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1 Introduction

The notion of fractional differential equations (FDEs) has been a field of intense research
for the last few decades. In 1695, the notion of FDEs was initiated with a coincidence
between Leibniz and L'Hospital. Nowadays, FDEs play an important role in establishing
mathematical modeling of many problems occurring in control theory, bioengineering,
mathematical networks, aerodynamics, blood flows, engineering, physics, signal process-
ing, etc. [1, 2].

We can analyze from different experiments that FDEs have innumerable prominent sta-
tus than integer-order derivatives. Consequently, fractional calculus got incredible interest
and received more attention from many specialists and researchers. It also set up a better
sketch over hereditary properties of processes and various materials, consequently many
monographs and research papers have been reported in this field [3-22].

Recently, the theory of stability analysis, like Lyapunov, exponential, Mittag-Leffler func-
tion, and finite time stability for various kinds of functional equations, has been investi-
gated. Ulam and Hyers introduced most important and interesting kind of stability called
Hyers—Ulam stability [23] in 1940. Ulam during his talk at Wisconsin University asked
a question about the stability of homomorphisms between groups. In 1941, Hyers [24]
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replied to Ulam’s problem positively under the hypothesis that groups are considered as
Banach spaces (BS), and such a stability was called Ulam—Hyers stability. For more in-
formation, see [25-30]. Impulsive differential equations are best tools to model a phys-
ical situation that contains abrupt changes at certain instants. These equations describe
medicine, biotechnology process, population dynamics, biological systems, chemical en-
ergy, mathematical economy, pharmacokinetics, etc. [31-43].

In the past few decades, because of these applications in various fields of interest, impul-
sive differential equations got considerable attention. In order to unify the difference and
differential calculus, Hilger [44] provided the idea of time scales at the end of the twenti-
eth century, which is now a well-known subject. For more details, see [45-51]. Lupulescu
and Zada [49] provided the basics and fundamental notions of linear impulsive systems
on time scales in 2010.

In 1960, Kalman presented the notion of controllability, which is the principal notion
in mathematical control theory. In general, controllability provides steering the state of a
control dynamical equation to the desired terminal state from an arbitrary initial state by
utilizing a suitable control function. Numerous researchers examined the controllability
results of dynamical systems [52, 53]. Moreover, controllability results on time scales is a
new area, and few results have been achieved [54, 55]. Especially, there are a few articles
that examined the existence, controllability, and Ulam type stability regarding a mixed
structure of the impulsive fractional dynamical system on time scales.

Inspired by the research conducted in [56], we study the following mixed integral frac-
tional dynamic systems on the time scale T:

“TDw(s) = A(s)w(s) + F(s,w(s))

+G(s,0(5), [ Fi(s,5,0() As, [ Fals,s,w(s)As),

s €T =T\{s1,62-.,5mho =(0,1), W)
w(gy) - w(sp) = Brlw(sp) + Prlsi, w(sp)), k=1,...,m
(5o) = wo,

and

“TD%w(c) = A(g)w(g) +F(s,0(s))
+G(s,0(5), [ Fils,s,0()As, [ Fa(s,s,(s) As),
ge(si,gi+1]ﬂ']I‘,l:1,...,m,0:(0,1), (2)
w(s) = ﬁ f;(g —5)° thi(s,w(s)As, ¢ e(c,s]NT,i=1,...,m,

(o) = wo.

Also, we discuss the controllability of the following systems:

“ID%w(s) = A(s)w(s) + F(s, w(s))
+ G5, (), [ Fi(s,s,0())As, [ Fa(s,s, () As) + He (o),
ceT' =T\{s1,62,...» Sm} 0 =(0,1), ®)
w(sf) —o(sp) = Ex(o(sp)) + Prlsp,o(s)), k=1,...,m

(1)(5'()) = o,
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and

“IDw(s) = A(s)w(s) + F(s, w(s))
+G(5,0(5), [ Fi(s,s,0()As, [ Fals,s w(s) As) + He (s),
ceGnclNTi=1,...,mo =(0,1), (4)
o(s) = oy J2 (6 =8) (s, 0(s)As, g € (sl NToi=1,...,m,

a)(go) = o,

where “TD? represents the classical Caputo derivative [1] of fractional order o on time
scales T. The regressive square matrix A(¢) is piecewise continuous, and H : T — T is a
bounded linear operator. By assuming R as the real number, ¢ € £2(I,R) is a control map,
T := [0, 5¢], the pre-fixed numbers are 6o =59 < 61 <$1 <52 <** < S < S < Sms1 = S
and F:TOx R" > R", Fi,Fo :TOX TOx R* > R", G: T x R” x R" x R” — R", k; :
(cosi)NT xR" > R", i=1,...,m, F:(s;, 1] N T x R" - R", i =0,...,m, G : (s;, gis1] N
TxR'xR"xR" > R", i=1,...,m, B : R" — R", & : T x R” — R” are continuous
mappings. In addition, we define the right limit and the left limit of w(¢) at ¢ as w(g}) =
lim;_ o+ w(gx + 7) and w(g; ) = lim;_o- w(gx — T), respectively.

2 Auxiliary definitions and lemmas
Here, we provide definitions, basic notions, and preliminaries for this manuscript.

We define C(I,R) as a BS of all continuous mappings endowed with the norm |w||c =
sup .t [lo(s)l. PS = C(LR) x C(I,R) x C(LR) is the product space which is a BS fur-
nished with the norm ||(@,¢,£)|lc = l@llc + I llc + [I€]lc. Also, we define a BS C(I,R) =
{w e C(LR): ©® € C(I,R)} with the norm [|w||c1 = max{||w||c, [|w*||c1}. Moreover, PS! =
CHI,R) x C!(I, R) x C!(I, R) is the product space via ||(®, £, &) ||c1 = |@llcr + [ ]lcr + €]l et

A nonempty closed subset of R is known as a time scale (T). We define a time scale
interval as [c,d]t = {¢ € T: ¢ < ¢ <d}. Similarly, we can define (c,d)r, [c,d)T.

The forward and backward jump operators ¢ : T — T, p : T — T are introduced as

o(¢)=inf{seT:s>¢} and p(c)=sup{seT:s<c},

respectively. The operator 1 : T — [0, co) formulated by 1(s) = 0(¢) — ¢ is applied to ob-
tain the existing distance between two consecutive points. Along this, the derived version
TX of T is

¢ T\(p(supT),supT], if supT < oo,
T, if supT = oo.

The regressive (respectively positively regressive) function ) : T — R is defined as 1 +
1(s)$H(c) # 0 (respectively 1 + n(¢)$H(s) > 0) for all ¢ € T*.

Definition 2.1 ([57]) Ata point ¢ € T, the delta derivative g*(¢) of a mapping g : T — R
is a number (provided it exists) if, for € > 0, a neighborhood U of ¢ exists provided that

[g(c0(s) —g(@)] -g()[o(s) —7]| <€|o(c) - |, forallzeU.



Pervaiz et al. Advances in Difference Equations (2021) 2021:491

Theorem 2.2 ([57]) Let ¢,d € T and f € C,4(T,R), then
1. T =R implies

/ “fe)as - / “fe)ds

2. If [c,d) consists of only isolated points, then

Y ceeay M) (5),  ifc<d,

d
/f(;)Ag= 0, ifc=

_de[c,d)u(g)f(g)) ifc>d.

3. T=hZ={hk:k €Z}, h >0, implies

b
h

) S, ife<d,
/ f(§)As = 1o, ifc=
- Z/a_%l hf (kh), ifc>d.

Theorem 2.3 ([58]) Iff :R — R is nondecreasing continuous and c,d € T, then

d d
/ F(e)As < / () ds. (5)

Definition 2.4 ([58]) Let ¢ : [¢,d]T — R be an integrable mapping, then delta fractional

integral is

_\o-1
A7, 6(c) f (i S) () As ©)

Definition 2.5 ([58]) The fractional Caputo derivative of a mapping f : T — R on the

time scale is

. To _ g(g_s)n—o—l A"
Df6)= [ S A, )

where 7 = [¢] + 1 and the delta nth derivative of f is denoted by f2".

« When T = (J;5[2i,2i + 1]. Then we get

nal

¢, To (g—s A"
D+f()—/ —)f ()A

2k+1 o Lean 2i+1 CoLean
el S [

for ¢ € [2,2i+1],i=0,1,....
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o« When T = hZ, h > 0, we have

_ o\n—o-1 n
“TDY.f(g) = / &ﬁ\ ()Ac

-1

h(c —ih)" " 2" (h), ¢eT.

N

1
F(n o)

k

\ |
o

e When T ={p":p>1,neZ}UZ, then

¢ To _ ° (S__S)n—a—l A"
DLf(6) = [ S s

_ 1 _ yu-o-1gA"
—F(n_a)gezTM(S)(§ 8" s).

Regard the Mittag-Leffler function as

o]

K
_ S
Esp(5) = /?:0 To 1 5) foro,B > 0.

Forg =1,

o )Lk ko
Eﬂ(kg ZF(ak+1 hoeC
k=0

has the interesting property ‘D, E; (Ag?) = AE;(Ac7).

Remark 2.1 ([59]) The solution of system (1) is of the form

E;(Ag%)wo + ;f(s‘ —5)" " Eq 5 (A(s —5)°)F (5, () As
+ f;{(g —5)" " Eqg o (Al —5)7)
X G(s,a)(s),fszf Fi(s,u, o(u)) Au, f;—)f Fols, u, w(u)) Au)As,
s € (50, 51],
E;(As”)wg + [ (s =8)" " Es,o (A5 = 5)°) F(s, w(c)) As
+ ;)f(g —5)" " Eq o (A(s —5)7)
X G(s,a)(s),fs;f Fi(s,u, w(u)) Au, fss({ Fols, u, w(u)) Au)As

+ Y (Ej((6)) + (5T, 0(5))), ¢ € (Ssimli=1,

w(s) =

where E; (A¢?) is the matrix representation of the aforesaid Mittag-Leffler function given

by

E,(Ac%) =

A%¢
p= I'l+xo)

To achieve our results, we consider the following:

Page 5 of 36
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(A): The mappings G,G : T® x R” x R” x R” — R” are continuous, and there exist L,
L, i=1,2,3, as the positive constants such that (i = 1,2, 3)

3
|G(s,q1,92,43) - G(,p1,p2,p3)| < Y Lnlqi—pil forallg €1, g;,p: € R,
i=1

3
|G(s,q1,92,q3) = G5, p1, P2, P3)| < Zﬁgiwi -pi| forallg el q;p; € R".

i=1

(B): The mappings G, G : TO x R” x R” x R” — R” are continuous, and there exist /;,
m;, i = 1,2,3, positive constants such that

|G(g,u, v,w)| <lo+hL|u|l+bLlv|+3lw forall ¢ € u,v,weR",

’g(g, u,v,w)‘ <mg +my|u|l + myv| + n3|lw| forall¢c e Lu,v,weR".

(W): The linear operator ("W ): L*(I,R) — R, defined by

Sf
TWIE = [ (T =97 Ep (Al - 97 HE (A, ®)
50

possesses a bounded invertible operator ("Wgo)‘l, and these operators admit val-
ues in L%(I, R)\ker("WgTO). Also, there exists a positive constant provided that
I V\/gTo)‘1 | < M5, Also, H : T — T is a continuous operator, and there exists a
positive constant My provided that | H|| < M.

Using Theorem 2.2, equation (8) can be calculated for different T.

e WhenT =hZ, h>0:

-1

“Wg(){ = /gf(T—s)"_lEg_g (A(g —s)“)HC(s)As =Y (T —sh)° YHe (sh).
<

0 0

N

>~
i

« When T = J;5,[2i,2i + 1]. Let ¢ € [4,5], then we have
T & 1
Wt = (T - 8)""Es 0 (A(s —5)7)Hi(s)As
50
1
- [ - Al s e s
0
3
o [T B (s -9 e s
2
T
+/ (T—s)"_lEU,g(A(g —s)“)HC(s)As.
4
e WhenT={q":9>1,meZ}UZ, then

S
W= [ =97 s (Al -9 ) HEWAs = 3 (T - HE(S),
S0

c€l0,T]

Page 6 of 36
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Throughout the manuscript, we set

=as(arLr + asLg, + asLG,Lr, (sr — o) + azLa, L7, (sr — S0) + M) (5r — So);

&£
il
Q

s(a2lF + arLg, + azLa,LF, (sr — $0) + azLa, L, (57 — 50)) (57 — o)
Q; :=as(asLr + asLg, + asLg,Lr, (s — So) + asLg,Lr, (s — so) + Z\A’Ig)(s‘f - 50);

az(asLp + arLg, + asLg,Lr, (sy — o) + asLg, L7, (sy — $0))(Sf = So);

Q3 := Ny + Q; Q5 = N4+ Q5;

Lg 8+ZL¢6+611, N, _ZL +ZL¢,

&8
i

N =
j=1 j=1 j=1
N Ly( ) N, 1 L( )
3= o a3Lg(Gf — Go) t a1; 4= 7 as3Lg\Gf — Go)s
F( ) g\Sf — F(O’) g\Sf

S)a—l ” .

ap = supHEa (Ag") ay = supHE(m (A(g - s)") ; as = supH(g
ceT ceT ceT

3 Existence of solution

Existence criteria are investigated here.

Theorem 3.1 The mixed impulsive system (1) admits a unique solution if assertion (A)
holds and

max {Q;} < 1. )
1<i<3

Proof Let Q C PS and Q2 = {(X,Y,Z) € PS: |(X,Y,Z)|c < &} also &, = max{s,s;} and
3,81 €(0,1) provided that

> maX{Nl,Nz,Ng},
and the remaining constants are introduced in the sequel. Now, we define A, : Q@ — € as

E;(As)wo + [ (s =5) " Eq 0 (Als = 5)) F (s, 0(5)) As
+ [ (6 =5)" " Es 0 (Als —5)7)
x G(s,a)(s),fssg Fi(s,u, 0(u) Au, fssof Fos, u, o(u)) Au)As,
A (0(6)) = s € (o, 51, (10)
Es(As)wo + [ (s =5)" " Eq 0 (Als = 5)) F (s, 0(5)) As
s =97 Eq s (A(s —5))
X G(s,a)(s) fo Fi(s,u,w())Au, fsi)f Fols, u, o)) Au)As

+ 25 (Ei(s)) + (5] 0(5)), s €(Spsimbi=1,...,m.

Assume that

|F (s, w)| < |F(s,0) = Fs,0)| + | Fs,0)| < Lrllwl + Mx
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and

1G(s,X,Y,Z)| < | G(s,X,Y,Z) - G(5,0,0,0)| + | G(s,0,0,0)||

< Ly IXN + Ly IY [ + L | 21| + Mg,

where M = sup_p [|F(s,0)[l, Mg = sup .t |G(s,0,0,0)]|, and Mg = Mr + Mg. In addi-
tion, X = w(s), Y = /;S({ Fi(s,u, o)) Au, and Z = fszf Fols, u, o)) Au.
Now, we prove that A, : Q2 — Q is a self-mapping.

For ¢ € (i»6iv1l, i = 1,...,m, one has

- ()] = 3057+ Llsfsrolsy )] + 12 (45l

j=1

‘ (F(s,w(s))
+ G(s,a)(s), /SI Fi (5, u,w(u))Au, /Sf 5 (s, u,a)(u))Au)) '

0

s
[l =1 (ats )]
S0

As

=2 _Lalo(q)]+ 3o Lelo(s) ] + B (As”)e|
j=1 j=1

s
[Tl e 4t =9) 1 (176,001
S0

+

G(s,w(s),/Sffl (s, u,w(u))Au, /Sf]-'g (s, u,w(u))Au)

S0 S0

+Mg) As
<> Lefo(s)) ] + Y Lollo(s) | + [Eo (As)wo]
j=1 j=1
of
[ 16 =91 s =) (1] + L ot
)
+Lp, /Sf |1 (s, 18, () | Ase + L, fo |72 (s, 1, 0(w)) | Ans +]/\;IG) As
<> Lefo(s) | + ) Lolo(s) | + [Eo(As?)wo]
j=1 j=1
5
U= s )| (LAl + L o)
)
+Lg,LF /Sf Ha)(u) ” Au+Lg,LF, /Sf Ha)(u) ” Au + [\716) As
=Y Lafo(s))| + D Lafw(s))] + | Es (As7)w]
j=1 j=1

5
+ f [(c =) [ Eo (Als =9)°) [(Lr [ 0(6)]| + Le, |s)]
S0

+Lg,LF || w(u) || (sr —50) + L, L7, || w(u) || (sr —s0) + MG) As

Page 8 of 36
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i i
<Y Lasup|o(s)| + Y Losup|(s)| +sup||Es (A" )wo
; ceT ceT ceT

j=1 j=1

S)
| supls -9 supl s (Ats - ) (£ suplt]
ceT ceT

so c€T

+Lg, sup||a)(s) || +Lg,LF sup||a)(u) || (sr —so0)
ceT ceT

+Lg,LF, sup||a)(u) || (sy —s0) + 1\7[@) As
ceT

i i Sf
<) Lzllole+ Y Lollole +a +f asay (Lrllolloo + La, |0l
j=1 j=1 0

+ L, L7 |@lloo(ss — $0) + Lay L7, llwlloo(sr — 50) + MG) As

1 l
< ZL55 + ZL@S +a; + ﬂ3(8ﬂ2L]-' +8ayLg + 8asLaLF, (s — 50)
j=1 j=1

~ of
+8asLaLr, (sf — o) + Mg) % / As

<o

i i
< ZLES + ZL¢8 +ay +8as(asLr + asLe, + asLe,LF, (s — so)
=1 =1
+asLg, LF,(sf —so) + ]/\;IG)(S‘ - 5f)-
So

[As((s))|| <N1+8Q1<68+8Q1 =61,

where §; =8 + §Q;. Hence

[0 (@(©)] = &2

Therefore, from (11), A(2) C Q. Also, for ¢ € (¢j, Gis1), i = 1,...,m, with wy = @y, one has

! iH @(s5j (7)) - ®i{s@(s)|

s
+ [t =9 Ewa (als -5)|

S0

+ G(s,w(s), /Sf Fi (s, u,a)(u))Au, /Sf Fo (s, u,w(u))Au))

‘ (]-"(s, o(s))

- <f(s, a(s))

Page 9 of 36
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As

+ G(s, (s), /Sf Fi (s, u, @(u))Au, /Sf F (s, u, a(u))Au)) ‘

=Y telols) ~a(s))] + X Lollo(s7) ~a(s)
j=1 j=1
sf N
o [T = 1o ats =91 (17 0t0) - F 29|
S0

+

G(s,w(s),fo Fi (s, u,w(u))Au,fy Fz(s, u,w(u))Au)

- G(S, a(s), [Sf Fi (s, u, EB(u))Au, /Sf .7-'2(3, u, 6(u))Au> )As
<D Laflo(s)) - ()| + D Leflo(s;) - @(s)) |
j=1 J=1
Y
[l =9 1o s =) Lot -200)
4]

Sf
+Lg, |w(s) = a(s)| +Lg, f | F1 (s, () = Fu (s, 1, D(w)) | Aus
5f
+Lg, / | F2 (s, 4 (@) = Fo (s, 11, () | Au> As
=Y Lefo(sy) -a(s)] + Y Lofe(s) -a(s;)]
j=1 j=1
5
[l =9 Ens (s =5 (ot - 6]
%
o~ Sf .
+Lg, |o(s) ~ @) + Le,Lr, / () - B(u)|| A

Sf
+LgLr, f ||a)(u) —o(u) || Au) As
50

<3tz smlolsy) -85} + X Losglots) o657

je1  s€
& o-1 o -~
o [ suplts =9 suplEx (4G5 - 57) | (e suplots) -0
so €T ceT ceT

+ L, sup|e(s) = @(s) | + Lg,Lr, sup||lw(u) - @) | (s - so)
ceT ceT

+LgLr, sup||a)(u) —o(u) || (s — so)> As
ceT

i i
=Y Lello -l + Y Lollo -l
j=1 J=1
+asay (Lo -0llo + Le, |0 = @llos + Ly L7 |0 = @l o (57 — 0)

of
+ LGy Ly, llw — @lloo(sr — 50)) / As
S0

Page 10 of 36
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< |:iL5 + iLqp
j=1 j=1

+as(asLr + asLg, + asLa,Lr, (sr — $0) + azLa, Ly, (s — $0)) (s — §f)j|
x |l = @l oo
It implies
[As (0(5)) = Ao (@(5)) | < N2 + Qo) = Bllo = Qsllw — Dl

Hence

A (0(5)) = Ao (@(5)) || < Qsllw - Bl (Qs<1). (12)

Therefore, from inequality (12) and (9), the operator A, is strictly contractive. Conse-
quently, the mixed impulsive system (1) admits a unique solution via the Banach princi-
ple. d

Now, regarding the mixed impulsive system (2), we have the following result.

Theorem 3.2 The mixed impulsive system (2) involves a unique solution if assertion (A)
holds and

lrglaf)%{Q;"} <1 (13)
Proof Let 2 C PS and @ = {(X,Y,Z) € PS: |(X,Y,Z)| c < 85}, also §; = max{$,5;} and
38,81 € (0,1) provided that

§> maX{Nl,Nz,Ng}.
Now, we define ¥, : 2 — Q as

E;(As™)wo + [ (s =5)" " Eq 0 (Als = 5)7)F(s, w(s)) As
+ (5 =8) " Eq o (A(s —5)")
x g(s,a)(s),fsg Fi(s,u, w(u)) Au, fszf Fo(s, u, w(u)) Au) As,

v (a)(g)) _ cel(chsilNT,i=1,...,m, (14)
’ Eo(Ag®)wo + [ (5 —5)° " Eq 5 (Al — 5)°)E(5,0(5))As
+ [ ~5)° " En o (Als ~5)7)

X g(s,a)(s),fzf Fi(s,u,w(u))Au, fsg Fo(s, u,w(u)) Au)As

Sy S

+ ﬁ f;(g —5)7 hi(s,w(s)As, ¢ €(spcin]NT,i=1,...,m.

Also, note that

|E(s, )| < |E(s,0) = F(s,0) | + | F(s,0)| < Lellwll + M
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and

16(s,X,Y,2)| <[G(s,X,Y,Z) - G(5,0,0,0)| + [ G(5,0,0,0) |

< Lg IX|| + L, Y[ + Lg; | Z]| + Mg,

where MF = sup_.r [|[F(s,0)||, Mg = sup .t [G(s,0,0,0)||, and Mg = Mr + Mg. In addition,
X=ws),Y= f;f Fi(s,u, () Au, and Z = fsf)f Fy(s, u, o(u)) Au.

Now, we prove that ¥, : 2 — Q is a self-mapping.

For ¢ € (s;,ci,11NT,i=1,...,m, one has

Si

1 o-1
19, (w(0))] < H% / 5= s 00) 85

+ [ Eo (A5 )|

Ly
[T 1697 1w (a5 =971 | (Fls)
S0

As

+ Q(s,w(s), sf]-"l (s, 4, (1)) Au, /Sf F(s, u,w(u))Au))‘
< oy | s s 0) | s+, (457) oo

o[l s =) 100

+

(s,w(s) / Fi (s, 0() A /S:sz(s,u,a)(u))Au) +Mg)A
/ [(s =97 [ Le [ (w()) | As + | E5 (A5 )|
+ fg 0 [(¢ =97 [ Exo (Als = 5)°)| (LFHw(S) | +Lg, |eo(s)|
v Lo, / Y B o) | Au + Lo, /f ) ||Au+x4g>m
WH(; $)" 7 | Le[[ (()) || i = i) + [ B (Ag” )awo |
fg [(¢ =97 [ oo (Als = 9)°)| (LFHw(S) | +Lg, |eo(s)|
+Lo,Lr, / :f 0G0 Au + Lo, Lr, /f o) | Au + Mg) As
= ﬁ [ (s =)7L [ () | 65: = i) + [ Eo (A5 7)o

s
+ / [(s =97 [ Exo (Al = 9)°) | (Lr | (s)] +Lg, |eo(s) |
)
+Lg,Lp, || w(u) || (sr —s0) + LgsLF, || w(u) H (sr—s0) + Mg) As

=<

sup||(s )7~ Lg sup | (@()) | (5: = 1) + sup| E; (457 )wo |
I'(o) ceT ceT ceT

of
+ / sup|(s =7 sup | Eo.s (Als - 97) | (L sup| )]
S0 ceT

ceT
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+Lg, sup||(s)|| + Lg,Le, sup|w ()| (ss - s0)
ceT ceT
+Lg,Lr, sup || w(u) || (sr —s0) + j\;[g) As
ceT

Sf
asLgllollsols: — <) + a1 + / s> (Lellolloo + Lo, o]l

1
S JRR—
I'(o) 50

+Lg, L | @lloo(Sr = S0) + Lgs L, |l o (87 — 50) + MG)AS

<
~I'(o)

angS(SL' - S‘L') +a; +as (Sasz + Sang + 8ﬂ2Lng1 (Sf - So)

—~ Sf
+8asLgLr, (s — so) + Mg) x / As

S0

< ﬁang(S(si - 6i) +ay +8az(asLr + asLg, + azLg,Lr, (sr — 5o)
+ a2l gL, (55 = 0) + Mg) (s = 7).
Thus
[ Ac((s)) ]| < N3 +8Q <5+8Q7 =6,
where §; =6 + 6Qj. Hence

| A (@(s)) ] < 8. (15)

Therefore, from (15), W, (2) C Q. Also, for ¢ € (s;, ;1] NT,i=1,...,m, with wy = @y, we

have

| %o (@(s)) = W (&) |

<

1 K o-1 -
m/g (6 =) (Ris, (s)) = hu(s,D(s))) As

Y
[T s (a5 =) | (Pl

)
+3G (s, w(s), /Sf F (S, U, a)(u)) Au, /Sf F, (s, U, w(u))Au))
- <F(s, a(s))

+G (s, o(s), /Sf Fy(s,u,@()) Au, /Sf Fy(s, u, 6(u))Au)) ‘

0

As

1 oo _
= 07 ], 15 =97 [(s.009) - (5. 509) | s
9]
[ 1= s s =) | 17 00) - s
S0

+

G (s, w(s), /Sf F, (s, u, (1)) Au, /Sf Fy (s, u, (1)) Au)

S0
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-G <s, (s), F1 S, U, w(u))Au, /Sf F, (S, u, w(u)) Au)

S0

/u -9 Lot -6 s

=57 oo (At - 57)] (Lfllw(s) ~a()]

)as

S0

+Lg, |w(s) - a(s)| +Lg, /f | F1(s, 1, 0(w)) = Fy (5,1, () ) | Are

+Lg3/ ||F2 s,u w(u )) Fy(s, u, 0(u)) ||Au>As

=t | 16 =97 el -3 a5

[Tl s s =) et -0
S0

5f
+ L, |os) - @) + Lo, Lr, f () - o) Au
S0

5f
+Lg,LF, / ||w(u) —o(u) ” Au) As
50

1 K o-1 o~
*T©) / supl(s =97 Lefls) - a(s) | As

f
+/ sup||(g—s)" 1” sup||Ega(A(§—s)" ||(LpsupHa) s) — a)s)“
S0 se

+Lg, sup || w(s) —w(s) || +Lg,Lr, sup Hw(u) —o(u) || (s —s0)
ceT ceT
+Lg, L, sup || o(u) — o(u) || (sp— so)) As
ceT

! Lellw - @ /ng
=—asl,|lwo-® s
T(o) > 1)

+asar(Lrllo - @lloo + Lg, lo = Do + Lg, L, llw — @l 0o (57 — 50)

f
+Lg3LF2||a)—a)||oo(sf—so))/ As

S0

< [F(IU)JSLg(gf - 6o) + az(asLe + asLg, + arLg,Lr, (sf — So)
+asLgs Ly, (sp = 50)) (s — §f):| @ —®|loo-
It implies
W5 ((5)) = Wo (@(5)) || < (Na + Q)| = Bl < Qfllw — Dl oo

Hence

||\pa ((,()(5‘)) - qja (6(5_)) H =< Q;”w - a”Oo

(16)

Page 14 of 36
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Therefore, from (16) and (13), the operator W, is strictly contractive. Consequently, the
second impulsive system (2) admits a unique solution via the Banach principle. 0

Next, for both mixed impulsive systems (1) and (2), we investigate the existence of at
least one solution via the weaker condition (B) and the Leray—Schauder alternative fixed
point method.

Theorem 3.3 The mixed impulsive system (1) has at least one solution provided assump-
tion (B) holds and IKC > 0 exists so that

a; + Q3K < K. (17)

Proof Firstly, we prove that A, defined by (10) is a completely continuous operator. We
see that the continuity of the mappings E, ®, F, and G provides that A, is a contin-
uous operator. Also, assume that Q;CPS along with the fact that the operators E, @,
F, and G are bounded. Then there exist L;, Ly, M;, and M, (positive constants) such
that 25:1 Ej(w) < Ly, 25:1 ®j(w) < Ly, F(s,w(g)) <M, and G(s,X,Y,Z) < M,, where
p=o(s),

5f
q:/ Fi(s, u,0(w)) Au,

0

and

r= /Sf Fo (s, u, a)(u))Au.

S0

Note that we take £ = Ly + L5 + a1, M = My + Mo, ||(¢ —5)° || < L£1,and £ + Liar M(gr -
So0) = &.
Then, for any w € Q7 and ¢ € (¢;, 6i11], i = 1,...,m, we have

|80 ()] = iu ()] + Y19 0( ) + 1B (A5 o]

Jj=1

o [l et -0

‘ (f(s,w(s))
+ G(s, w(s), /Sf F1 (s, u, a)(u)) Au, /Sf 5 (s, u, w(u)) Au)) ” As

0
of
<Li+Ls+a +thl2(M1 +M2) As
S0
=L+ L1a;M(gr - o).
It implies

[Aq (w(s))] < ®. (18)

Thus, from (18), we conclude that A is uniformly bounded.
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Now, we prove that A, is completely continuous. For this, we discuss the following pos-
sibilities.

Case 1: Assume that all points on T are isolated, i.e., time scales consist of discrete points.
Using Theorem 2.2, A, becomes

E;(As?)wo + 3 cp(s =) Es 5 (A(s = 5)7) F (s, () As

+ 2 cer(s =8) T Eq 0 (A(s = 5)7)

x G(s, w(s), fss({ Fi(s,u, o(u)) Au, fszf Fals, u, o(u)) Au),
Ao () - s € (5o, 61], 19)
E;(As?)wo + 3 cp(s =) Es s (Al = 5)7) F (s, () As

+ 2 cer(s —8) T Eq 5 (Als —5)7)

x G(s, w(s), fsof Fis, u, 0(u))Au, fzf Fols, u,0(u)) Au)As

S| 8

+ Y (Bjl() + (s, o(5))), s €(Susmli=1,...,m.

Clearly, on a discrete finite set, (19) is a collection of summation operators. Further, the
continuity of E;, ®;, F, and G implies that A, is completely continuous.

Case 2: Assume that all the points of T are dense, i.e., T is continuous. Now, let g5, ¢, €
(Si»Giv1l, i = 1,...,m, such that ¢; < ¢p,, then

”Af’(w(gfz)) - Aﬂ(w(gfl)) ”

Y [Ei(wlss) - Ej(e(sh))]

j=1

=

+ 2 [@(sppr55))) = (s s5)))]
j=1

S
+ [( / ® (6 =97 Eu (Al — 5)°) (f(s,w<s>)
S

0

+ G(s,w(s), /Sf Fi (s, u,w(u))Au, /Sf 5 (s, u,w(u))Au)) AS>

S0

h
_ ( / " (6 =97 En (Alss - 5)°) (f(s,w(s))
S

0

+ G(s,w(s), /Sf F1 (S, u,a)(u))Au, /Sf Fo (s, u,w(u))Au)))} As

Z “ Ej (w(gfzf )) - Ei (w(gfli_ )) ”
j=1

IA

+ ) 195(spyr (s) = @55y @ls)) |
j=1

+

S
/ P (s =97 Ena (Als, = 9°) = (55 =1 Eur (Als; —5)°)]
S

0

X ]:(S, a)(s)) As
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+

§2
/ " s =57 En (Als, = 9)7) = (65 = 9" Eno (Al —5)°)]
S

0

X G(S a)(s ]ﬂ s, u,a)(u))Au, /Sf fz(s, u,w(u))Au) As

S0

ShHh
+ / [(s5 = )7 Eq 5 (Alsp, —5)7) | F (s, () As
h
h
o -9 5o
5

f1

S

X G(s,w(s),/Sf fl(s,u,a)(u))Au,/

S0 S0

Fo (s, u, w(u)) Au) As|.

Clearly, we observe from the above that it approaches 0 as ¢y, — ¢, . Hence, the operator
A, is equicontinuous. Finally, using the Arzela—Ascoli theorem, we conclude that A, is
completely continuous.

Case 3: Assume that T involves isolated points along with dense ones, i.e., continuous
and discrete. Now, utilizing Theorem 2.2 for the isolated points, we can write A, as the
summation operator which is completely continuous (discussed in case 1). For the dense
points, one can prove that A, is a completely continuous operator (discussed in case 2).
Consequently, A, can be written as a sum of two operators for isolated and dense points.
As a result, we know that the sum of two operators which are completely continuous is
also completely continuous. Thus, the operator A, is a completely continuous operator.
Hence, by summarizing the above three possibilities, we arrive at the conclusion that A,
is a completely continuous operator.

Finally, let 8 € [0,1], and there exists w provided that w(s) = B(As(w)(¢)). Then, for

¢ €(cigis1l, i=1,...,m, one obtains

[()] = 1820 ((s))]

JIEIEER SvEE
j=1 j=1

=<

7))
+/f (gfz _S) (7(7 A(§f2 _S) (.7" S,a)(S)
S

0

St
+G(s,w(s),/ fl s,u,w(u Au,/ ]-'2 S, U, )Au))As:|
50

< Lellolle + Y Lollolleo + a1 + [[(s —5)° a2

Jj=1 j=1

X (Lrllollos + Ley l@lloo + Lay L7 |@lloo(sy = s0)

+ Ly L7, ol oo(sy — 0) + M) (57 = Go)

i i
cars [ZLE S Lo -9 e
j=1 j=1

X (Lr +Lg, + La,LF, (55 — o) + Ly L7, (s5 — 50)) (7 — §0):| lolloo
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<aj+ [Ny + Q]llolle

< a1+ Qsll@llc.

Hence

[l oo

a1+ Qsllwlle =

Now, from (17), we get K > 0 such that ||w||« # K. Let us assume that
N= {a) eT, ol < IC}.

Then the operator A, : i — T is continuous as well as completely continuous. Thus, from
the choice of ¢, there is no w € x(N) provided that w = B(A, ((w)(c))), B € [0,1].
Therefore in the light of fixed point criterion due to nonlinear alternative of Leray—
Schauder, A, admits a fixed point which is the solution of the mixed impulsive system
(1). O

We have a similar conclusion for the mixed impulsive system (2).

Theorem 3.4 The mixed impulsive system (2) admits at least one solution if assumption
(B) is satisfied and KC* > 0 exists such that

a1 + Q3K* < K. (20)
Proof It is similar to the previous argument for W, in Theorem 3.3. O

4 Stability analysis
Now, to start this section, we first consider the following inequalities:

1°TDw(s) — A(s)w(s) — F(s, w(s))
=Gl (<), [ Fils,s,0()As, [ Fals,s0()As)| <€ g €T, (21)
lw(sf) — w(sy) — Exlw(sy)) = Prlsp, (s <€, k=1,...,m,

and

1" D7 w(s) — A(S)e(s) ~ F(s, w(s)
~G(5,0(5), [ Fi(s,5,0()As, [ Fa(c,s,0(s) As)| < €,
ce€(spcmlNT,i=1,...,m,

(22)
||(,()(§) - % f;(g _S)Uilhi(siw(s))AS” <e, [9S] (gz’:si] N T,i: 1,..,,}‘}’1,
for each € > 0.

Definition 4.1 The mixed impulsive system (1) is said to be UH stable on T if, for any
w € PCHT,R") fulfilling (21), there exists ® € PC*(T,R") as a solution of (1) such that
llo(s) — w(s)|| < Ce for C>0,seT.
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Definition 4.2 The mixed impulsive system (2) is termed as UH stable if, for any € > 0 and
w € PCY(D,R") that fulfills (22), there exists, @ € PC'(D,R") as a solution of (2) provided
loo(s) — w(c)| < g¢ for all ¢ € D. Here, ¢ > 0, and its value depends upon e.

Remark 4.1 The solution w € PC!(T,R") satisfies (21) iff 3 f € PC(T,R") together with
the sequence f; provided ||fx|| < € so that

“TDw(s) = A(s)w(s) + F(s, w(s))

+G(s,0(5), [ Fi(s,s,0(s)As, [ Fa(s,5,w(s)) As) +f(5),
w(so) =wy, ceT,
w(sy) - o(sy) = Bxlw(sy)) + Prls, w(s)) + f

Lemma 4.3 Each function o € PCY(T,R") that fulfills (21) also satisfies the following in-
equality:

llx(s) = Eo (AT )wo = 311 (Erlw(sp)) + Pulsy w(sy)))
=[5 (6 =87 Eo o (A(s = 5)")E(s, () As
— [E (6 =97 B (Als - 9))
X G(s,a)(s),fszf Fi(s,u, w(nr)) Aus, fsi.f Fy(s,u, w(m)) Au)As|| < Se

Jor ¢ € (i Gke1] C T, where ||E; 5 (A(s —5)°)|| < ay and § = (m + azax(gr — o).

Proof 1If w € PCY(T,R") satisfies (21), then via Remark 4.1

“TDw(s) = A(s)w(s) + F(s, (s))

+G(5,0(5), [ Fi(s,s5,0(5)As, [ Fa(s,5,w(s)) As) +f(5),
(o) =wo, ¢ €T,
o(gy) —w(sy) = Brlw(sp)) + Pulsi, o(sp)) +fio k=1,...,m,

implies

m

w(6) = Eq (Ac”)wo + i(a(w(gj_)) + (s, 0(s7))) + ) _f:

i=1

S
+ / (6 =5 Eyp (Alc — 57)E (s (5)) As
S

0

. /g (=57 Ey o (Als —9))

0

X G(s,w(s),/sj F (s, u,a)(u))Au, /sj Fz(s, u,w(u))Au) As

S0

S
. f (6 =57 E, o (Al - 5)7)f(5)As.
q

0
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So,

o(¢) — Eq (Ac)wo - i(E(w(g,»)) +@(g,0(s7)))

J

-/ (6 = 97 Ep (Al - 9°)F(5,0(5)) As
S

0

S
_ / (c =9)°'Ey (Al —5)°)
9

0

X G(s,a)(s), /Sf F (s, u,w(u))Au,fgf Fz(s, u,a)(u))Au) Aw

0 S0

S m
< [ 1t =5 | Ena(ats -5 @ as+ 3 1l
S0 i=1

<de,

and the argument is finished. O

Remark 4.2 The map o € PCY(D,R") fulfills inequality (22) iff there are f € PC*(D,R") as
a map and bounded sequences {f;: i = 1,...,m} C R” (depending upon w) provided that
IIf ()l <€ foreach ¢ € Dand ||fi|| <€ Vi=1,...,m such that

“ID?w(s) = A(s)w(s) + F(s, w(s))

+G(5,0(5), [ Fi(s,5,0(8)As, [ Fa(s,5,0(5))As) +£(5),
(o) =wo, s €(spgmlNT,i=1,...,m,
() = ﬁ ;(g —8)° (s, w(s))As +f;, i=1,...,m.

Lemma 4.4 Each map o € PC* (D, R") that fulfills (22) also satisfies the inequalities given

below:
lo(6) = Eo (As)wo = [} Eg s (Als = 5)7)E(s, (s) As
— [, Eoo(Als =8))G(s,0(s), [ Fis,u, () Au, [ Fa(s, u, () Au) As
— 151 Jo (6 =) Tuls, () As|| < (argy — ansi + m)e,
ce(sncmlNT,i=1,...,m,
and

l(s) = 7oy S (s =9)7 Tuls, w(s)) As|| < me  (respectively mic),
celchsilNT,i=1,...,m,

in which || E,s(A(s = 5)7)|| < as.
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Proof 1f w € PCY(D,R") satisfies (22), in this case, by virtue of Remark 4.2,

“TDw(s) = A(s)w(s) + F(s,(s))
+G(s,0(5), [/ Fi(s,s,0())As, [ Fx(s,s,0(s) As)

(23)
+f(s)w(so) =wo, < €(sisim]l NT,i=1,...,m,
w(g) = % ;;(g - S)Uilhi(srw(s))AS +ﬁ; S G € (gi)si] N T; i= 1; oo, M.
Clearly, equation (23) implies that
E;(Ag?)wo + f; EU,G(A(g —8)7)E(s, w(s))As
+fsta,(7(A(§ _S)U)
w(s) = X G(s,@(s), [} Fi(s,u, () Au, [ Fa(s, u, () Au) As
r(a fg —8)° hi(s,w(s))As, ¢ € (s ]NT,i=1,...,m,
fg )’ h(s, 0(s))As +fi, ¢ e(chs]NT,i=1,...,m.
For ¢ € (s;,¢i;1]NT,i=1,...,m, one has
° 1
Hw(g) —E,(Ac”)wo —/ (6 =8)""Es 0 (Als —5)7)F(s, (s))
° 1
- [ (= A -57)
St 5f
X Q(s,a)(s),/ F (s, u,a)(u))Au,/ Fy(s,u, w)Au) As
S0 S0
! /g( s, () A
o) (g i(s, w(s)) As
< (=9 s i -9r) 0] v
i=1
< (asaa(s —s;)) + m)e.
Using a similar method, we get
1 <
”w(g) - m/ (6 -9 "hi(s,0(s))As| <me, ce(susilNT,i=1,...,m
and this ends the argument. O

Now, we provide a sufficient condition for the UH stability of mixed impulsive systems
(1) and (2).

Theorem 4.5 The mixed impulsive system (1) is UH stable provided assumption (A) and
inequality (9) are satisfied.

Page 21 of 36
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Proof Let w be the solution of the mixed impulsive system (1) and @ be the solution of

inequality (21). Therefore, from Theorem 3.1, we have

E;(AsT)wo + [ (5 =5) " Eq 0 (Als = 5)) F (s, 0(s)) As
+ [ (=) Es 0 (Als = 9)7)
X G(s,w(s),fszf Fils,u, w())Au, fs:)f Fols, u, (1)) Au) As,
s €(s0 1],
E;(As™)wo + [ (5 =5)" " Eq 0 (Als = 5)) F (s, 0(s)) As
+ (s =) Eg o (A5 ~9)7)
x G(s,w(s),fszf Fi(s,u, 0(u)) Au, fszf Fos, u, o(u)) Au)As
+ 35 (Eio(6)) + D57, 0(s), € (Spsinli=1,...,m,

w(g) =

where E, (A¢?) stands for the matrix representation of the Mittag-Leffler function. Using

a similar approach as that in Theorem 3.1, we get

J3t6) - oto)] = Yl13/(6(57) - (s
20067 3(67) - (57 (7))

y
[ =9 s s~ (0 0)

S0

S

+G<S,c~z)(s),/8f fl(s,u,5(u))Au,/f

S0 S0

Fa (s, u, cT)(u))Au))
- (f(s, a)(s))
+ G<S,a)(s),/8f Fi (s, u,w(u))Au,/

S0 S0

S,

F (s, u, a)(u)) Au)) H As

< azas(sr — i€ + Q3]|@ — @l oo»
which implies that
16 - @l < azar(sy - gi)e + Q3| @ — @ |-

Hence

~ g
1@ - wllo < (asaz(sy - S‘i))ﬁ
-Q3

< H(ag,az,l,]:,l,gl ,LG2L]:1 ,LG3 ,L]:2 ,Lz,Lp) €,
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_ azaz(gr-ci) . . .
where H(“BvaZrL}";LGl LeyLr Loy lrylale) = — 105 Hence, the mixed impulsive system

(1) is UH stable. Furthermore, if

/H(a:s,ﬂz,L]-‘,LGl LGy LF LG Lr, ,Ls,Lq))(e) = /H(as,az,L]:,LGl LGy LF LGyl Fy ,LE,Lq))(O) =0,
then our impulsive system (1) becomes generalized UH stable. O

Theorem 4.6 The mixed impulsive system (2) is UH stable provided that assumption (A)
and inequality (13) are satisfied.

Proof Let w be the solution of the mixed impulsive system (2) and @ be the solution of

inequality (22). Therefore, from Theorem 3.2, we have

E;(As)wo + [ (s =5)" " Eq 0 (Als = 5)7)F(s, w(s)) As
+ [ (6 =5)" T Es 0 (Als = 5)7)
X Q(S,a)(s),f;.f Fi(s,u, 0(n)) Au, f;f Fy(s, u, () Au)As
selspsilNT,i=1,...,m,
E;(As)wo + [ (s =5)" " Eq 0 (Als = 5)7)F(s, w(s)) As
+ [ (6 =5)" T Es 0 (Als = 5)7)
X g(s,a)(s),fszf Fi(s,u, w(u)) Au, f;f Fy(s,u, o(u)) Au)As

+ ﬁ f;’(g _S)O—ilhi(s; a)(s))As, S € (Si! §i+1] NT,i=1,...,m,

w(g) =

where E; (A¢?) stands for the matrix representation of the Mittag-Leffler function. Using

the similar approach as in Theorem 3.2, we get

|3(5) - (o) = % jg (s =97 (Bue(s () - (s, 5(5))) | As
Y
+ / "l =97 [ v (Ale —5)7) | H (P(s,a(s))
0]
+ Q(s,cT)(s), /Sf Fy (s, u,@(u)) Au, /Sf Ex(s, u,&(u))Au))
- <F(s, w(s))

+G (s, (s), /Sf F (s, u, w(u)) Au, /Sf F (s, u, a)(u)) Au)) H As

0

< azax(gr — Gi)e + Q3|0 — || oo,
which implies

6 - wlloe < asax(sy - gi)e + Q3@ - ©lloo.
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Hence

&

1-Q3

16 - wlleo < (azax(sy - 1))
= H(ag,az,Lp,Lgl ,ngLpl ,L93 LFy ,Lg)ei

_ aax(gr=ci) . . . .
where H(QB,@,LF,LQI,LQZLFI Loy liyly) = ~1-QF Hence, the mixed impulsive system (2) is

UH stable. Furthermore, if we take

H(a3,a2,LF,Lgl,Lg2LFI ,ng,LFTLg)(E) = H(us,az,LF,Lgl,Lg2LF1 ,ng,Lpz,Lg)(O) =0,

then the mentioned system (2) is generalized UH stable. d

5 Controllability analysis
In the sequel, controllability analysis of given impulsive systems is conducted. At first, we

have some definitions in this direction.

Definition 5.1 The function w € T is said to be the solution of (3) if w satisfies w(0) = wy

and w is the solution of the following integral equations:

E;(As”)wg + [ (s =9)7 " Eo,o (A5 = 5)7) F(s, w(c)) As
+ [T (6 =97 Ey o (A - )
x G(s,a)(s),fszf Fi(s, u, 0(u)) An, j;s({ Fo(s, u, w(u)) Au)As
+ [ (s =97 Eo o (Als =9)°)HE(S)As, s € (50,51,
o($) = ) Es(As”)wo + [ (¢ = 5)7 " Es,0 (Als = 5)") F (s, 0(s)) As (24)
+ (9 (e =97 Ey o (Al - )
X G(s,w(s),fszf Fi(s, u, o(u)) Au, j;“:{ Fals, u, o(u)) Au)As
+ (s =) Eq o (A(s —5)7)HE () As
+ Y (Bjl(6)) + (s, (), €(Susimli=1,...,m,

where E; (Ac?) stands for the matrix representation of the Mittag-Leffler function.

Definition 5.2 The mixed impulsive system (3) is controllable on T if, for every wy, wy € T
where ¢;,1 = T, there exists an rd-continuous function ¢ € £2(I,R) such that the corre-

sponding solution of (3) satisfies w(0) = wg and ¢(T) = ¢7.
We set the following for simplicity:

Q5 =das (azL]: + angl + ﬂzLGzL]-'l (Sf - So) + anggL_Fz (Sf - So) + ]/V\I(;)
x (g5 = go) (1 + MuMSy, (55 — 60));

Qo := az(asLr + asLg + asLgLr, (sr — s0) + a2LgLr, (sr — 0)) % (57 — So);
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Q7 := (1 + MpM3y, (55 - 50)) |:ZL: + Zch

j=1 j=1

+ (a2l F + asLg, + asLa,LF, (s — $0) + azLa, L7, (s — 50)) (7 — §0):|;

Qs := (1 + MyuM3y(s - 7)) [ﬁﬂ?)lfg(si - Si)

+as(arLr + asLg + asLgLr, (sy — so) + asLgLr, (sr — 50)) % (g7 — §o)};

i i
Ns := (1 + My M) (ZLE(S +Y Lob+ al) + My M3, ||wr|l;

Jj=1 Jj=1

1 -~
N6 = (]_ +M7-LM$/\)) (mang(S”(si - §i) + d; +Mg) +M7.LM;’_L||a)T||.

Lemma 5.3 If assertions (A) and (W) hold and wr € T, where ¢;;1 = T is any arbitrary
point, then w is a solution of (3) on T defined by (24) along with the control function

(CWE) Mot - Es(As™)wo - [ (6 =5) " Eq 5 (Als —5)°) F (s, 0(s))As
— (s =8 Es 5 (A(s —5)%)
X G(s,w(s),fs({ Fi(s,u, 0(u)) Au, f;«)f Fas, u, o(u)) Au)As]

s € (so 51l

$() =3 OWE) owr — Es(As”)wo (25)
— (s =97 Es 5 (A5 = 5)°) F (s, 0(5)) As

— [ (s =5) T Eqs 5 (Als - 9)7)

x G(s,w(s), fsg Fi(s,u, w(u)) Au, f:of Fols, u, o)) Au)As

S

~ Y (Ei(s) - (s, ()] s €(Sisinli=1,...,m,

where E,(A¢?) stands for the matrix representation of the Mittag-Leffler function, and
o(T) = wr holds in which ¢;,1 = T. Also, the control function ¢ (¢) has the estimate || (g)|| <
N¢, where for ¢ € (6, 6iv1l, i = 1,...,m, we define

N, = N%[Ilwﬂl +Eo(As”)wo| + D Lellolle + Y Lollolle
j=1 j=1

+ (azaz (LEl@llos + Le, l@llos + Loy L7 1ol oo (s — 50)
+ Lo, L7, llolloo (s — 50) + Mg) (7 — §0)):|-

Proof Let w be the solution of (3) on ¢ € (¢}, 6i+1], i = 1,...,m, defined by (24). Then, for
¢ =T, wehave

o(T) = E; (AT” )y + /gf(T =87 Ey o (A(T - 8)°) F (s, 0(5)) As

S0

sf
+ | (T=9)""E;e(A(T -9))
S0
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X G<s,w(s), /Sf Fi (s, u,w(u))Au, /Sf F (s, u,a)(u))Au) As
+ ) (Ei(o(T)) + (77, o(T))))
S
o [ = (Al -5 M)A
S
5
=E, (AT )wo + / (T - 8)""Ep o (A(T - 5)7) F (s, 0(s)) As
)

+ /gf(T — )" Ey o (A(T - 9)%)
S0

X G(s,a)(s), /Sf F1 (s, u,w(u))Au, /Sf F (s, u,a)(u))Au) As

+2_(Fi(e(17) + &,(T7, (7))

—Z<a,«<w<T;>>—@(T,-,w(n-)))}m
9
=E, (AT )wo + f (T = 5)""Eg o (A(T = 5)7)F (s, 0(s)) As
S0
sf
+ | (T=9)""E;e(A(T -9))

S0

X G(s,a)(s), /Sf Fi(s,u, 0(u)) Au, /Sf Fas, u,a)(u))Au) As
+ D (Ei(e(T))) + 2T}, (1))
j=1
WD) o 4o
5
—/ (T = 8)""Es o (A(T = 5)7) F (s, 0(s)) As
50

Sf
—/ (T - 8)""Es o (A(T - 5)7)
S0
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<s,w(s) / Fi s,u,w(u) Au,/ ]-'2 s, u,a)(u) Au)A

Y (3ol - 77 0(17)]

Also, for ¢ € (¢i, 6ir1], i = 1,...,m, the estimation
l¢()] = N‘{/\)[Ilwrll ~ | Eo (As” Yo

y
= s =9 1 (ats -9 [ F (s 0ts))

S0

9]
- [ s =9 | Ena (a5 -5)

S0

5 5f
X G(s,a)(s),/ Fils, u,w(u))Au,/ Fas, u,a)(u))Au) ‘As
50
NCCINTERENT
implies that
l¢(s)] = N‘;V[nwn + | Es (As?)wo| + D Lellolleo + Y Lollollo
j=1 j=1
+ (asaz (Lrlolloo + Le, llolloo + Lay L llollo(sr — S0)
+ Lo, Ly, lloll oo (s — 50) + Mg) (7 — §0)):|
= &é_,
and the argument is completed. O

Definition 5.4 The function w € T is said to be the solution of the mixed impulsive system
(4) if w satisfies w(0) = wp and w is the solution of the following integral equations:

E; (Ao + fgf (6 =8)"E; 5 (A(s — 9)°)F (s, 0(5)) As

+ [ (6 =97 Epo(Als —5)%)

x G(s, w(s), f;—)f Fi(s,u, () Au, f;)f Fy(s, u, o(u)) Au)As
+ [ =) Eq o (A(s —5)7YHE(S)As,
cel(chsilNT,i=1,...,m,

w(s) = i 1 26)
Eo (A0 + [(5 =97 E p (Als = 5)°)F(s, 0(s)) As

1)

+ f;(:)f(g _S)G_lEa,a (A(g —S)G)

x G(s, w(s), fo Fils, u,w(u))Au,fszf Fols,u, w(u)) Au)As
+f§f = 8)" g o (A5 —5)7YHE (5)As

Ta) f;;(g - U_lhi(s) LO(S))AS, S € (Si» §i+1] N Trl = 1,...,7}’1,
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where E, (A¢?) stands for the matrix representation of the Mittag-Leffler function.

Definition 5.5 The mixed impulsive system (4) is named as a controllable system on
T if, for every wy,wr € T, where ¢;.1 = T, there exists an rd-continuous function ¢ €
L2(I,R) such that the corresponding solution of (4) satisfies w(0) = wy and w(T) =

wrT.

Lemma 5.6 If assertions (A) and (W) hold and wr € T, where ¢;;1 = T is any arbitrary
point, then w is the solution of (4) on ¢ € (s;, 1) N'T, i =1,...,m, defined by (26) along

with the control function

(W) Hor - E;(As™)wo = [ (5 = 5)" Es 0 (A5 = 5)")F(s, w(c)) As
= [ (s =) Es o (Als —5)7)
x G(s,(s), [ Fi(s,u, o(u)) Au, [T Fy(s,u, (u)) Au)As]
celgysilNT,i=1,...,m,

CWE) or - E;(As”)wo — f;g(g —5)°E, ,(A(c —5)°)F(c,w(c))As
- [ (s —5) T Es 5 (Als - 9)7)
x G(s, (s), fsf)f Fi(s,u, o(u)) Au, fss({ Fy(s,u, o(u)) Au)As

— Foy Sl =97 (s, () As, 6 € (il NTyi=1,...,m,

where E;(Ag?) stands for the matrix representation of the Mittag-Leffler function and
o(T) = wr holds, where ¢;.1 = T. Also, the control function ¢ (¢) has the estimate ||Z(g)|| <
N’g, where for ¢ € (s, i1l NT,i=1,...,m, we define

1
N} = N%[Ilwrll + | Es (A )ao| + m(si ~s)arLglloll
+ (azaz(Lellollos + Lo, |@lloo + Lg, L, 0]loo(s7 — S0)

+Lg L, ||olloo (85 — S0) + Mg)(gf - go)):|~
Proof The proof is similar to that of Lemma 5.3. O

Theorem 5.7 The mixed impulsive system (3) is controllable on T such that hypotheses
(A) and (W) are satisfied and the following inequality holds:

max {Q}<1. (28)

5<i
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Proof Let Q" C PS, provided that Q" = {(X,Y,Z) € PS: |(X,Y,Z)|c < 87}, where &} =
max{8”,8{'} such that 8", 87 € (0,1), and also §” > N5. Now, we define A : Q" — Q" as

E;(As”)wo + [ (s =5)7 " Es 0 (A5 = 5)°) F(s,@(s))As
+ [T (6 =8)" " Es o (Als —5)7)
X G(s,a)(s),fs;f Fils, u, 0(u))Au, fszf Fols, u,0(u)) Au)As
+ [7(6 =) Eg o (Als =) )HE()As, 6 € (50,61,
A (0(6)) = { E (As”)wo + [ (s = 5) Eq 5 (A(s - 5)) Fls,0(s))As (29)
+ [ (s =5)" " Es 0 (Als —9)7)
x G(s,a)(s),fssof Fi(s, u, o(u)) Au, f;f Fals, u, w(u)) Au)As

+ [ (s =8)7 " Eo o (A(s —5)7)HE (5)As
£ Y (G () + O 0(s)) 6 € (G Giatlhi= Loy,

Now, we prove A7 : Q" — Q" is a self-mapping.

For ¢ € (6 Ginl, i=1,...,m, we get

i

|45 (@) = 2_lI5( ()] + Xl:H (s () + [ Eo (A7) o]

Jj=1 Jj=1

S
o [Tl = e (05 -9
S0

‘ (]:(s,a)(s))
+ G(s, w(s), /Sf Fi(s, u, 0(w)) Au, /Sf F (s, u, w(u))Au)) H As

0

gf o-1 o
. / (6 =97 | | Evo (Als = 9°) | 1% | £(5) ] As
S0

<> Led'+) Led" +ar+8"as(arlr + asLe,
j=1 j=1

+asLa,Lr (s — o) + asLa, L7, (sy — $0)) (57 = So)

i i
+Aumax[§:L@”+}:L¢&wwmmT+m
j=1 j=1

+8"as(asLr + asLg, + asLa,LF, (s — so)
+ azLGSL]—‘Z (Sf - 50))(§f - §0):|

<N5+8"Qs

<8 +8"'Q5= 81’.
Hence,

| A7 ()] < 85 (30)

Page 29 of 36
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Therefore, from (30), A2 (") € Q”, also when ¢ € (g1, gi1], i = 1,...,m, with wg = @y, we

have

| A7 («(6)) = A7 (@(<))

IA

o505 - 35006
[ e s s o) (Fls.0)

+ G(s,w(s),/Sf .7-] S, U, u) Au,/ ]-'2 S, U, @ u))
- <]:(s, @(s))

Sf
+ G(s,a(s),/ .7-'1(5, u,@(u))Au,
50

8

As

; Fals,u,d(n)) Au)) ‘
[ =9 1 Eanats =) W) s - )
[ Sz et - t0t67)
Ylofs0ls) - o005 )]

Y
e[l =9 s tats =90 | (F6.009)

+G(s,a)(s) / ]:1 s,u, u) Au,/ ]:2 s u, a)(u) ))

- (f(s, a(s))
+ G(s, o(s), /Sf Fi (s, u, cT)(u))Au, /Sf Fas,u, a(u))Au)) ‘

S0

As:|Ar
i i
|:ZL5 + ZL¢ + (a2l F + asLg, + asLg,LF, (s — so)

=1 -1

+asLe, L7, (s5 —50))(F — §O)j| X @ - lloo

i i
+ My M3, (g5 — 50) |:ZL: + ZLq:

J=1 Jj=1

+ (a2l r + asLg, + arLa,LF, (s — so)

+asLg, L r, sy —50)) (57 — go)} X [|& = @]l oo



Pervaiz et al. Advances in Difference Equations (2021) 2021:491 Page 31 of 36

< (1+ MuMsy(57 = 0)) [ZLE +Y Lo

j=1 j=1

+ (a2l r + asLg, + asLa,LF, (s — so)
+asLa, Ly, (s5 —s0))(F — §o):| X |@ - ollso-
Hence

AL (w(s)) = AL(@(s)) | < Q1@ - @llc- (31)

Therefore, the operator A/ is strictly contractive. Therefore, by using the Banach fixed
point theorem method, A has only one fixed point, i.e., the mixed impulsive system (3)
has a unique solution. Also, using Lemma 5.3, we conclude that w(c) fulfills o(T) = wr.
Consequently, we conclude that the mixed impulsive system (3) is controllable. O

One can indicate a similar theorem for the mixed impulsive system (4).

Theorem 5.8 The mixed impulsive system (4) is controllable on T such that hypotheses
(A) and (W) are satisfied and the following inequality holds:

max{Q;} <1 wherei=6,8. (32)

Proof Let Q" C PS, provided that Q" = {(X,Y,Z) € PS: |[(X,Y,Z)|c < §7}, where 8] =
max{38”, 87} such that §”,87 € (0,1), and also 8” > {Ns}. Now, we define A** : Q** — Q** as

Ey(As”)wo + [ (s =) Es 0 (A5 —5)°)F(s, (c)) As
+ [ (5 5 Eoo(Als —5)°)
x G(s,(s), [ Fi(s,u, () Au, 7 Fy(s,u, (u)) Au)As,
+ [ (5 =8)7 oo (A(s = 5))HE (5)As
cel(c,silNT,i=1,...,m,
AT (@(6)) = { Eo (Ao + [ (5 =) Eq 5 (A(s - 5)°)E (s, (5))As (33)
+ [ (s =8) " Eg o (A(s —5))
x Gls,(s), [V Fi(s,u, () Au, [/ Fy(s, u, () Au) As
+ 10y Jo (s =9)7 s, w(s)) As
+ [ =) Eg o (Als —5)7)HE () As,
c€e(spci]NT,i=1,...,m,

where E, (Ac”) stands for the matrix representation of the Mittag-Leffler function. Now,
we prove AX* 1 Q* — Q** is a self-mapping.
For ¢ € (s;, ;1] NT,i=1,...,m, we have

25 @) = iy 6 =97 s o) As e [, (45 o)

S
[l =9 e (ats 7)1 (6 00
S0
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+G (s, (s), i F; (s, u, w(u)) Au, /Sf F, (s, u, w(u))Au)) H As

S0

S
+ / 16 =97 || v (Als = 9°) |1H11 | £(5)] As

F(U)ﬂng(S(Si -G +a

+as(8"asLp + 8" asLg + 8" arLgLr, sy — so)
+8"asLgLr, (sy — 0)) x (57 = So)
"’M’HM;V[F( )dsL 8" (8i = 6i) + a1 + ||wllr
+8"as(asLr + asLg + aLgLr, (sf — o)
+asLgLr,(sp — o)) x (5f — §o)]
<Ng+8"Qs<8"+58"Qs =5l
Hence,

| A% (@()) ] <85 (34)

Therefore, from (34), A**(Q**) C Q**. Also, for ¢ € (s;, 6;,1]NT, i=1,...,m, with wy = Wy,

we have

| A% ((s) - AZ(@(<))

[r( )asL o(si — i) + as(asLp + asLg
+asLgLr, (sy — so) + azLgLr, (sr — 50)) (s — 50)] 16— wlloo

1
+ My My, (s — §f)|: (0)613L o(8i — 6i) + as(azLr + asLg

+ayLgLr, (sf — so) + asLgLr, (sr — s0))(f — §0)] lo -l

< (1+MyuM3y(s - gf))[ asLe(si — 6i) + as(asLr + arLg

(o)

+arLgLp, (sp — $o) + asLgLr, (sr — s0)) x (57 — §0)1| & - @lloc.
Hence

|AZ (w(5)) = AZ (@(5)) ]| < Qsll@ - wlloo- (35)

Therefore, the operator A** is strictly contractive. Thus, using the Banach fixed point
theorem method, A’* has a unique fixed point, which is the unique solution of the mixed
impulsive system (4). Also, using Lemma 5.6, we conclude that w(¢) fulfills o(T) = wr.
Consequently, the mixed impulsive system (4) is controllable. O
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6 lllustrative example
The last part of the manuscript is devoted to examining our results established in the
previous steps.

Example 6.1 Consider the following mixed impulsive system:

“ID7w(s) = Zw(6) + Z5U(S) + (s, x (@(5)) + [ Eop(@)As + U(s),
w(0)=1, ¢e[0,3]7\{1,1.2}, (36)

w(sk) = Blo(sp)) + Trls, w(sp), Ulsy)),  k=1,2,

and its relevant inequality

“TD@(s) - Z3a(s) - 5 U(s)
—ey(6, x(@(5)) = [y Eop@)As-U(s)| <1,
9 € [013]11‘\{1112}1

|AD(sk) — E(@(sy)) - Thl(sp, o(g) <1, k=1,2.

(37)

We set TF = [0,3]7\{1,1.2}, c1 = 1, ¢» = 1.2, X(¢) = %, and Y(¢) = ﬁ, E;p(w) =

k
Y 2o Tiep foro, B> 0. In addition, we set

F(6,0(6)Jul), U(S)) = (51 x ((s))) + /0 E, p(@)As + U(s),

where J,(¢) = fot E; g(w)As and U(c) is a control map for ¢ € T* and substitute € = 1. Let
@ € PCY([0,2]r,R) fulfill (37), then there exists h € PC*([0, 2]«, R) with ko € R such that
|h(¢c)] <1V ¢ € TX and |ho| < 1, and so (37) implies that

“TD&(s) = %5(5) + ﬁU(g) +ep(s, x(@(3)))
+ fog E, s(@)As+U(c) + A(g), ¢ eTk,
o(sr) = Br(@(sp)) — Talsr, (s ), Ulse ) + hoy  k=1,2.

So the solution of (36) is
(¢) = B1(w(s7)) + Ba(w(s3)) + Ti(si,@(s7), U(sy)) + Ta(s3.0(s3), U(s3))

+ / ey (s, x(s)) (ep(s, X (a)(s))) + / E, g(w)Au+ U(s)) As.
0 0

By our obtained results, the mixed impulsive system (36) has only one solution in
PCY([0,2]T,R) and is UH stable on T*.

7 Conclusion

In this article, we conducted our research on some mixed integral dynamic systems with
impulsive effects on times scales in the fractional settings. We studied the existence and
uniqueness successfully using a fixed point method for the considered systems. We estab-
lished our results by using the Leray—Schauder and Banach fixed point theorems in this
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regard. In the next step, Ulam—Hyers stability and a generalized version of it were proved
for the mentioned mixed impulsive systems. After that, we investigated the controllability
property for the aforesaid systems. Lastly, an illustrative example was proposed to exam-
ine the results established in the previous sections. For future projects, the main aim of
the authors is that these qualitative specifications can be checked and established on some
real-world impulsive systems arising in mathematical models of brain.
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