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Abstract
The three-term conjugate gradient (CG) algorithms are among the efficient variants
of CG algorithms for solving optimization models. This is due to their simplicity and
low memory requirements. On the other hand, the regression model is one of the
statistical relationship models whose solution is obtained using one of the least
square methods including the CG-like method. In this paper, we present a
modification of a three-term conjugate gradient method for unconstrained
optimization models and further establish the global convergence under inexact line
search. The proposed method was extended to formulate a regression model for the
novel coronavirus (COVID-19). The study considers the globally infected cases from
January to October 2020 in parameterizing the model. Preliminary results have shown
that the proposed method is promising and produces efficient regression model for
COVID-19 pandemic. Also, the method was extended to solve a motion control
problem involving a two-joint planar robot.
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1 Introduction
Consider the following optimization model:

min f (x), x ∈ R
n, (1.1)

where f : Rn →R is a smooth function whose gradient ∇f (x) = g(x) is available. Problems
of the form (1.1) can be traced to many professional fields of science, astronomy, engineer-
ing, economics, and many more (see, for example, [1, 2]). Throughout this paper, we shall
abbreviate g(xk) and f (xk) by gk and fk , respectively. Also, ‖ · ‖ represents the Euclidean
norm of vectors.
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The nonlinear CG methods play an important role in solving large-scale optimization
models due to the modesty of their memory requirements and nice convergence proper-
ties. Generally, the iterates of the CG methods are usually determined through the follow-
ing recursive computational scheme:

xk+1 = xk + sk , sk = tkdk , k ≥ 0, (1.2)

where tk is the step-size computed along the search direction dk . For the first iteration, d0 is
always the steepest descent direction, that is, d0 = –g0 [3]. However, subsequent directions
are recursively determined by

dk = –gk + βkdk–1, k ≥ 1, (1.3)

where the scalar βk is known as the CG coefficient whose different form determines a
different CG methods.

The following line search procedures have been used in the convergence analysis and
implementations of the already existing CG methods [4]. The convergence analysis often
requires the line search to satisfy the exact line search, the Wolfe or strong Wolfe (SWP)
line search. The exact line search requires the step-size tk to satisfy

f (xk + tkdk) := min
t≥0

f (xk + tdk). (1.4)

The standard line search requires computing tk such that the cost function is minimized
along dk satisfying

f (xk + tkdk) ≤ f (xk) + δtkgT
k dk , (1.5)

g(xk + tkdk)T dk ≥ σ gT
k dk . (1.6)

The SWP is to compute tk satisfying (1.5) and

g(xk + tkdk)T dk ≤ –σ
∣
∣gT

k dk
∣
∣, (1.7)

where 0 < δ < σ < 1.
Presently, there are several known formulas for different CG parameters (see [4–10]).

One of the most efficient algorithms among the well-known formulas is the PRP [7, 8]
defined by

βPRP
k =

gT
k yk–1

‖gk–1‖2 , (1.8)

where yk–1 = gk – gk–1. From the computational point of view, the PRP algorithm performs
better than most CG algorithms, and the convergence result has been established un-
der some line search procedures. However, for a general function, the PRP method fails
with regard to the global convergence under the Wolfe line search procedure. This is be-
cause the direction of search dk is not descent for a general objective function [4]. This
problem inspired numerous researchers to study the global convergence of PRP method
under inexact line search. Interestingly, considering the general function, Yuan et al. [11]
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proved the global convergence of PRP method using a modified Wolfe line search pro-
cedure. More practical approaches of the line search have been employed to identify a
step-size capable of achieving adequate reduction in the objective function f (x) at mini-
mal cost.

Recently, Rivaie et al. [12] proposed a variant of PRP method by replacing the term
‖gk–1‖2 in the denominator of PRP with ‖dk–1‖2 as follows:

βRMIL
k =

gT
k yk–1

‖dk–1‖2 , (1.9)

and showed that the method converges globally under the exact line search. However, Dai
[13] pointed out a wrong inequality used in the convergence result of RMIL method and
suggested some necessary corrections as follows:

βRMIL+
k =

⎧

⎨

⎩

gT
k yk–1

‖dk–1‖2 , if 0 ≤ gT
k gk–1 ≤ ‖gk‖2,

0, otherwise,
(1.10)

and further established the global convergence under the exact line search. Preliminary
results have been presented using the same benchmark test problems with different initial
guess to illustrate the efficiency of the modified method. More recently, Yousif [14] mod-
ified the work of Dai [13] and showed that RMIL+ converges globally under the strong
Wolfe line search. For more reference on the convergence analysis of the CG method,
please refer to the following references [15–19].

It is worthy to note that the sufficient descent property

gT
k dk ≤ λ‖gk‖2, λ > 0, (1.11)

plays a crucial role in the convergence analysis of the CG methods including the RMIL
method. In this regard, several variants of the CG methods have been defined to satisfy
(1.11) independent of the line search technique used.

One of the efficient variants of the CG methods is the three-term CG method where
the search direction dk contains three terms. One of the classical three-term methods
was proposed by Beale [20], using the coefficient βHS

k [5]. The author constructed a new
direction of search as follows:

dk = –gk + βkdk–1 + γkdt ,

where dt is the restart direction and

γk =

⎧

⎨

⎩

0, if k = t + 1,
gT

k yt
dT

t yt
, if k > t + 1.

The performance of this method was improved using an efficient restart strategy devel-
oped by McGuire [21]. The first three-term PRP algorithm (TTPRP) was defined by Zhang
et al. [22] with the formula given as

dk = –gk + βkdk–1 + θk–1yk–1,
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where βk is the PRP method defined in (1.8) and θk = – gT
k dk–1

gT
k–1gk–1

. An attractive feature of this
method is that the descent condition

gT
k dk ≤ –‖gk‖2, (1.12)

holds independent of any line search, and the global convergence was established under
a modified Armijo line search. Based on the structure of TTPRP, Liu et al. [23] extended
the coefficient of RMIL (1.9) to defined a three-term CG method known as TTRMIL with
formula as follows:

d0 = –g0, dk = –gk + βkdk–1 + θkyk–1, k ≥ 1, (1.13)

where βk is defined by (1.9) and θk = – gT
k dk–1

‖dk–1‖2 .
The global convergence of this method was proved under the standard Wolfe line search.

However, the proposed TTRMIL method in (1.13) employed the RMIL method; Dai [13]
pointed out some errors in the convergence result and suggested some correction given
in [14]. Motivated by this, we propose a modification of TTRMIL in the next section. For
more references about the three-term CG method, interested readers may refer to [24–
27].

The rest of the paper would be structured as follows. In the next section, a modified
TTRMIL method is given with its algorithm. The sufficient descent property and the
global convergence of the new modification are studied in Sect. 3. Preliminary results
based on some unconstrained optimization problems are presented to illustrate the per-
formance of the method in Sect. 4. The proposed modification was extended to formulate
a parameterized model for cases of COVID-19 in Sect. 5. In Sect. 6, the application in
motion control is presented. Finally, the concluding remark and some recommendations
of the study are presented in Sect. 7.

2 TTRMIL+ method and its algorithm
Motivated by the comments made by Dai [13] on the convergence of RMIL method, as
discussed in the preceding section, we propose a modified TTRMIL, named TTRMIL+,
by replacing βk in (1.13) with the βk given in (1.10) as follows:

dk =

⎧

⎨

⎩

–gk , k = 0,

–gk + βkdk–1 + θkyk–1, k ≥ 1,
(2.1)

where

θk = –
gT

k dk–1

dT
k–1dk–1

. (2.2)

From (1.13) and (2.2), it is obvious that the difference between these two methods is the
CG parameter βk employed by each method in defining their search directions dk . This
is a little change that has a great impact in the convergence analysis of RMIL+. It is inter-
esting to note that the TTRMIL+ reduces to the classical RMIL+ method under the exact
minimization condition. The following algorithm describes the proposed TTRMIL+.
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Algorithm 1 The modified TTRMIL+ algorithm.
Stage 0. Given x0 ∈R

n, d0 = –g0 = –∇f0, set k := 0.
Stage 1. Check if ‖gk‖ ≤ ε, then stop.
Stage 2. Compute tk using (1.5) and (1.6).
Stage 3. Update the new point based on (1.2). If ‖gk‖ ≤ ε, terminate the process.
Stage 4. Compute βk by (1.10) and update dk by (2.1).
Stage 5. Go to Stage 2 with k := k + 1.

The following assumptions are very important and usually required in the convergence
analysis of most CG algorithms.

Assumption 2.1
(A1) The level set 	 = {x ∈R

n|f (x) ≤ f (x0)} is bounded, where x0 is an arbitrary initial
point.

(A2) In some neighborhood N of 	, f is smooth and g(x) is Lipschitz continuous on an
open convex set N that contains 	 such that there exists L > 0 (constant) satisfying

∥
∥g(x) – g(y)

∥
∥ ≤ L‖x – y‖, ∀x, y ∈ N . (2.3)

From Assumption 2.1 and [16, 28], it implies that there exist positive constants γ and b
such that

∥
∥g(xk)

∥
∥ ≤ γ , ∀xk ∈ 	, (2.4)

‖x – y‖ ≤ b, ∀x, y ∈ 	. (2.5)

But the function f (x) decreases as k → +∞, hence, from Assumption 2.1, the sequence
{xk} generated by Algorithm 1 is said to be contained in a bounded region. This implies
that the sequence {xk} is bounded.

The convergence analysis of the new method would be studied in the next section.

3 Convergence analysis
In this section, we establish the sufficient descent condition and global convergence prop-
erties of the proposed TTRMIL+ method.

The following theorem indicates that the search direction of TTRMIL+ method satisfies
the sufficient descent condition.

Theorem 3.1 Suppose that the sequence {xk} is generated by Algorithm 1. The search di-
rection dk defined by (2.1) with βk = βRMIL+

k (1.10) satisfies the sufficient descent condition
(1.12).

Proof We will prove by induction. For k = 0 and from (2.1), we have gT
0 d0 = –‖g0‖2, so that

the sufficient descent condition (1.12) is satisfied. Suppose that (1.12) is true for k – 1, that
is, gT

k–1dk–1 = –‖gk–1‖2. According to the value of βRMIL+
k (1.10), we have two cases.
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• Case 1: βRMIL+
k = 0. Since (1.6), (2.1), (2.2), and gT

k gk–1 > ‖gk‖2 hold, we have

gT
k dk = –gT

k gk –
gT

k dk–1

dT
k–1dk–1

gT
k yk–1

≤ –‖gk‖2 + σ
‖gk–1‖2

‖dk–1‖2 gT
k yk–1

= –‖gk‖2 + σ
‖gk–1‖2

‖dk–1‖2

(‖gk‖2 – gT
k gk–1

)

≤ –‖gk‖2.

• Case 2: βRMIL+
k = gT

k yk–1
‖dk–1‖2 . From (2.1) and (2.2), we get

gT
k dk = –‖gk‖2 +

gT
k yk–1

‖dk–1‖2 gT
k dk–1 –

gT
k dk–1

‖dk–1‖2 gT
k yk–1 = –‖gk‖2.

Hence, the search direction dk defined by the TTRMIL+ method always satisfies the suf-
ficient descent condition (1.12). �

Remark 3.2 Since the proposed method satisfies the sufficient descent condition (1.12),
then, for all k ≥ 0, we have

‖dk‖ ≥ ‖gk‖. (3.1)

Now, we will establish the global convergence of the TTRMIL+ method by first provid-
ing the following lemma to show that the standard Wolfe line search gives a lower bound
for the step-size tk as follows.

Lemma 3.3 Suppose that the sequence {xk} is generated by Algorithm 1, where dk is a
descent direction and Assumption 2.1 holds. If tk is calculated by standard Wolfe line search
(1.5) and (1.6), then we have

tk ≥ (1 – σ )‖gk‖2

L‖dk‖2 . (3.2)

Proof From the standard Wolfe condition (1.6) and by subtracting gT
k dk in the both sides,

and using Lipschitz continuity (2.3), we get

(σ – 1)gT
k dk ≤ (gk+1 – gk)T dk

≤ ‖gk+1 – gk‖‖dk‖
≤ L‖xk+1 – xk‖‖dk‖
= Ltk‖dk‖2.

Since dk is a descent direction and also σ < 1, that implies (3.2) is true. �

The following lemma is the Zoutendijk condition [29], which plays an important role in
the analysis of the global convergence properties for CG method.
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Lemma 3.4 Let Assumption 2.1 hold and dk be generated by (1.10), (2.1), and (2.2), where
tk is calculated by the standard Wolfe line search (1.5) and (1.6). Then

∞
∑

k=0

(gT
k dk)2

‖dk‖2 < +∞. (3.3)

Proof From the standard Wolfe condition (1.5) and (3.2), we have

f (xk) – f (xk + tkdk) ≥ –δtkgT
k dk ≥ δ

(1 – σ )(gT
k dk)2

L‖dk‖2 .

Hence, from Assumption (2.1), we get the Zoutendijk condition (3.3) and hence the
proof. �

We present a global convergence results of the proposed TTRMIL+ CG method using
the standard Wolfe line search.

Theorem 3.5 Suppose that the sequence {xk} is generated by Algorithm 1, we have

lim
k→∞

inf‖gk‖ = 0. (3.4)

Proof Suppose by contradiction that (3.4) is not true. Then ∀k ≥ 0, we can find a positive
constant c so that

‖gk‖ ≥ c. (3.5)

Here, we have two cases.
• Case 1: If βRMIL+

k = 0, then based on the Cauchy–Schwarz inequality and from (2.1),
(2.2), (2.3), (2.4), (2.5), (3.1), and (3.5), we get

‖dk‖ = ‖ – gk + θkyk–1‖

=
∥
∥
∥
∥

–gk –
gT

k dk–1

dT
k–1dk–1

yk–1

∥
∥
∥
∥

≤ ‖gk‖ +
‖gk‖‖dk–1‖‖yk–1‖

‖dk–1‖2

≤ γ +
‖gk‖L‖xk – xk–1‖

‖dk–1‖
≤ γ +

‖gk‖Lb
‖dk–1‖

≤ γ +
‖gk‖Lb
‖gk–1‖

≤ γ +
γ Lb

c
� ν. (3.6)

Furthermore, by using (1.12), (3.5), and (3.6), we obtain

∞
∑

k=0

(gT
k dk)2

‖dk‖2 ≥
∞

∑

k=0

‖gk‖4

‖dk‖2 ≥
∞

∑

k=0

c4

ν2 = +∞.
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This is a contradiction with (3.3). Hence, (3.4) holds.
• Case 2: If βRMIL+

k = βRMIL
k , then based on the Cauchy–Schwarz inequality and from

(1.9), (2.1), (2.2), (2.3), (2.4), (2.5), and (3.1), we obtain

‖dk‖ =
∥
∥–gk + βRMIL

k dk–1 + θkyk–1
∥
∥

≤ ‖gk‖ +
|gT

k yk–1|
‖dk–1‖2 ‖dk–1‖ +

∥
∥
∥
∥

–
gT

k dk–1

dT
k–1dk–1

yk–1

∥
∥
∥
∥

≤ ‖gk‖ +
‖gk‖‖gk – gk–1‖‖dk–1‖

‖dk–1‖2 +
‖gk‖‖dk–1‖‖gk – gk–1‖

‖dk–1‖2

≤ ‖gk‖ + 2
‖gk‖‖gk – gk–1‖

‖gk–1‖

≤ γ +
2γ Lb

c
� ζ .

By using the same argument as in Case 1, we obtain (3.4) and the proof is complete. �

4 Numerical experiments
In this part, we report the numerical experiments to demonstrate the efficiency of the
TTRMIL+ method in comparison with the RMIL [12], RMIL+ [13], PRP [7, 8], and TTR-
MIL [23] methods. For comparing the computational performance, we consider some test
problems from Andrei [30], and Jamil and Yang [31]. Most of initial points are also con-
sidered by Andrei [30] and implemented using dimensions starting from 2 to 50,000. The
test problems and their initial points are presented in Table 1. The codes were written in
Matlab R2019a and run using a personal laptop with specification Intel Core i7 proces-
sor, 16 GB RAM, 64 bit Windows 10 Pro operating system. All algorithms are terminated
when ‖gk‖ ≤ 10–6, and for objective comparison, all the methods are executed under the
standard Wolfe line search (1.5) and (1.6) with parameter δ = 10–4, σ = 0.8 for the TTR-
MIL method, and δ = 0.01, σ = 0.1 for the RMIL, RMIL+, PRP, and TTRMIL+ methods.
The metrics used for comparison include the number of iterations (NOI), the number of
function evaluations (NOF), and the central of processing unit (CPU) time.

All numerical results of the RMIL, RMIL+, and PRP methods are listed in Table 2 and
those of the TTRMIL and TTRMIL+ methods in Table 3. A method is said to have failed if
the NOI is more than 10,000 and the terminating criteria stated above have not been sat-
isfied. The failure is symbolized with ‘F’. We also use the performance profile tool of Dolan
and Moré [32] to show the performance profile curve of RMIL, RMIL+, PRP, TTRMIL,
and TTRMIL+. The performance profile figures on NOI, NOF, and CPU are presented in
Figs. 1, 2, and 3, respectively.

Let P be the set of test problems with np being the number of test problem. S is the set of
methods and ns is the number of methods. For each method s ∈ S and problem p ∈ P, let
jp,s denote either NOI, NOF, or CPU time required to solve problem p by method s. Then
the performance profile is defined as follows:

ρs(τ ) =
1
np

size{p ∈ P : log2 rp,s ≤ τ },
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Table 1 List of test problems, dimensions, and initial points

Number Problems Dimensions Initial points

1 Extended White & Holst 1000 (–1.2, 1, . . . , –1.2, 1)
2 Extended White & Holst 1000 (10, . . . , 10)
3 Extended White & Holst 10,000 (–1.2, 1, . . . , –1.2, 1)
4 Extended White & Holst 10,000 (5, . . . , 5)
5 Extended Rosenbrock 1000 (–1.2, 1, . . . , –1.2, 1)
6 Extended Rosenbrock 1000 (10, . . . , 10)
7 Extended Rosenbrock 10,000 (–1.2, 1, . . . , –1.2, 1)
8 Extended Rosenbrock 10,000 (5, . . . , 5)
9 Extended Freudenstein & Roth 10,000 (–5, . . . , –5)
10 Extended Freudenstein & Roth 50,000 (–5, . . . , –5)
11 Extended Beale 1000 (1, 0.8, . . . , 1, 0.8)
12 Extended Beale 1000 (0.5, . . . , 0.5)
13 Extended Beale 10,000 (–1, . . . , –1)
14 Extended Beale 10,000 (0.5, . . . , 0.5)
15 Raydan 1 10 (1, . . . , 1)
16 Raydan 1 10 (–10, . . . , –10)
17 Raydan 1 100 (–1, . . . , –1)
18 Raydan 1 100 (–10, . . . , –10)
19 Extended tridiagonal 1 500 (2, . . . , 2)
20 Extended tridiagonal 1 500 (10, . . . , 10)
21 Extended tridiagonal 1 1000 (1, . . . , 1)
22 Extended tridiagonal 1 1000 (–10, . . . , –10)
23 Diagonal 4 500 (1, . . . , 1)
24 Diagonal 4 500 (–20, . . . , –20)
25 Diagonal 4 1000 (1, . . . , 1)
26 Diagonal 4 1000 (–30, . . . , –30)
27 Extended Himmelblau 1000 (1, . . . , 1)
28 Extended Himmelblau 1000 (20, . . . , 20)
29 Extended Himmelblau 10,000 (–1, . . . , –1)
30 Extended Himmelblau 10,000 (50, . . . , 50)
31 FLETCHCR 10 (0, . . . , 0)
32 FLETCHCR 10 (10, . . . , 10)
33 Extended Powel 100 (3, –1, 0, 1, . . .)
34 Extended Powel 100 (5, . . . , 5)
35 NONSCOMP 2 (3, 3)
36 NONSCOMP 2 (10, 10)
37 Extended DENSCHNB 10 (1, . . . , 1)
38 Extended DENSCHNB 10 (10, . . . , 10)
39 Extended DENSCHNB 100 (10, . . . , 10)
40 Extended DENSCHNB 100 (–50, . . . , –50)
41 Extended penalty 10 (1, 2, . . . , 10)
42 Extended penalty 10 (–10, . . . , –10)
43 Extended penalty 100 (1, . . . , 1)
44 Extended penalty 100 (–2, . . . , –2)
45 Hager 10 (1, . . . , 1)
46 Hager 10 (–10, . . . , –10)
47 Extended Maratos 10 (1.1, 0.1, . . . , 1.1, )
48 Extended Maratos 10 (–1, . . . , –1)
49 Six hump camel 2 (–1, 2)
50 Six hump camel 2 (–5, 10)
51 Three hump camel 2 (–1, 2)
52 Three hump camel 2 (2, –1)
53 Booth 2 (5, 5)
54 Booth 2 (10, 10)
55 Trecanni 2 (–1, 0.5)
56 Trecanni 2 (–5, 10)
57 Zettl 2 (–1, 2)
58 Zettl 2 (10, 10)
59 Shallow 1000 (0, . . . , 0)
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Table 1 (Continued)

Number Problems Dimensions Initial points

60 Shallow 1000 (10, . . . , 10)
61 Shallow 10,000 (–1, . . . , –1)
62 Shallow 10,000 (–10, . . . , –10)
63 Generalized quartic 1000 (5, . . . , 5)
64 Generalized quartic 1000 (20, . . . , 20)
65 Quadratic QF2 50 (0.5, . . . , 0.5)
66 Quadratic QF2 50 (30, . . . , 30)
67 Leon 2 (2, 2)
68 Leon 2 (8, 8)
69 Generalized tridiagonal 1 10 (2, . . . , 2)
70 Generalized tridiagonal 1 10 (10, . . . , 10)
71 Generalized tridiagonal 2 4 (1, 1, 1, 1)
72 Generalized tridiagonal 2 4 (10, 10, 10, 10)
73 POWER 10 (1, . . . , 1)
74 POWER 10 (10, . . . , 10)
75 Quadratic QF1 50 (1, . . . , 1)
76 Quadratic QF1 50 (10, . . . , 10)
77 Quadratic QF1 500 (1, . . . , 1)
78 Quadratic QF1 500 (–5, . . . , –5)
79 Extended quadratic penalty QP2 100 (1, . . . , 1)
80 Extended quadratic penalty QP2 100 (10, . . . , 10)
81 Extended quadratic penalty QP2 500 (10, . . . , 10)
82 Extended quadratic penalty QP2 500 (20, . . . , 20)
83 Extended quadratic penalty QP1 4 (1, 1, 1, 1)
84 Extended quadratic penalty QP1 4 (10, 10, 10, 10)
85 Quartic 4 (10, 10, 10, 10)
86 Quartic 4 (15, 15, 15, 15)
87 Matyas 2 (1, 1)
88 Matyas 2 (20, 20)
89 Colville 4 (2, 2, 2, 2)
90 Colville 4 (10, 10, 10, 10)
91 Dixon and Price 3 (1, 1, 1)
92 Dixon and Price 3 (10, 10, 10)
93 Sphere 5000 (1, . . . , 1)
94 Sphere 5000 (10, . . . , 10)
95 Sum squares 50 (0, 1, . . . , 0, 1)
96 Sum squares 50 (10, . . . , 10)
97 ENGVAL1 50 (2, . . . , 2)
98 ENGVAL1 100 (2, . . . , 2)
99 ENGVAL8 50 (0, . . . , 0)
100 ENGVAL8 100 (0, . . . , 0)
101 QUARTICM 5000 (2, . . . , 2)
102 QUARTICM 10,000 (2, . . . , 2)
103 QUARTICM 15,000 (2, . . . , 2)
104 QUARTICM 20,000 (2, . . . , 2)

where τ > 0, and rp,s is the performance ratio that can be obtained by

rp,s =
jp,s

min{jp,s} .

Generally, the method with the high performance profile value ρs(τ ) is considered the
best method for a given τ value. In other words, the method where the curve dominates
the very top is the most efficient method compared to the others.

According to Table 2, the RMIL method was able to solve 66% of the problems, RMIL+
75%, and PRP 71%. Meanwhile, based on Table 3, the TTRMIL method solved 93% of
the problems and the proposed TTRMIL+ 94%. In this regard, the TTRMIL+ method
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Table 2 Numerical results of the RMIL, RMIL+, and PRP methods using weak Wolfe line search

Number RMIL RMIL+ PRP

NOI NOF CPU NOI NOF CPU NOI NOF CPU

1 25 160 0.075 16 102 0.0588 15 104 0.0525
2 F F F F F F 21 181 0.0898
3 25 160 0.578 16 102 0.3907 15 104 0.3841
4 F F F 38 260 0.9512 22 203 0.7392
5 F F F 27 176 0.0488 19 123 0.0377
6 44 227 0.0618 40 243 0.0667 F F F
7 F F F 32 192 0.3874 19 123 0.231
8 24 126 0.2573 40 195 0.3768 20 136 0.4796
9 F F F 11 63 0.1356 8 54 0.1141
10 F F F 11 63 0.4922 8 54 0.3937
11 41 137 0.5728 52 191 0.0992 15 69 0.0479
12 56 175 0.0987 F F F 9 44 0.0367
13 22 83 0.3537 11 48 0.2153 F F F
14 58 182 0.7956 F F F 10 47 0.222
15 24 83 0.0015 27 105 0.0026 22 87 0.0021
16 36 143 0.0022 37 170 0.0062 37 157 0.0036
17 110 333 0.0379 109 505 0.0394 74 409 0.032
18 140 435 0.0439 180 841 0.0609 F F F
19 12 56 0.0203 6 37 0.0144 F F F
20 F F F 5 26 0.0145 5 26 0.0139
21 12 56 0.0412 7 40 0.0276 F F F
22 8 41 0.0379 9 55 0.0425 13 68 0.0458
23 F F F F F F F F F
24 F F F F F F F F F
25 F F F F F F F F F
26 F F F F F F F F F
27 12 43 0.0205 11 44 0.0215 8 34 0.0327
28 10 48 0.0196 7 34 0.0165 6 31 0.0127
29 9 39 0.0942 9 42 0.0952 8 45 0.1075
30 F F F 11 50 0.137 8 44 0.1027
31 72 289 0.0036 72 311 0.0084 56 263 0.0055
32 138 712 0.0198 111 548 0.0183 71 376 0.0078
33 F F F 70 863 0.0716 3337 10,084 0.7111
34 F F F 39 225 0.0443 2312 7053 0.4623
35 8 34 4.81E–04 54 193 0.0183 15 76 0.0048
36 F F F 17 94 0.2085 F F F
37 7 22 4.32E–04 6 22 0.000845 5 19 0.0042
38 8 33 5.90E–04 8 37 0.0022 8 37 0.0023
39 8 33 0.0038 8 37 0.0093 8 37 0.0044
40 11 52 0.0172 9 43 0.0181 7 37 0.0032
41 F F F 27 112 0.0038 31 117 0.0017
42 F F F 26 103 0.0021 9 46 6.12E–04
43 26 123 0.0081 19 87 0.0056 12 82 0.006
44 F F F 19 89 0.0124 13 87 0.0077
45 F F F F F F F F F
46 F F F F F F F F F
47 F F F 207 923 0.0331 F F F
48 40 191 0.0126 31 195 0.0134 25 188 0.004
49 9 39 0.0005699 8 36 0.0053 6 30 0.007
50 10 59 0.0081 11 66 0.0026 F F F
51 15 363 0.0034 F F F F F F
52 11 226 0.0075 15 400 0.0108 F F F
53 2 6 0.0001505 2 6 2.58E–04 2 6 2.34E–04
54 2 6 0.0105 2 6 2.84E–04 2 6 4.06E–04
55 1 3 0.0002193 1 3 0.0013 1 3 1.95E–04
56 F F F 5 23 0.007 5 23 6.89E–04
57 18 66 0.0024 16 69 0.0028 10 45 0.0011
58 12 46 0.0075 F F F 12 59 0.0012
59 14 46 0.0209 11 39 0.0154 F F F
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Table 2 (Continued)

Number RMIL RMIL+ PRP

NOI NOF CPU NOI NOF CPU NOI NOF CPU

60 16 58 0.035 14 59 0.0303 13 51 0.018
61 51 155 0.3235 F F F F F F
62 F F F F F F F F F
63 24 301 0.0146 F F F F F F
64 F F F F F F F F F
65 78 265 0.0146 78 280 0.0225 70 250 0.0241
66 78 299 0.0226 77 334 0.0327 58 275 0.0322
67 35 170 0.0046 31 179 0.0023 17 136 0.0012
68 F F F 35 265 0.0033 28 243 0.0032
69 21 66 0.0019 22 74 0.0058 23 77 0.0057
70 27 104 0.0155 28 120 0.003 27 117 0.0037
71 F F F 7 21 0.0027 F F F
72 F F F F F F 11 59 0.0019
73 123 369 0.0074 123 369 0.0102 10 30 7.66E–04
74 139 417 0.0139 139 417 0.0123 10 30 8.78E–04
75 69 207 0.0108 69 207 0.0115 38 114 0.0049
76 78 234 0.0093 78 234 0.0104 40 120 0.0073
77 447 1341 0.1754 447 1341 0.1716 131 393 0.0719
78 500 1500 0.2143 500 1500 0.2046 137 411 0.072
79 37 314 0.0274 34 313 0.0254 22 235 0.0161
80 F F F 30 296 0.0252 27 296 0.0233
81 60 591 0.099 57 620 0.1127 39 493 0.087
82 3899 12030 1.6296 69 743 0.1158 43 528 0.082
83 14 48 0.0009078 14 53 0.0012 6 28 6.26E–04
84 20 81 0.0144 15 68 0.0013 9 49 9.52E–04
85 773 2468 0.0345 802 2788 0.0517 163 696 0.0138
86 781 2558 0.0395 806 2811 0.0454 113 495 0.0133
87 F F F F F F F F F
88 F F F F F F F F F
89 773 3091 0.0378 1032 4339 0.0726 148 818 0.2155
90 897 3418 0.0425 669 2819 0.0324 86 372 0.0167
91 42 149 0.0077 F F F F F F
92 35 141 0.0196 46 194 0.0083 56 266 0.0063
93 1 3 0.0057 1 3 0.0083 1 3 0.0167
94 1 3 0.0179 1 3 0.0056 1 3 0.0071
95 46 138 0.0123 46 138 0.0152 25 75 0.0057
96 81 243 0.5261 81 243 0.2223 41 123 0.0097
97 23 112 0.0162 47 817 0.0301 22 409 0.0147
98 F F F F F F 22 416 0.0251
99 14 46 0.0112 14 63 0.2976 14 78 0.2305
100 14 60 0.0089 F F F F F F
101 F F F F F F F F F
102 F F F F F F F F F
103 F F F F F F F F F
104 F F F F F F F F F

is considered a better method when compared to the RMIL, RMIL+, and PRP methods,
but competes with the TTRMIL method in terms of NOI, CPU time, and NOF. From the
performance profile in Figs. 1–3, we can see that the TTRMIL+ method is efficient and
promising with regard to solving unconstrained optimization problems compared to the
RMIL, RMIL+, PRP, and TTRMIL methods.

5 Application of TTRMIL+ to parameterized COVID-19 model
Coronavirus disease often called COVID-19 is an acute vector-borne disease that surfaced
in 2019. This disease is caused by the newly discovered coronavirus (SARS-CoV-2) and
can be transmitted through droplets produced when an infected person exhales, sneezes,
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Table 3 Numerical results of the TTRMIL and TTRMIL+ methods using weak Wolfe line search

Number TTRMIL TTRMIL+

NOI NOF CPU NOI NOF CPU

1 93 358 0.1801 23 150 0.0711
2 9929 29,974 12.2849 84 513 0.2698
3 88 342 1.3363 30 181 0.6683
4 4957 14,979 76.0681 45 307 1.4779
5 78 295 0.0782 35 175 0.0473
6 120 467 0.1551 54 313 0.0894
7 108 384 0.7369 30 163 0.2912
8 50 176 0.4424 59 290 0.6383
9 24 120 0.3335 16 87 0.2462
10 24 120 1.0537 27 120 1.0524
11 38 112 0.0976 20 75 0.0503
12 34 101 0.0697 46 148 0.1227
13 59 183 0.8012 24 100 0.6058
14 37 109 0.4909 48 154 1.0408
15 70 164 0.0186 19 65 0.0015
16 122 302 0.0133 39 197 0.0039
17 109 329 0.0205 110 333 0.0402
18 179 539 0.0533 173 541 0.0511
19 369 1110 0.3641 17 80 0.0435
20 414 1216 0.4525 18 83 0.0447
21 488 1419 0.7491 17 80 0.048
22 293 935 0.4831 23 104 0.0648
23 14 39 0.0254 11 30 0.0114
24 19 53 0.0171 13 36 0.0157
25 14 39 0.0223 7 19 0.012
26 19 53 0.0234 13 35 0.0186
27 9 32 0.0359 9 34 0.0144
28 13 58 0.0297 15 60 0.0254
29 10 41 0.1842 9 39 0.1533
30 11 50 0.202 13 57 0.1416
31 73 288 0.0248 72 290 0.005
32 139 699 0.018 141 729 0.0115
33 F F F F F F
34 F F F F F F
35 31 95 0.014 12 44 0.0023
36 29 102 0.0049 22 100 0.0013
37 8 24 0.0141 5 16 4.05E–04
38 10 40 0.0018 9 35 6.82E–04
39 11 43 0.0039 9 35 0.0032
40 13 73 0.0053 9 47 0.0037
41 27 95 0.0177 23 85 0.014
42 22 83 2.70E–03 16 66 0.0043
43 F F F 26 104 0.0103
44 20 107 0.3942 10 46 0.0066
45 23 60 0.0095 24 63 0.0014
46 34 89 0.0057 32 86 0.0019
47 42 206 0.0132 47 261 0.0057
48 51 213 0.005 50 275 0.0073
49 7 26 0.0071 6 25 3.28E–04
50 8 41 5.62E–04 9 44 4.61E–04
51 27 85 0.0073 19 275 0.0078
52 F F F 23 393 0.0133
53 2 6 1.98E–02 2 6 4.81E–04
54 2 6 2.60E–03 2 6 1.71E–04
55 1 3 6.50E–03 1 3 1.87E–04
56 13 48 5.90E–03 10 37 9.83E–04
57 21 59 0.0095 17 61 0.0026
58 25 80 9.51E–04 13 50 7.63E–04
59 27 71 0.371 13 39 0.012
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Table 3 (Continued)

Number TTRMIL TTRMIL+

NOI NOF CPU NOI NOF CPU

60 40 124 0.1116 19 78 0.0245
61 34 98 2.2351 26 74 0.1941
62 60 195 0.4584 24 82 0.1785
63 F F F F F F
64 F F F F F F
65 80 261 0.2371 79 268 0.0158
66 90 361 0.019 81 318 0.0186
67 214 703 0.0263 17 94 0.0012
68 125 586 0.0222 54 371 0.0042
69 22 69 0.0138 22 69 0.0013
70 32 132 0.005 27 104 0.0027
71 16 42 1.33E–02 17 46 6.91E–04
72 14 47 7.42E–04 23 71 0.0013
73 123 369 1.59E–02 123 369 0.0064
74 139 417 7.80E–03 139 417 0.0083
75 69 207 0.0162 69 207 0.0084
76 78 234 0.0182 78 234 0.0105
77 447 1341 0.2032 447 1341 0.1934
78 500 1500 0.188 500 1500 0.2052
79 61 419 0.2168 38 320 0.0215
80 163 701 0.0447 41 324 0.0225
81 1516 5038 0.7924 61 594 0.1043
82 84 683 0.1154 82 762 0.1268
83 10 34 1.03E–02 15 51 0.0011
84 18 71 1.10E–03 18 71 0.0013
85 580 1890 0.0407 804 2608 0.0368
86 740 2315 0.0271 777 2471 0.0367
87 29 145 9.60E–03 9 63 6.19E–04
88 37 185 0.0018 11 77 8.07E–04
89 838 3098 0.0527 683 2426 0.0262
90 567 1924 0.017 493 1847 0.023
91 23 75 1.34E–02 20 68 6.89E–04
92 36 154 0.0023 39 153 0.0021
93 1 3 0.0723 1 3 0.0064
94 1 3 0.008 1 3 0.0058
95 46 138 0.0085 46 138 0.0071
96 81 243 0.0185 81 243 0.0072
97 24 79 0.0159 24 103 0.0048
98 23 76 0.0107 F F F
99 14 46 0.2267 F F F
100 F F F 15 50 0.0131
101 45 365 0.7906 4 31 0.0886
102 46 381 1.5578 4 31 0.1567
103 46 381 2.2696 4 31 0.2059
104 47 397 2.9721 4 31 0.2747

or coughs. Most people infected by the virus will develop mild to moderate symptoms,
such as mild fever, cold, difficulty in breathing, and recover without special treatment.
Clinically, as of 3:05 pm CEST, 20 October 2020, a total of 40,251,950 confirmed cases
of the COVID-19 with 1,116,131 deaths was recorded from 215 territories and countries
around the globe since the disease was first reported in Wuhan, China [WHO].

Recently, numerous studies modeled various aspects of the coronavirus outbreak, and
application of numerical methods on some COVID-19 models was also studied. In this
paper, we consider the global COVID-19 outbreak from January to September, 2020,
model the confirmed cases into an unconstrained optimization problem, and finally apply
TTRMIL+ to obtain the solution of the parameterized model.
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Figure 1 Performance profiles based on NOI

Figure 2 Performance profiles based on NOF

Consider the following function of regression analysis:

y = h(x1, x2, . . . , xp + ε), (5.1)

where xi, i = 1, 2, . . . , p, p > 0 is the predictor, y is the response variable, and ε is the er-
ror. This type of problem often arises in the fields of management, finance, economics,
accounting, physics, and many more. The regression analysis is a statistical modeling tool
used to estimate the relationships between a dependent variable and one or more inde-
pendent variables. To derive the linear regression function, we compute y such that

y = a0 + a1x1 + a2x2 + · · · + apxp + ε, (5.2)



Sulaiman et al. Advances in Continuous and Discrete Models          (2022) 2022:1 Page 16 of 22

Figure 3 Performance profiles based on CPU time

Table 4 Statistics of confirmed cases of COVID-19, Jan–Sept, 2020

Monthly data (Jan–Sept) (x) Data of confirmed COVID-19 cases (y) Statistics of COVID-19 in %

1 2010 0.16
2 1852 0.14
3 58,863 4.7
4 74,019 6.0
5 115,577 9.3
6 172,158 13.9
7 293,238 23.6
8 269,338 21.7
9 254,423 20.5

where the parameters of the regression are defined by a0, . . . , ap. The regression analysis
estimates the regression parameters a0, a1, . . . , ap such that the value of the error ε is min-
imized. An instance where the linear regression method is the relationship between y and
x is approximated with a straight line. However, such a case infrequently occurs, and thus,
the nonlinear regression process is often used. In this study, we consider the nonlinear
regression approach.

To formulate the approximate function, we consider the data from the global confirmed
cases of COVID-19 from January to September, 2020. The detailed description of the pro-
cess follows from the statistics presented in Table 4 which are taken from the data obtained
by the World Health Organization [WHO] [33]. We have data for nine months (Jan–Sept),
the data for the months would be denoted by x-variable and the confirmed cases corre-
sponding to these months would be denoted by the y-variable. For fitting the data, we only
consider the data for eight months (Jan–Aug), and reserve the data for September for error
analysis.

From the above data, we obtain the following approximate function for the nonlinear
least square method:

f (x) = –26,029.59 + 14,557.39x + 3290.077x2. (5.3)
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Table 5 Test results for optimization of quadratic model for TTRMIL+

Initial points NOI CPU time

(3, 3, 3) 14 0.03259193087998213
(5, 5, 5) 13 0.04000198696240659
(21, 21, 21) 15 0.04062229692033143
(100, 100, 100) 15 0.04526743733986786

Function (5.3) is used to approximate the values of y based on values of x from Jan–Aug.
Denoting the number of months by xj and the corresponding confirmed cases by yj, then,
we can transform the least squares problem (5.3) into the following unconstrained mini-
mization model:

min
x∈Rn

f (x) =
n

∑

j=1

((

u0 + u1xj + u2x2
j
)

– yj
)2. (5.4)

The nonlinear quadratic function for the least squares problem is derived using the data
utilized from Jan–Aug, 2020, which is further used to formulate the corresponding un-
constrained optimization model. Obviously, it can be observed that data xj and the value
of yj possess some parabolic relations with the regression parameters u0, u1, and u2 and
the regression function (5.4).

min
x∈R2

n
∑

j=1

E2
j =

n
∑

j=1

((

u0 + u1xj + u2x2
j
)

– yj
)2. (5.5)

Using the data from Table 4, we can transform (5.5) to obtain our nonlinear quadratic
unconstrained minimization model as follows:

9u2
0 + 90u0u1 + 570u0u2 – 2,482,956u0 + 285u2

1 + 4050u1u2

– 17,172,778u1 + 15,333u2
2

– 126,050,318u2 + 275,210,100,844.

(5.6)

The data considered to generate the unconstrained optimization model are data from Jan–
August, and the data for Sept is reserved for computing the relative errors of the predicted
data. Applying the proposed TTRMIL+ method on model (5.6) under the strong Wolfe
line search, we obtain the following results presented in Table 5.

One of the major challenges is computing the values of u0, u1, u2 using matrix inverse
[34]. To overcome this difficulty, we implement the proposed TTRMIL+ using different
initial points. The computation would be terminated if the following conditions hold.

1. The algorithm fails to solve the model.
2. The number of iterations exceeds 1000. This point is denoted as ‘Fail’.

5.1 Trend line method
A trend line is a line drawn under pivot lows or over pivot highs to show the prevailing
direction of price. In this section, we estimate the data for COVID-19 for a period of nine
(9) months using the proposed TTRMIL+ and least squares methods. The trend line is
plotted using the Microsoft Excel software based on data from Table 4. The trend line
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Figure 4 Nonlinear quadratic trend line for confirmed cases of COVID-19

Table 6 Estimation point and relative errors for 2020 data

Models Estimation point Relative error

TTRMIL+ 19,256.790790 0.23786793800
Least square 18,186.200000 0.280239046000
Trend line 18,186.200000 0.280239046000

equation appears in a form of nonlinear quadratic equation. Representing the y-axis by y
and x-axis by x, we obtain the plot presented in Fig. 4 using the actual data from Table 4.
Further, to illustrate the efficiency of the proposed method, we compare the approximation
functions of TTRMIL+ method with the functions of trend line and least square methods
as follows.

The ideal purpose of regression analysis is estimating the parameters a0, a1, . . . , ap such
that the error ε is minimized. From the results presented in Table 6, it is obvious that the
proposed TTRMIL+ CG method has the least relative error compared to the least square
and trend line methods which implied that the method is applicable to real-life situations.
For other references regarding modeling, analysis, and prediction of COVID-19 cases, one
can see [35].

6 Application TTRMIL+ in motion control
This section demonstrates the performance of the proposed TTRMIL+ CG method on
motion control of a two-joint planar robotic manipulator. As presented in [36], the follow-
ing model describes a discrete-time kinematics equation of two-joint planar robot manip-
ulator at the position level

�(μk) = ηk , (6.1)

where μk ∈ R
2 and ηk ∈ R

2 denote the joint angle vector and the end effector vector po-
sition, respectively. The vector-valued function �(·) represents the kinematics function
which has the following structure:

�(μk) =

[

τ1 cos(μ1) + τ2 cos(μ1 + μ2)
τ1 sin(μ1) + τ2 sin(μ1 + μ2)

]

, (6.2)
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with τ1 and τ2 denoting the length of the first and second rod, respectively. In the case of
motion control, at each instantaneous computational time interval [tk , tk+1) ⊆ [0, tf ] with
tf being the end of task duration, the following nonlinear least squares model is to be
minimized:

min
�k∈R2

1
2
‖�k – �̂k‖2, (6.3)

where �̂k denotes the end effector controlled track.
Similar to the approach presented in [37–39], the end effector, used in this experiment,

is controlled to track a Lissajous curve given as

�̂k =

⎡

⎣

3
2 + 1

5 sin( π tk
5 )

√
3

2 + 1
5 sin( 2π tk

5 + π
3 )

⎤

⎦ . (6.4)

The parameters used in the implementation of the proposed TTRMIL+ CG method are:
τ1 = 1, τ2 = 1, and tf = 10 seconds. The starting point μ0 = [μ1,μ2] = [0, π

3 ]T where the task
duration [0, 10] is divided into 200 equal parts.

The results of the motion control experiments are depicted in Figs. 5(a)–5(b). The robot
trajectories synthesized by the TTRMIL+ are shown in Fig. 5(a), where the end effector
trajectory and the desired path are plotted in Fig. 5(b). Finally, the errors recorded on

Figure 5 Numerical results generated in the the course of robotic motion control experiment: (a) Robot
trajectories synthesized by TTRMIL+. (b) End effector trajectory and desired path by TTRMIL+. (c) Residual
error by TTRMIL+ on x-axis. (d) Residual error by TTRMIL+ on y-axis
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horizontal and vertical axes by the TTRMIL+ are shown in Figs. 5(c) and 5(d), respectively.
Perusing through these figures, it can be seen from Figs. 5(a) and 5(b) that the TTRMIL+
successfully accomplished the task at hand. The error recorded in the course of the task is
relatively low as can be seen from Figs. 5(c) and 5(d), which confirms the efficiency of the
proposed TTRMIL+.

7 Conclusion
This paper presented a modified conjugate gradient method for unconstrained optimiza-
tion models. The proposed TTRMIL+ method replaced RMIL in TTRMIL with a new
modification known as RMIL+. The sufficient descent condition and the convergence
proof of TTRMIL+ are studied under the standard Wolfe line search. Some unconstrained
benchmark test problems are considered to illustrate the performance of the proposed
method. The result obtained showed that the TTRMIL+ method is efficient and promis-
ing. The method was further applied to a parameterized COVID-19 model, and the result
obtained showed that TTRMIL+ produced a good regression model and thus can be used
in regression analysis. Finally, we applied the method to solve a practical problem of mo-
tion control. Future work includes studying the new algorithm on nonlinear least squares
problems as discussed in [40]. Furthermore, we shall consider other problems in our future
research as presented in the following references [41–44].
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