(
s2

2 – s2
1
)

≤ 2aN0

1 – ae2

(
s2

2 – s2
1
)

+
N0

�q(σ )

[∫ s1

0

(
s2

2 – s2
1
)
(1 – ξ )(σ–1)

q

+ (s2 – ξ )(σ–1)
q + (s1 – ξ )(σ–1)

q dqξ

+
∫ s2

s1

(
s2

2 – s2
1
)
(1 – ξ )(σ–1)

q + (s2 – ξ )(σ–1)
q dqξ

+
∫ 1

s2

(
s2

2 – s2
1
)
(1 – ξ )(σ–1)

q dqξ

]

≤ 2aN0

1 – ae2)
(
s2

2 – s2
1
)

+
N0

�q(α)

[(
s2

2 – s2
1
)∫ 1

0
(1 – ξ )(σ–1)

q dqξ

+
∫ s2

0

(
s2

2 – ξ
)(σ–1)

q dqξ –
∫ s1

0

(
s2

1 – ξ
)(σ–1)

q dqξ

]

≤ N0

�q(α + 1)

[
s2

2 – s2
1 + sσ

2 – sσ
1 +

2a(s2
2 – s2

1)
1 – ae2

]

≤ N0

[
�

(
s2

2 – s2
1
)

+
sσ

2 – sσ
1

�q(σ + 1)

]
,

and

∣∣CDς
q [Oy](s2) – CDς

q [Oy](s2)
∣∣

=
1

�q(1 – ς )

∣∣∣∣
∫ s2

0
(s2 – ξ )(–ς )

q

(∫ 1

0

∂

∂ξ
Gq(ξ , τ )w

(
y(τ ), CDς

q [y](τ )
)

dqτ

+
2aξ

1 – ae2

∫ 1

0
Gq(e, τ )w

(
y(τ ), CDς

q [y](τ )
))

dqξ

–
∫ s1

0
(s1 – ξ )(–ς )

q

(∫ 1

0

∂

∂ξ
Gq(ξ , τ )w

(
y(τ ), CDς

q [y](τ )
)

dqτ

+
2aξ

1 – ae2

∫ 1

0
Gq(e, τ )w

(
y(τ ), CDς

q [y](τ )
)

dqτ

)
dqξ

∣∣∣∣

≤ 3N0

�q(1 – ς )�q(σ )

∣∣∣∣
∫ s2

0
(s2 – ξ )(–ς )

q dqξ –
∫ s1

0
(s1 – ξ )(–ς )

q dqξ

∣∣∣∣

+
6aN0

�q(1 – ς )�q(σ )(1 – ae2)

×
∣∣∣∣
∫ s2

0
ξ (s2 – ξ )(–ς )

q dqξ –
∫ s1

0
ξ (s1 – ξ )(–ς )

q dqξ

∣∣∣∣
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≤ 3N0

�q(1 – ς )�q(σ )

∣∣∣∣
∫ s1

0

(
(s2 – ξ )(–ς )

q – (s1 – ξ )(–ς )
q

)
dqξ

+
∫ s2

s1

(s2 – qξ )(–ς ) dqξ

∣∣∣∣ +
6aN0

�q(1 – ς )�q(σ )(1 – ae2)

×
∣∣∣∣
∫ s1

0

(
ξ (s2 – ξ )(–ς )

q – ξ (S1 – ξ )(–ς )
q

)
dqξ

+
∫ s2

s1

ξ (s2 – qξ )(–ς ) dqξ

∣∣∣∣

≤ 3N0

�q(1 – ς )�q(σ )
(
s1–ς

2 – s1–ς
1 + 2(s2 – s1)(1–ς )

q
)

+
6aN0

�q(σ )(1 – ae2)

×
(

2s1(s2 – s1)(1–ς )
q

�q(2 – ς )
+

s2
2 – s1

1
�q(3 – ς )

+
2(s2 – s1)(2–ς )

q

�q(3 – ς )

)
.

Since the functions s2
2 – s2

1, dσ
2 – sσ

1 , (s2 – s1)(2–ς )
q , and s1(s2 – s1)1–ς are continuous, we

conclude that Oy is an equicontinuous set. Obviously, Oy is uniformly bounded because
O(B) ⊆ B. By means of the Arzelá–Ascoli theorem, O is a compact operator. There-
fore, from the Schauder fixed point theorem, the operator O has a fixed point, i.e., the
q-fractional boundary value problem (1) has a solution. �

In what follows, we prove the uniqueness of solution for Eq. (1) based on application of
the Banach fixed point theorem.

Theorem 3.5 Let w : R2 → R be a continuous function and let it fulfill a Lipschitz condi-
tion with respect to the first and second variables with Lipschitz constant

0 < � <
�q(2 – ς )

�[3 + �q(2 – ς )]
, (10)

i.e.,

∣∣w(y1, z1) – w(y2, z2)
∣∣ ≤ �

(|y1 – y2| + |z1 – z2|
)
.

Then problem (1) has a unique solution.

Proof In Theorem 3.4, we have shown that O is a continuous operator and O : B → B.
Therefore, using the Banach fixed point theorem, it is sufficient to show that O is a con-
traction mapping. For any y1, y2 ∈A,

∣∣Oy1(t) – Oy2(t)
∣∣

≤
∣∣∣∣
∫ 1

0
Gq(t, ξ )

(
w

(
y1(ξ ), CDς

q [y1](ξ )
)

– w
(
y2(ξ ), CDς

q [y2](ξ )
))

dqξ

∣∣∣∣

+
at2

1 – ae2

∣∣∣∣
∫ 1

0
Gq(e, ξ )

(
w

(
y1(ξ ), CDς

q [y1](ξ )
)
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– w
(
y2(ξ ), CDς

q [y2](ξ )
))

dqξ

∣∣∣∣

≤ �‖y1 – y2‖
(∫ 1

0

∣∣Gq(t, ξ )
∣∣dqξ +

at2

1 – ae2

∫ 1

0

∣∣Gq(e, ξ )
∣∣dqξ

)

≤ ��‖y1 – y2‖,
∣∣CDς

q [Oy](s2) – CDς
q [Oy](s2)

∣∣

=
∣∣∣∣

1
�q(1 – ς )

∫ t

0
(t – ξ )(–ς )

q
(
O′y1(ξ ) – O′y1(ξ )

)
dqξ

∣∣∣∣

≤ 1
�q(1 – ς )

∣∣∣∣
∫ t

0
(t – ξ )(–ς )

q

×
(∫ 1

0

∂

∂ξ
Gq(ξ , τ )

(
w

(
y1(τ ), CDς

q [y1](τ )
)

– w
(
y2(τ ), CDς

q [y2](τ )
))

dqτ

+
2aξ

1 – ae2

∫ 1

0
Gq(e, τ )

(
w

(
y1(τ ), CDς

q [y1](τ )
)

– w
(
y2(τ ), CDς

q [y2](τ )
))

dqτ

)
dqξ

∣∣∣∣

≤ 3�

�q(1 – ς )�q(σ )
‖y1 – y2‖

×
(∫ t

0
(t – ξ )(–ς )

q dqξ +
2a

1 – ae2

∫ t

0
ξ (t – ξ )(–ς )

q dqξ

)

≤ 3��

�q(2 – ς )
‖y1 – y2‖.

Therefore

‖Oy1 – Oy2‖ ≤
[
�� +

3��

�q(2 – ς )

]
‖y1 – y2‖.

Hence, by the Banach fixed point theorem, O has a unique fixed point which is a solution
of problem (1). �

3.2 Stability of solution
In this section, we study the stability analysis of problem (1) under various perturbations.
Dependence solution on the boundary value condition is discussed in Theorem 3.6. Sta-
bility of the solution with respect to the perturbation of w is analyzed in Theorem 3.7.
Finally, the perturbation effect of fractional order derivative on the solution is studied in
Lemma 3.8 and Theorem 3.9.

Theorem 3.6 Suppose that function w fulfills the conditions of Theorem 3.5, and let v̂(t)
be the solution of the following perturbed problem:

CDσ
q [y](t) = w

(
y(t), CDς

q [y](t)
)

(11)
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for each 2 < α ≤ 3, ς ∈ J0, on the boundary value conditions y(0) = ε1, y′(0) = ε2, and

y(1) = ay(e) + ε3

for e ∈ J0 with 0 ≤ a < 1
e2 . Then ‖y – v̂‖ = O(ε), here ε = max{ε1, ε2, ε3}.

Proof Similar to Lemma 2.3 the solution of problem (11) is

v̂(t) =
∫ 1

0
Gq(t, qξ )w

(
v̂(ξ ), CDς

q
[
v̂(ξ )

])
dqξ

+
at2

1 – ae2

∫ 1

0
Gq(e, qξ )w

(
v̂(ξ ), CDς

q [v̂](ξ )
)

dqξ + h(t), (12)

where

h(t) =
t2

1 – ae2

(
ε1(a – 1) + ε2(ae – 1)

)
+ ε2t + ε1.

Thus,

|y – v̂| ≤
∣∣∣∣
∫ 1

0
Gq(t, ξ )

[
w

(
y(ξ ), CDς

q [y](ξ )
)

– w
(
y(ξ ), CDς

q [y](ξ )
)]

dqξ

∣∣∣∣

+
at2

1 – ae2

∣∣∣∣
∫ 1

0
Gq(e, ξ )

[
w

(
y(ξ ), CDς

q [y](ξ )
)

– w
(
v̂(ξ ), CDς

q [v̂](ξ )
)]

dqξ

∣∣∣∣ +
∣∣h(t)

∣∣

≤ �‖y – v̂‖
(∫ 1

0
Gq(t, ξ ) dqξ +

at2

1 – ae2

∫ 1

0
Gq(t, ξ ) dqξ

)
+

∣∣h(t)
∣∣

≤ ��‖y – v̂‖ +
∣∣h(t)

∣∣,

and

∣∣CDς
q [y](t) – CDς

q [v̂](t)
∣∣

=
1

�q(1 – ς )

∣∣∣∣
∫ t

0
(t – ξ )(–ς )

q

×
(∫ 1

0

∂

∂ξ
Gq(ξ , τ )

(
w

(
y(τ ), CDς

q [y](τ )
)

– w
(
v̂(τ ), CDς

q [v̂](τ )
))

dqτ

+
2aξ

1 – ae2

∫ 1

0
Gq(e, τ )

(
w

(
y(τ ), CDς

q [y](τ )
)

– w
(
v̂(τ ), CDς

q [v̂](τ )
))

dqτ

)
dqξ

∣∣∣∣ +
∣∣CDς

q [h](t)
∣∣

≤ 3�

�q(1 – ς )�q(σ )
‖y – v̂‖

(∫ t

0
(t – ξ )(–ς )

q dqξ

+
2aξ

1 – ae2

∫ t

0
ξ (t – ξ )(–ς )

q dqξ

)
+

∣∣CDς
q [h](t)

∣∣

≤ 3��

�q(1 – ς )
‖y – v̂‖ +

∣∣CDς
q [h](t)

∣∣.
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Therefore,

‖y – v̂‖ ≤ 1
1 – (�� + 3��

�q(2–ς ) )

×
(∣∣∣∣

at2

1 – ae2

(
ε1(a – 1) + ε2(ae – 1)

)
+ ε2t + ε1

∣∣∣∣

+
∣∣∣∣

2t2–ς

(1 – ae2)�q(3 – ς )
(
ε1(a – 1) + ε2(ae – 1)

)
+

ε2

�q(2 – ς )
t1–ς

∣∣∣∣

)

≤ ε

1 – (�� + 3��
�q(2–ς ) )

×
∣∣∣∣

1
1 – ae2

[
1 +

2
�q(3 – ς )

]
(a + 2ae) + 2 +

1
�q(2 – ς )

∣∣∣∣.

This completes the proof. �

Theorem 3.7 Suppose that the conditions of Theorem 3.5 hold, and let v̂(t) be the solution
of the following perturbed problem on function w:

CDα
q [y](t) = w

(
y(t), CDς

q [y](t)
)

+ ε (13)

for t ∈ J0, 2 < α ≤ 3, and ς ∈ J0, with the boundary conditions y0 = y′
0 = 0, y1 = ay(e) for

e ∈ J0 with 0 ≤ a < 1
e2 . Then ‖y – v̂‖ = O(ε).

Proof The solution of problem (13) is

v̂(t) =
∫ 1

0
Gq(t, ξ )

(
w

(
v̂(ξ ), CDς

q
)

+ ε
)

dqξ

+
at2

1 – ae2

∫ 1

0
Gq(e, ξ )

(
w

(
v̂(ξ ), CDς

q [v̂](ξ )
)

+ ε
)

dqξ . (14)

Then, similar to the proof of the previous theorem

|y – v̂| ≤ ��‖y – v̂‖ + ε

(∫ 1

0
Gq(t, ξ ) dqξ +

at2

1 – ae2

∫ 1

0
Gq(t, ξ ) dqξ

)

≤ �‖y – v̂‖ + ε�

and

∣∣CDς
q [y](t) – CDς

q [v̂](t)
∣∣ ≤ 3��

�q(2 – ς )�q(σ )
‖y – v̂‖

+ ε

(∫ t

0
(t – ξ )(–ς )

q dqξ +
2a

1 – ae2

∫ t

0
ξ (t – ξ )(–ς )

q dqξ

)

≤ 3��

�q(2 – ς )
‖y – v̂‖ +

3ε�

�q(2 – ς )
.
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Indeed,

‖y – v̂‖ ≤ ε

1 – (�� + 3ε�
�q(2–ς ) )

[
� +

3�

�q(2 – ς )

]
.

This completes the proof. �

For perturbation analysis on the fractional order of the q-derivative, we first state and
prove the following lemma and then the main theorem will be discussed.

Lemma 3.8 Let s, t ∈ J0 and 2 < σ – ε < σ , then

∫ t

0

∣∣∣∣
sσ–1

�q(σ )
–

sσ–ε–1

�q(σ – ε)

∣∣∣∣dqs = O(ε).

Proof We estimate the integral as follows:

∫ t

0

∣∣∣∣
sσ–1

�q(σ )
–

sσ–ε–1

�q(σ – ε)

∣∣∣∣dqs ≤
∫ t

0

∣∣∣∣
sσ–1

�q(σ )
–

sσ–ε–1

�q(σ – ε)

∣∣∣∣dqs

+
∫ t

0

∣∣∣∣
sσ–ε–1

�q(σ )
–

sσ–ε–1

�q(σ – ε)

∣∣∣∣dqs

≤ 1
�q(σ )

[
1
σ

–
1

α – ε

]
+

1
σ – ε

[
1

�q(σ )
–

1
�q(σ – ε)

]

≤ ε

[
1

σ (σ – ε)�q(σ )
+

|�q(α)|
(σ – ε)�q(σ )(σ – ε)

]
,

where σ – ε < α < σ . �

Theorem 3.9 Suppose that the conditions of Theorem 3.5 hold, and let v̂(t) be the solution
of the following perturbed problem on fractional order derivative σ :

CDσ–ε
q [y](t) = w

(
y(t), CDς

q [y](t)
)
, (15)

for t ∈ J0, 2 < σ ≤ 3, ς ∈ J0, under the boundary conditions y0 = y′
0 = 0, y1 = ay(e), e ∈ J0

with 0 ≤ a < 1
e2 and 2 < σ – ε < σ ≤ 3. Then ‖y – v̂‖ = O(ε).

Proof According to the above discussion, the solution of problem (15) is given by

v̂(t) =
∫ 1

0
Ĝq(t, ξ )w

(
v̂(ξ ), CDς

q [v̂](ξ )
)

dqξ

+
at2

1 – ae2

∫ 1

0
Ĝq(t, ξ )w

(
v̂(ξ ), CDς

q [v̂](ξ )
)

dqξ , (16)

where

Ĝq(t, ξ ) =

⎧
⎪⎨

⎪⎩

(t–ξ )(σ–ε–1)
q –t2(1–ξ )(σ–ε–1)

q
�q(σ ) , ξ < t,

–t2(1–ξ )(σ–ε–1)
q

�q(σ ) , t < ξ ,
(17)
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for t, ξ ∈ J0. Then

|y – v̂| ≤
∣∣∣∣
∫ 1

0
Gq(t, ξ )w

(
y(ξ ), CDς

q [y](ξ )
)

dqξ

–
∫ 1

0
Ĝq(t, ξ )w

(
v̂(ξ ), CDς

q [v̂](ς )
)

dqξ

∣∣∣∣

+
at2

1 – ae2

∣∣∣∣
∫ 1

0
Gq(e, ξ )w

(
y(ξ ), CDς

q [y](ξ )
)

dqξ

–
∫ 1

0
Ĝq(e, ξ )w

(
v̂(ξ ), CDς

q [v̂](ξ )
)

dqξ

∣∣∣∣

≤
∣∣∣∣
∫ 1

0
Gq(t, ξ )

(
w

(
y(ξ ), CDς

q [y](ξ )
)

– w
(
v̂(ξ ), CDς

q [v̂]
)
(ξ )

)
dqξ

∣∣∣∣

+
∣∣∣∣
∫ 1

0

(
Gq(e, ξ ) – Ĝq(e, ξ )

)
w

(
v̂(ξ ), CDς

q [v̂](ξ )
)

dqξ

∣∣∣∣

+
at2

1 – ae2

(∣∣∣∣
∫ 1

0
Gq(e, ξ )

(
w

(
y(ξ ), CDς

q [y](ξ )
)

– w
(
v̂(ξ ), CDς

q [v̂](ξ )
))

dqξ

∣∣∣∣

+
∣∣∣∣
∫ 1

0

(
Gq(e, ξ ) – Ĝq(e, ξ )

)
w

(
v̂(ξ ), CDς

q [v̂](ξ )
)∣∣∣∣

)

≤ �‖y – v̂‖
∫ 1

0
|Gq(t, ξ ) dqξ + ‖w‖ε

∫ 1

0

∣∣Gq(t, ξ ) – Ĝq(t, ξ )
∣∣dqξ

+
a

1 – ae2

(
�‖y – v̂‖

∫ 1

0

∣∣Gq(e, ξ )
∣∣dqξ

+ ‖w‖ε

∫ 1

0

∣∣Gq(e, ξ ) – Ĝq(e, ξ )
∣∣dqξ

)

≤ ��‖y – v̂‖ + ‖w‖ε

(∫ 1

0

∣∣Gq(t, ξ ) – Ĝq(t, ξ )
∣∣dqξ

+
a

1 – ae2

∫ 1

0

∣∣Gq(e, ξ ) – Ĝq(e, ξ )
∣∣dqξ

)
,

where

‖w‖ε = sup
0<ε<σ–2

∣∣w
(
v̂(t), CDς

q [v̂](t)
)∣∣.

Also, we have

∣∣CDς
q [y](t) – CDς

q [v̂](t)
∣∣ ≤ 1

�q(1 – ς )

∣∣∣∣
∫ t

0
(t – ξ )(–ς )

q

×
(∫ 1

0

∂

∂ξ
Gq(ξ , τ )w

(
y(τ ), CDς

q [y](τ )
)

–
∫ 1

0

∂

∂ξ
Ĝq(ξ , τ )w

(
v̂(τ ), CDς

q [v̂](τ )
)

dqτ

)
dqξ

∣∣∣∣
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+
2a

�q(1 – ς )(1 – ae2)

∣∣∣∣
∫ t

0
(t – ξ )(–ς )

q

×
(∫ 1

0
ξGq(e, τ )w

(
y(τ ), CDς

q [y](τ )
)

–
∫ 1

0
ξ Ĝ(e, τ )w

(
v̂(τ ), CDς

q [v̂](τ )
)

dqτ

)
dqξ

∣∣∣∣

≤ �‖y – v̂‖
�q(1 – ς )

∫ t

0
(t – ξ )(–ς )

q

(∫ 1

0

∣∣∣∣
∂

∂ξ
Gq(ξ , τ )

∣∣∣∣dqτ

)
dqξ

+ ‖w‖ε

1
�q(1 – ς )

∫ t

0
(t – ξ )(–ς )

q

×
(∫ 1

0

∣∣∣∣
∂

∂ξ
Gq(ξ , τ ) –

∂

∂ξ
Ĝq(ξ , τ )

∣∣∣∣dqτ

)
dqξ

+
2a

�q(1 – ς )(1 – ae2)

[
�‖y – v̂‖

×
∫ t

0
ξ (t – ξ )(–ς )

q

(∫ 1

0

∣∣Gq(e, τ )
∣∣dqτ

)
dqξ

+ ‖w‖ε

∫ t

0
ξ (t – ξ )(–ς )

q

×
(∫ 1

0

∣∣Gq(e, τ ) – Ĝq(e, τ )
∣∣dqτ

)
dqξ

]

≤ 3��

�q(2 – ς )
‖y – v̂‖ + ‖�‖ε

1
�q(1 – ς )

∫ t

0
ξ (t – ξ )(–ς )

q

×
(∫ 1

0

∣∣∣∣
∂

∂ξ
Gq(ξ , τ ) –

∂

∂ξ
Ĝq(ξ , τ )

∣∣∣∣dqτ

)
dqξ

+
2a

�q(1 – ς )(1 – ae2)
‖w‖ε

×
∫ t

0
ξ (t – ξ )(–ς )

q

(∫ 1

0

∣∣Gq(e, τ ) – Ĝq(e, τ )
∣∣dqτ

)
dqξ .

Therefore,

‖y – v̂‖ ≤ 1
1 – (�� + 3��

�q(2–ς ) )

[∫ t

0

∣∣Gq(t, ξ ) – Ĝq(t, ξ )
∣∣dqξ

+
a

1 – ae2

∫ 1

0

∣∣Gq(e, ξ ) – Ĝq(e, ξ )
∣∣dqξ

+
1

�q(1 – ς )

∫ t

0
ξ (t – qξ )(–ς )

×
(∫ 1

0

∣∣∣∣
∂

∂ξ
Gq(ξ , τ ) –

∂

∂ξ
Ĝq(ξ , τ )

∣∣∣∣dqτ

)
dqξ

+
2a

�q(1 – ς )(1 – ae2)

∫ t

0
ξ (t – qξ )(–ς )

×
(∫ t

0

∣∣Gq(e, τ ) – Ĝq(e, τ )
∣∣dqτ

)
dqξ

]
.
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According to the structure of Gq(t, ξ ), we know that every term of |Gq(t, ξ ) – Ĝq(t, ξ )| and

∣∣∣∣
∂

∂ξ
Gq(t, ξ ) –

∂

∂ξ
Ĝq(t, ξ )

∣∣∣∣

is in the form of Eq. (15). Hence, Lemma 3.8 implies

∫ 1

0

∣∣Gq(t, ξ ) – Ĝq(t, ξ )
∣∣dqξ = O(ε),

∫ 1

0

∣∣∣∣
∂

∂ξ
Gq(t, ξ ) –

∂

∂ξ
Ĝq(t, ξ )

∣∣∣∣ = O(ε).

Therefore, ‖y – v̂‖ = O(ε) and the proof is complete. �

4 Some illustrative examples
Herein, we give some examples to show the validity of the main results. In this way, we
give a computational technique for checking problem (1). We need to present a simplified
analysis that is able to execute the values of the q-gamma function. For this purpose, we
provided a pseudo-code description of the method for calculation of the q-gamma func-
tion of order n [61].

Example 4.1 Consider the problem

DD
8
3
q [y](t) =

4
7
(
y(t)

) 1
2 +

3
10

(CD
1
2
q [y](t)

) 1
4 (18)

via boundary conditions y(0) = y′(0) = 0 and y(1) = 14
9 y( 3

5 ). Clearly, σ = 8
3 ∈ (2, 3], ς = 1

2 ∈
J0, e = 3

5 ∈ J0, and a = 14
9 ∈ [0, 1

e2 ). We define w : R2 →R by

w(y, z) =
4
7
(
y(t)

) 1
2 +

3
10

(
z(t)

) 1
4

for y, z ∈R. Then we have

∣∣w
(
y(t), CD

1
2
q [y](t)

)∣∣ =
∣∣∣∣
4
7
(
y(t)

) 1
2 +

3
10

(CD
1
2
q [z](t)

) 1
4

∣∣∣∣

≤ 4
7
∣∣(y(t)

) 1
2
∣∣ +

3
10

∣∣(CD
1
2
q [z](t)

) 1
4
∣∣

≤ μ(t) +
4
7
∣∣(y(t)

) 1
2
∣∣ +

3
10

∣∣(CD
1
2
q [z](t)

) 1
4
∣∣,

where μ(t) = exp(t). We take m0 = 4
7 , m1 = 3

10 , β0 = 1
2 , and β1 = 1

4 . Also, by using Eq. (8),
we obtain

� =
2

�q(σ + 1)

[
1 +

a
1 – ae2

]

=
2

�q( 8
3 + 1)

[
1 +

14
9(1 – 14

25 )

]
=

2
�q( 11

3 )
× 449

99
=

898
99�q( 11

3 )
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Table 1 Numerical results of �q(σ + 1) and � for q = 1
5 ,

1
2 ,

7
8 in Example 4.1 (Algorithm 1)

n q = 1
5 q = 1

2 q = 7
8

�q(σ + 1) � �q(σ + 1) � �q(σ + 1) �

1 1.3971 6.4927E+00 2.6906 3.3713E+00 4.1775 2.1713E–01
2 1.3860 6.5444E+00 2.4015 3.7771E+00 2.5979 3.4916E–01
3 1.3839 6.5547E+00 2.2738 3.9892E+00 1.8239 4.9733E–01
4 1.3834 6.5568E+00 2.2136 4.0976E+00 1.3865 6.5422E–01
5 1.3833 6.5572E+00 2.1844 4.1524E+00 1.1146 8.1380E–01
6 1.3833 6.5573E+00 2.1700 4.1800E+00 9.3373 9.7145E–01
7 1.3833 6.5573E+00 2.1629 4.1938E+00 8.0715 1.1238E+00
8 1.3833 6.5573E+00 2.1593 4.2007E+00 7.1505 1.2685E+00
...

...
...

...
...

...
...

13 1.3833 6.5573E+00 2.1559 4.2074E+00 4.9118 1.8467E+00
14 1.3833 6.5573E+00 2.1558 4.2075E+00 4.6925 1.9330E+00
15 1.3833 6.5573E+00 2.1558 4.2076E+00 4.5115 2.0106E+00
16 1.3833 6.5573E+00 2.1558 4.2076E+00 4.3610 2.0800E+00
17 1.3833 6.5573E+00 2.1558 4.2076E+00 4.2349 2.1419E+00
...

...
...

...
...

...
...

75 1.3833 6.5573E+00 2.1558 4.2076E+00 3.4790 2.6073E+00
76 1.3833 6.5573E+00 2.1558 4.2076E+00 3.4789 2.6073E+00
77 1.3833 6.5573E+00 2.1558 4.2076E+00 3.4789 2.6074E+00
78 1.3833 6.5573E+00 2.1558 4.2076E+00 3.4789 2.6074E+00

and

δ ≥ max

{
(6�m0)

1
1–β0 , (6�m1)

1
1–β1 , 6�M1,

(
12�m0

�q(2 – ς )

) 1
1–β0

,

(
12�m1

�q(2 – ς )

) 1
1–β1

,
16aM1

�q(2 – ς )(1 – ae2)
,

8M2

�q(2 – ς )

}

= max

{(
24
7

�

)2

,
(

9
5
�

) 4
3

, 6�M1,
(

48�

7�q( 3
2 )

)2

,
(

18�

5�q( 3
2 )

) 4
3

,

5600M1

99�q( 3
2 )

,
8M2

�q( 3
2 )

}
.

Table 1 shows � ∼= 6.5573, 4.2076, 2.6074 for q = 1
5 , 1

2 , 7
8 , respectively. Figure 1 shows 2D

graphs of �. Therefore, condition (A1) in Theorem 3.4 holds, and hence this problem has
a solution.

Example 4.2 Consider the following problem:

CD
27
11
q [y](t) =

4
5
(
y(t)

)3 + 3
(CD

1
8
q [y](t)

)4 (19)

under the boundary conditions y(0) = y′(0) = 0 and y(1) = 1
2 y( 2

7 ). Then

w
(
y(t), CD

2
5
q [y](t)

) ≤ 4
∣∣y(t)

∣∣3 + 2
∣∣CD

2
5
q [y](t)

∣∣5.

Clearly, σ = 27
11 ∈ (2, 3], ς = 1

8 ∈ J0, e = 2
7 ∈ J0, and a = 19

4 ∈ [0, 1
e2 ). We define w : R2 →R by

w(y, z) =
4
5
(
y(t)

)3 + 3
(
z(t)

)4
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Figure 1 2D graphs of � for q = 1
5 ,

1
2 ,

7
8 in Example 4.1

for y, z ∈R. Then we have

∣∣w
(
y(t), CD

1
8
q [y](t)

)∣∣ =
4
5
∣∣(y(t)

)3∣∣ + 3
(CD

1
8
q [y](t)

)4

≤ 4
5
∣∣y(t)

∣∣3 + 3
∣∣CD

1
8
q [y](t)

∣∣4.

We take m0 = 4
5 , m1 = 3, β0 = 3, and β1 = 4. Also, by using Eq. (8), we obtain

� =
2

�q(σ + 1)

[
1 +

a
1 – ae2

]

=
2

�q( 27
11 + 1)

[
1 +

19
4(1 – 19

49 )

]

=
2

�q( 38
11 )

× 1051
120

=
2102

120�q( 38
11 )

.

Table 2 shows � ∼= 1.3258, 9.1665×101, 6.2138 for q = 1
5 , 1

2 , 7
8 , respectively. Figure 2 shows

2D graphs of �. Therefore, condition (A2) in Theorem 3.4 holds, and hence this problem
has a solution.

Example 4.3 Consider the problem

CD
12
5

q [y](t) =
1

18
(
y(t)

)
+

1
9

sin
(CD

3
7
q [y](t)

)
(20)

with boundary conditions y(0) = y′(0) = 0 and y(1) = 1
3 y( 8

11 ). It is clear that σ = 12
5 ∈ (2, 3],

ς = 3
7 ∈ J0, e = 8

11 ∈ J0, and a = 81
64 ∈ [0, 1

e2 ). We define w : R2 →R by

w(y, z) =
1

18
y(t) +

1
9

sin
(
z(t)

)
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Table 2 Numerical results of �q(σ + 1) and � for q = 1
5 ,

1
2 ,

7
8 in Example 4.2 (Algorithm 1)

n q = 1
5 q = 1

2 q = 7
8

�q(σ + 1) � �q(σ + 1) � �q(σ + 1) �

1 1.3343 1.3128E+01 2.3699 7.3912E+00 29.1233 6.0147E–01
2 1.3238 1.3232E+01 2.1221 8.2545E+00 18.5831 9.4262E–01
3 1.3217 1.3253E+01 2.0124 8.7044E+00 13.3129 1.3158E+00
4 1.3213 1.3257E+01 1.9607 8.9339E+00 10.2860 1.7030E+00
5 1.3212 1.3258E+01 1.9356 9.0499E+00 8.3794 2.0905E+00
6 1.3212 1.3258E+01 1.9232 9.1081E+00 7.0969 2.4682E+00
...

...
...

...
...

...
...

14 1.3212 1.3258E+01 1.9110 9.1663E+00 3.7276 4.6992E+00
15 1.3212 1.3258E+01 1.9110 9.1665E+00 3.5932 4.8750E+00
16 1.3212 1.3258E+01 1.9109 9.1665E+00 3.4811 5.0320E+00
17 1.3212 1.3258E+01 1.9109 9.1665E+00 3.3870 5.1717E+00
...

...
...

...
...

...
...

81 1.3212 1.3258E+01 1.9109 9.1666E+00 2.8191 6.2137E+00
82 1.3212 1.3258E+01 1.9109 9.1666E+00 2.8190 6.2137E+00
83 1.3212 1.3258E+01 1.9109 9.1666E+00 2.8190 6.2137E+00
84 1.3212 1.3258E+01 1.9109 9.1666E+00 2.8190 6.2138E+00
85 1.3212 1.3258E+01 1.9109 9.1666E+00 2.8190 6.2138E+00
86 1.3212 1.3258E+01 1.9109 9.1666E+00 2.8190 6.2138E+00
87 1.3212 1.3258E+01 1.9109 9.1666E+00 2.8190 6.2138E+00

Figure 2 2D graphs of � for q = 1
5 ,

1
2 ,

7
8 in Example 4.2

for y, z ∈R. Then we have

∣∣w
(
y(t), CD

3
7
q [y](t)

)
– w

(
z(t), CD

3
7
q [z](t)

)∣∣

=
∣∣∣∣

1
18

(
y(t)

)
+

1
9

sin
(CD

3
7
q [y](t)

)

–
(

1
18

(
z(t)

)
+

1
9

sin
(CD

3
7
q [z](t)

))∣∣∣∣
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≤ 1
18

∣∣y(t) – z(t)
∣∣

+
1
9
∣∣sin

(CD
3
7
q [y](t)

)
– sin

(CD
3
7
q [z](t)

)∣∣

≤ 1
18

∣∣y(t) – z(t)
∣∣ +

1
9
∣∣CD

3
7
q [y](t) – CD

3
7
q [z](t)

∣∣

≤ 1
9
(∣∣y(t) – z(t)

∣∣ +
∣∣CD

3
7
q [y](t) – CD

3
7
q [z](t)

∣∣).

We take � = 1
9 . Table 3 shows that

�q(2 – ς )
�[3 + �q(2 – ς )]

= 1.3522 × 10–1, 1.9197 × 10–1, 2.7708 × 10–1

Table 3 Numerical results of �q(σ + 1), �, and � <
�q(2–ς )

�[3+�q(2–ς )]
for q = 1

5 ,
1
2 ,

7
8 in Example 4.2

(Algorithm 2)

n �q(σ + 1) � �

q = 1
5

1 1.3187 7.3233E+00 1.3655E–01
2 1.3084 7.3811E+00 1.3548E–01
3 1.3063 7.3927E+00 1.3527E–01
4 1.3059 7.3950E+00 1.3523E–01
5 1.3058 7.3954E+00 1.3522E–01
6 1.3058 7.3955E+00 1.3522E–01

q = 1
2

1 2.2951 4.2077E+00 2.3766E–01
2 2.0569 4.6949E+00 2.1300E–01
3 1.9515 4.9486E+00 2.0208E–01
...

...
...

...
10 1.8546 5.2070E+00 1.9205E–01
11 1.8543 5.2080E+00 1.9201E–01
12 1.8541 5.2086E+00 1.9199E–01
13 1.8540 5.2088E+00 1.9198E–01
14 1.8539 5.2089E+00 1.9198E–01
15 1.8539 5.2090E+00 1.9198E–01
16 1.8539 5.2090E+00 1.9197E–01

q = 7
8

1 26.5678 3.6349E–01 2.7511E+00
2 17.0689 5.6577E–01 1.7675E+00
3 12.2939 7.8552E–01 1.2731E+00
4 9.5395 1.0123E+00 9.8783E–01
5 7.7985 1.2383E+00 8.0755E–01
...

...
...

...
80 2.6759 3.6089E+00 2.7709E–01
81 2.6759 3.6090E+00 2.7709E–01
82 2.6758 3.6090E+00 2.7709E–01
83 2.6758 3.6090E+00 2.7709E–01
84 2.6758 3.6090E+00 2.7709E–01
85 2.6758 3.6090E+00 2.7708E–01
86 2.6758 3.6090E+00 2.7708E–01
87 2.6758 3.6090E+00 2.7708E–01
88 2.6758 3.6090E+00 2.7708E–01



Samei et al. Advances in Difference Equations        (2021) 2021:482 Page 22 of 26

Figure 3 2D graphs of
�q (2–ς )

�[3+�q(2–ς )]
for q = 1

5 ,
1
2 ,

7
8 in Example 4.3

Figure 4 2D graphs of � for q = 1
5 ,

1
2 ,

7
8 in Example 4.3

for q = 1
5 , 1

2 , 7
8 , respectively. Also, the results prove that

� ≤ �q(2 – ς )
�[3 + �q(2 – ς )]

.

Figure 3 shows 2D graphs of

�q(2 – ς )
�[3 + �q(2 – ς )]

.
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Also, by using Eq. (8), we obtain

� =
2

�q(σ + 1)

[
1 +

a
1 – ae2

]

=
2

�q( 12
5 + 1)

[
1 +

81
64(1 – 81

121 )

]
=

2
�q( 17

5 )
× 12,361

2560
=

24,722
2560�q( 38

11 )
.

Table 3 shows that � = 7.3955, 5.2090, 3.6090 for q = 1
5 , 1

2 , 7
8 , respectively. Figure 4 shows

2D graphs of �. Now, by applying Eq. (10), we get

� <
�q(2 – ς )

�[3 + �q(2 – ς )]
=

�q(2 – 3
7 )

�[3 + �q(2 – 3
7 )]

=
�q( 11

7 )
�[3 + �q( 11

7 )]
.

Since 0 < � < 1
9 < 0.263, Theorem 3.5 implies that this problem has a unique solution.

5 Conclusion
The Schauder fixed point theorem has been applied in the research study to discuss the
well-posed conditions for a class of q-fractional order boundary value problems As a re-
sult, we have proved the existence and uniqueness of solution by means of the Schauder
fixed point and Banach contraction map theorems on the interval [0, 1]. We have also
studied the perturbation on boundary condition on the function exists in the right-hand
side of the problem and on the fractional order. To the leading of our information, the
results have never been detailed in other works [11, 12, 61] that consider the problems. In
this manner, it is very apparent that the solution of the problem is stable under the small
perturbation.

Appendix: Supporting information

Algorithm 1 MATLAB lines for Examples 4.1 and 4.2

1 c l e a r ;
2 format long ;
3 q = [ 1 / 5 1/2 7 / 8 ] ;
4 sigma = 8 / 3 ;
5 v a r s igm a = 1 / 2 ;
6 a = 1 4 / 9 ; e = 3 / 5 ; m0= 4 / 7 ; m1= 3 / 1 0 ; b e t a 0 = 1 / 2 ; b e t a 1 = 1 / 4 ;
7 column = 1 ;
8 f o r i =1 :3
9 f o r n =1:120

10 R e s u l t s ( n , column )=n ;
11 temp=qGamma( q ( i ) , s igma +1 , n ) ;
12 R e s u l t s ( n , column +1)= temp ;
13 R e s u l t s ( n , column +2)=2∗(1+ a /(1 – a∗e∗e ) ) / temp ;
14 end ;
15 column=column + 3 ;
16 end
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Algorithm 2 MATLAB codes for Example 4.3

1 c l e a r ;
2 format long ;
3 q = [ 1 / 5 1/2 7 / 8 ] ;
4 sigma = 1 2 / 5 ;
5 v a r s igm a = 3 / 7 ;
6 a = 8 1 / 6 4 ; e = 8 / 1 1 ; m0= 4 / 5 ; m1= 3 ; b e t a 0 = 3 ; b e t a 1 = 4 ;
7 column = 1 ;
8 f o r i =1 :3
9 f o r n =1:120

10 R e s u l t s ( n , column ) =n ;
11 temp=qGamma( q ( i ) , s igma +1 , n ) ;
12 R e s u l t s ( n , column +1)=temp ;
13 R e s u l t s ( n , column +2) =2∗(1+ a /(1 – a∗e∗e ) ) / temp ;
14 R e s u l t s ( n , column +3)=qGamma( q ( i ) , 2– vars igma , n )

/ ( ( qGamma( q ( i ) , 2– vars igma , n ) ) ∗ ( 2∗ ( 1 + a
/(1 – a∗e∗e ) ) / temp ) ) ;

15 end ;
16 column=column + 4 ;
17 end

Acknowledgements
The first and second authors were supported by Bu-Ali Sina University. The fifth author was supported by Azarbaijan
Shahid Madani University. The authors express their gratitude to dear unknown referees for their helpful suggestions
which improved the final version of this paper.

Funding
Not applicable.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved
the final manuscript.

Author details
1Department of Mathematics, Bu-Ali Sina University, 65178, Hamedan, Iran. 2Department of Mathematics, Sacred Heart
College (Autonomous), Tirupattur, 635 601, Tamil Nadu, India. 3Department of Mathematics and General Sciences, Prince
Sultan University, Riyadh, Saudi Arabia. 4Department of Industrial Engineering, OSTİM Technical University, 06374 Ankara,
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