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Abstract

The main purpose of this paper is to prove the existence of positive solutions for a
system of nonlinear Caputo-type fractional di�erential equations with two
parameters. By using the Guo…Krasnosel•skii “xed point theorem, some existence
theorems of positive solutions are obtained in terms of di�erent values of parameters.
Two examples are given to illustrate the main results.
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1 Introduction
Fractional-order calculus, which is an important branch of mathematics, was introduced

in 1695. Since fractional-order calculus can characterize many non-classical phenomena

in natural sciences and engineering, it has been applied to various “elds in recent years. At

the same time, boundary value problems of fractional di�erential equations have appeared

with applications of fractional-order calculus; so far, there have been many literature works

about boundary value problems of fractional di�erential equations.

For some recent studies on fractional di�erential equations, we can refer to [1…27]. For

example, in [10], the authors used the Guo…Krasnosel•skii “xed point theorem and the

Leggett…Williams “xed point theorem to obtain the existence of positive solutions to the

nonlinear Caputo fractionalq-di�erence equation with integral boundary conditions. In

[12], the authors investigated the following boundary value problem of Caputo-type frac-

tional di�erential equation subject to Riemann…Stieltjes integral boundary conditions:

�
���

���

cD� p(t) + µ f (t,p(t)) = 0, t � [0, 1],

p(0) = p��(0) = 0,

p(1) =
� 1

0 p(t)dA(t),

wherecD� is the Caputo fractional derivative,� � (2, 3), andf : [0, 1]× [0,+� ) � [0,+� )

is continuous, andµ > 0 is a parameter. By using the Guo…Krasnosel•skii “xed point the-
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orem, the authors obtained some new results about the existence and non-existence of

positive solutions for the above equation.

In [18], the authors focused on the following boundary value problem:

�
������

������

CDqu(t) + f (t,u(t)) = 0, t � [0, 1],

u��(0) = 0,

� u(0) …� u�(0) =
� 1

0 h1(s)u(s)ds,

� u(1) + � (CD�
0+u)(1) =

� 1
0 h2(s)u(s)ds,

where 2 <q � 3, 0 <� � 1, � , � , � � 0 and� > 0 satisfying

0 < (� + � )� +
��

� (2 …� )
< �

�
� +

�� (q)
� (q …� )

�
.

The method they used is the Guo-Krasnoselskii “xed point theorem, and the existence

theorems of positive solutions for the above equation were obtained.

In [23], the authors investigated a coupled system of Caputo fractional di�erential equa-

tions with coupled non-conjugate Riemann…Stieltjes type integro-multipoint boundary

conditions. They obtained some new theorems by using the Leray…Schauder nonlinear al-

ternative, the Krasnosel•skii “xed point theorem, and Banach•s contraction mapping prin-

ciple.

In [24], the authors studied the following nonlinear Caputo-type fractional di�erential

equations with integral boundary conditions:

�
������

������

cD� u(t) = f (t,u(t),v(t)), t � (0, 1),
cD� v(t) = g(t,u(t),v(t)), t � (0, 1),

u(0) = u�(0) = · · · = u(n…2)(0) = u(n)(0) = 0, u(1) = 	
� 1

0 u(s)ds,

v(0) = v�(0) = · · · = v(n…2)(0) = v(n)(0) = 0, v(1) = 	
� 1

0 v(s)ds,

wheren < � , � < n + 1, n � 2, n � N, 0 <	 < n; f ,g � C([0, 1]× R× R,R). In this paper, by

using Schauder•s “xed point theorem and Banach•s “xed point theorem, su�cient condi-

tions were obtained for the existence and uniqueness of positive solutions of the above

coupled system.

In [25], the authors considered the following fractional di�erential equations:

�
������

������

…cD� 1x(t) = f1(t,x(t),y(t)), t � [0, 1],

…cD� 2y(t) = f2(t,x(t),y(t)), t � [0, 1],

x(0) = x��(0) = 0, x(1) =
� 1

0 x(t)dA1(t),

y(0) = y��(0) = 0, y(1) =
� 1

0 y(t)dA2(t),

wherefi : [0, 1]× [0,+� ) × [0,+� ) � [0,+� ) is continuous;� i � (2, 3);Ai is a bounded

variation function with positive measureBi =
� 1

0 t dAi(t) < 1,i = 1,2. By means of the “xed

point index theory, the authors proved that the above system has at least two positive

solutions.
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In [26, 27], the authors used the Guo…Krasnosel•skii “xed point theorem to investigate

the existence of positive solutions for systems of fractional di�erential equations nonlo-

cal boundary value problems with two parameters, and the existence of positive solutions

were obtained. In [26], the fractional derivative is the standard Riemann…Liouville deriva-

tive, and in [27], the fractional derivative is a conformable fractional derivative.

Inspired by [2…27], in this paper, we study the existence of positive solutions for the

following system of fractional di�erential equations:

�
������

������

…cD� 1u(t) = 	 f1(t,u(t),v(t)), t � [0, 1],

…cD� 2v(t) = µ f2(t,u(t),v(t)), t � [0, 1],

u(0) = u��(0) = 0, u(1) =
� 1

0 u(t)dA1(t),

v(0) = v��(0) = 0, v(1) =
� 1

0 v(t)dA2(t),

(1.1)

where cD� i is the Caputo fractional derivative;fi : [0, 1] × [0,+� ) × [0,+� ) � [0,+� )

is continuous;� i � (2, 3);Ai is a bounded variation function with positive measureBi =
� 1

0 t dAi(t) < 1, i = 1,2; 	 and µ are positive parameters. By studying system (1.1), we

improve and generalize paper [12]. Compared with literatures [26, 27], the de“nition of

fractional derivative is di�erent from those of [26, 27]. The main purpose of this paper

is to demonstrate the existence of positive solutions about system (1.1). By the Guo…

Krasnosel•skii “xed point theorem, we obtain some existence theorems of positive solu-

tions under the conditions of various values of parameters. To illustrate the theoretical

results, two examples are given in the last section of the paper.

2 Preliminaries
In the following, some concepts and lemmas of Caputo di�erential equations are pre-

sented, as well as some auxiliary results for proving the main theorems.

Definition 2.1 (see [1]) For a function x � Cn[0,+� ), the Caputo fractional derivative of

order � > 0 is de“ned as

cD� x(t) =
1

� (n …� )

	 t

0
(t …s)n…� …1x(n)(s)ds, n … 1 <� < n.

Lemma 2.1 (see [1]) Let � > 0. If we assume x� C(0,1)



L(0,1),then the fractional dif-

ferential equation

cD� x(t) = 0

has the general solution x(t) = C0 + C1t + · · · + Cn…1tn…1, Ci � R, i = 0, 1, . . . ,n … 1.

Lemma 2.2 (see [1]) Suppose that x� C(0,1)



L(0,1)with a fractional derivative of order

� that belongs to C(0,1)



L(0,1).Then I� cD� x(t) = x(t) + C0 + C1t + · · · + Cn…1tn…1, for

Ci � R, i = 0,1, . . . ,n … 1.
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Lemma 2.3 (see [12]) Let x � C[0,1] and � 1, � 2 � (2, 3).Then p is a solution of the linear
Caputo fractional di�erential equation

�
���

���

cD� i p(t) + x(t) = 0, t � [0, 1],

p(0) = p��(0) = 0,

p(1) =
� 1

0 p(t)dAi(t),

if and only if p is the solution of the integral equation

p(t) =
	 1

0
Gi(t,s)x(s)ds,

where

Gi(t,s) =
1

� (� i )

�
�����

�����

t
1…Bi

[(1 …s)� i …1…
� 1

s (t …s)� i …1dAi(t)] … (t …s)� i …1,

0 � s� t � 1,
t

1…Bi
[(1 …s)� i …1…

� 1
s (t …s)� i …1dAi(t)],

0 � t � s� 1,

(2.1)

and Bi =
� 1

0 t dAi(t) < 1, i = 1,2.

Lemma 2.4 (see [12]) Green•s function Gi(t,s) (i = 1,2)de“ned by(2.1) has the following
properties:

(i) � (� i )Gi(t,s) � 1
1…Bi

(1 …s)� i…1 for t , s� [0, 1];
(ii) � (� i )Gi(t,s) � Ni(1 …s)� i…1for t � [ 1

4, 3
4], s� [0, 1],

where

Ni = min

�
1 …

� 1
0 t � i …1dAi(t)

4(1 …Bi)
, min
t � [ 1

4 , 3
4 ]

t
�
1 …t� i …2


�
, i = 1,2. (2.2)

Lemma 2.5 (see [28]) Let P be a cone of the Banach space X and
 1 and 
 2 be two bounded
open sets in X with� � 
 1, 
 1 � 
 2. Let A : P	 (
 2\ 
 1) � P be a completely continuous
operator. If one of the following two conditions holds:

(1) 
 Ap
 � 
 p
 for all p � P	 �
 1, 
 Ap
 � 
 p
 for all p � P	 �
 2;
(2) 
 Ap
 � 
 p
 for all p � P	 �
 1, 
 Ap
 � 
 p
 for all p � P	 �
 2,

then A has at least one “xed point in P	 (
 2\ 
 1).

3 Main results
Let X = C[0,1] × C[0,1]. De“ne the norm 
 (x,y)
 X = 
 x
 + 
 y
 on X,where 
 x
 =
max0� t� 1 |x(t)|, then X is a Banach space.

We de“ne the cone

P=
�
(u,v) � X : u � 0,v � 0, min

1
4 � t� 3

4

�
u(t) + v(t)



� K

�
� (u,v)

�
�

X

�
,

where

K = min
�
N1(1 …B1),N2(1 …B2)

�
< 1, (3.1)

N1,N2 are de“ned by (2.2).
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We de“ne the operatorsL1, L2, andL as follows:

L1(u,v)(t) = 	
	 1

0
G1(t,s)f1

�
s,u(s),v(s)



ds, t � [0, 1],

L2(u,v)(t) = µ
	 1

0
G2(t,s)f2

�
s,u(s),v(s)



ds, t � [0, 1],

L(u,v) =
�
L1(u,v),L2(u,v)



, � (u,v) � X,

whereGi(t,s)(i = 1,2) is de“ned by (2.1).

Obviously, “xed points of the operatorL in P are positive solutions of system (1.1).

Lemma 3.1 L : P � P is completely continuous.

Proof We easily know thatL1(u,v)(t) � 0, L2(u,v)(t) � 0 for (u,v) � P, t � [0, 1].

Obviously, by Lemma2.4, for (u,v) � P, whent � [ 1
4, 3

4], we have

L1(u,v)(t) = 	
	 1

0
G1(t,s)f1

�
s,u(s),v(s)



ds

�
	 N1

� (� 1)

	 1

0
(1 …s)� 1…1f1

�
s,u(s),v(s)



ds

=
	 N1(1 …B1)

� (� 1)

	 1

0

(1 …s)� 1…1

(1 …B1)
f1

�
s,u(s),v(s)



ds

� 	 N1(1 …B1) max
t � [0,1]

	 1

0
G1(t,s)f1

�
s,u(s),v(s)



ds

= N1(1 …B1)
�
� L1(u,v)

�
� . (3.2)

Similarly, we get

L2(u,v)(t) � N2(1 …B2)
�
� L2(u,v)

�
� , (u,v) � P,t �

�
1
4

,
3
4

�
. (3.3)

From (3.2) and (3.3), we have

min
t � [ 1

4 , 3
4 ]

�
L1(u,v)(t) + L2(u,v)(t)




� N1(1 …B1)
�
� L1(u,v)

�
� + N2(1 …B2)

�
� L2(u,v)

�
�

� K
�
� L(u,v)

�
�

X. (3.4)

By (3.4), we getL(P) � P. From the paper [12], we know thatL1, L2 are completely contin-

uous. SoL is completely continuous. The proof is completed. �

For convenience, we “rst list the following denotations:

z0 = lim
(u,v)� (0+,0+)

sup
t � [0,1]

f1(t,u,v)
u + v

, z�
0 = lim

(u,v)� (0+,0+)
sup

t � [0,1]

f2(t,u,v)
u + v

, (3.5)
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z� = lim
(u,v)� (+� ,+� )

inf
t � [ 1

4 , 3
4 ]

f1(t,u,v)
u + v

, z�
� = lim

(u,v)� (+� ,+� )
inf

t � [ 1
4 , 3

4 ]

f2(t,u,v)
u + v

, (3.6)

P1 =
1

� (� 1)(1 …B1)

	 1

0
(1 …s)� 1…1ds, P2 =

1
� (� 2)(1 …B2)

	 1

0
(1 …s)� 2…1ds, (3.7)

P3 =
N1K
� (� 1)

	 3
4

1
4

(1 …s)� 1…1ds, P4 =
N2K
� (� 2)

	 3
4

1
4

(1 …s)� 2…1ds. (3.8)

Theorem 3.1 Let z0,z�
0,z� ,z�

� � (0,+� ), Q1 < Q2, Q3 < Q4. Then when	 � (Q1,Q2) and
µ � (Q3,Q4) hold, we get that system(1.1) has at least one positive solution, where

Q1 =
1

2z� P3
, Q2 =

1
2z0P1

, Q3 =
1

2z�
� P4

, Q4 =
1

2z�
0P2

.

Proof It is easy to see that there exists� > 0 such that, for	 � (Q1,Q2) and µ � (Q3,Q4),
we have

1
2(z� …� )P3

� 	 �
1

2(z0 + � )P1
,

1
2(z�

� …� )P4
� µ �

1
2(z�

0 + � )P2
.

By (3.5), for the above� > 0, there exists a constantR1 > 0 such that

f1(t,u,v) � (z0 + � )(u + v), 0� u + v � R1,t � [0, 1],

f2(t,u,v) �
�
z�

0 + �


(u + v), 0� u + v � R1,t � [0, 1].

Let 
 1 = {(u,v) � X| 
 (u,v)
 X < R1}. For any (u,v) � P



�
 1, by Lemma 2.4 and (3.1), we
have

L1(u,v)(t) = 	
	 1

0
G1(t,s)f1

�
s,u(s),v(s)



ds

�
	

� (� 1)(1 …B1)

	 1

0
(1 …s)� 1…1(z0 + � )

�
u(s) + v(s)



ds

�
	 (z0 + � )

� (� 1)(1 …B1)

	 1

0
(1 …s)� 1…1ds

�

 u
 + 
 v





= 	 (z0 + � )P1
�

 u
 + 
 v





�
1
2

�
� (u,v)

�
�

X.

Also, we get

L2(u,v)(t) = µ
	 1

0
G2(t,s)f2

�
s,u(s),v(s)



ds

�
µ

� (� 2)(1 …B2)

	 1

0
(1 …s)� 2…1� z�

0 + �

�

u(s) + v(s)


ds

�
µ (z�

0 + � )
� (� 2)(1 …B2)

	 1

0
(1 …s)� 2…1ds

�

 u
 + 
 v





= µ
�
z�

0 + �


P2

�

 u
 + 
 v





�
1
2

�
� (u,v))

�
�

X.
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So

�
� L(u,v)

�
� =

�
� L1(u,v)

�
� +

�
� L2(u,v)

�
� �

�
� (u,v)

�
�

X, � (u,v) � P 	 �
 1. (3.9)

From (3.6), we know that there exist� > 0 andR2 > 0 such that

f1(t,u,v) � (z� …� )(u + v), u + v � R2,t �
�

1
4

,
3
4

�
,

f2(t,u,v) �
�
z�

� …�


(u + v), u + v � R2,t �

�
1
4

,
3
4

�
.

Let 
 2 = {(u,v) � X| 
 (u,v)
 X < R2}, whereR2 = max{2R1, R2
K }. From (3.1) and Lemma2.4,

for any (u,v) � P 	 �
 2, we have

L1(u,v)
�

3
4

�
= 	

	 1

0
G1

�
3
4

,s
�

f1
�
s,u(s),v(s)



ds

�
	 N1

� (� 1)

	 3
4

1
4

(1 …s)� 1…1(z� …� )
�
u(s) + v(s)



ds

�
	 N1K(z� …� )

� (� 1)

	 3
4

1
4

(1 …s)� 1…1ds
�

 u
 + 
 v





= 	 (z� …� )P3
�

 u
 + 
 v





�
1
2

�
� (u,v)

�
�

X,

and

L2(u,v)
�

3
4

�
= µ

	 1

0
G2

�
3
4

,s
�

f2
�
s,u(s),v(s)



ds

�
µN2

� (� 2)

	 3
4

1
4

(1 …s)� 2…1� z�
� …�


�
u(s) + v(s)



ds

�
µN2K(z�

� …� )
� (� 2)

	 3
4

1
4

(1 …s)� 2…1ds
�

 u
 + 
 v





= µ
�
z�

� …�


P4

�

 u
 + 
 v





�
1
2

�
� (u,v)

�
�

X.

So

�
� L(u,v)

�
� =

�
� L1(u,v)

�
� +

�
� L2(u,v)

�
� �

�
� (u,v)

�
�

X, � (u,v) � P 	 �
 2. (3.10)

By virtue of (3.9), (3.10), and Lemma2.5, we know thatL has at least a “xed point (u,v) �

P 	 (
 2\ 
 1). Therefore, (u,v) is one positive solution of system (1.1). �

Since the proofs of the following theorems are similar to Theorem3.1, we only give the

results as follows.
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Theorem 3.2 Let z0 = 0, z�
0,z� ,z�

� � (0,+� ), Q3 < Q4. Then when	 � (Q1,+� ) and µ �

(Q3,Q4) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.3 Let z�
0 = 0, z0,z� ,z�

� � (0,+� ), Q1 < Q2. Then when	 � (Q1,Q2) and µ �

(Q3,+� ) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.4 Let z0 = 0, z�
0 = 0, z� ,z�

� � (0,+� ). Then when	 � (Q1,+� ) and µ �

(Q3,+� ) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.5 Let z0,z�
0 � (0,+� ), z� = +� , and z�

� = +� . Then when	 � (0,Q2), µ �

(0,Q4) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.6 Let z0 � (0,+� ), z�
0 = 0, z�

� = +� , and z� = +� . Then when	 � (0,Q2),

µ � (0,+� ) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.7 Let z0 = 0, z�
0 � (0,+� ), z�

� = +� , and z� = +� . Then when	 � (0,+� ),

µ � (0,Q4) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.8 Let z0 = z�
0 = 0, z� = +� , and z�

� = +� . Then when	 � (0,+� ) and µ �

(0,+� ) hold, we get that system(1.1) has at least one positive solution.

For convenience, we give the other denotations as follows:

z0 = lim
(u,v)� (0+,0+)

inf
t � [ 1

4 , 3
4 ]

f1(t,u,v)
u + v

, z�
0 = lim

(u,v)� (0+,0+)
inf

t � [ 1
4 , 3

4 ]

f2(t,u,v)
u + v

, (3.11)

z� = lim
(u,v)� (+� ,+� )

sup
t � [0,1]

f1(t,u,v)
u + v

, z�
� = lim

(u,v)� (+� ,+� )
sup

t � [0,1]

f2(t,u,v)
u + v

. (3.12)

Theorem 3.9 Let z0,z�
0,z� ,z�

� � (0,+� ), Q1 < Q2, Q3 < Q4. Then when	 � (Q1,Q2), µ �

(Q3,Q4) hold, we have that system(1.1) has at least one positive solution, where

Q1 =
1

2z̄0P3
, Q2 =

1
2z� P1

, Q3 =
1

2z�
0P4

, Q4 =
1

2z�
� P2

.

Proof Since	 � (Q1,Q2), µ � (Q3,Q4), so we can choose� > 0 such that

1
2(z0 …� )P3

� 	 �
1

2(z� + � )P1
,

1
2(z�

0 …� )P4
� µ �

1
2(z�

� + � )P2
. (3.13)

By (3.11)…(3.13), for the above� > 0, there exists a constantR3 > 0 such that

f1(t,u,v) � (z0 …� )(u + v), 0 <u + v � R3,t �
�

1
4

,
3
4

�
,

f2(t,u,v) �
�
z�

0 …�


(u + v), 0 <u + v � R3,t �

�
1
4

,
3
4

�
.
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Set
 3 = {(u,v) � X| 
 (u,v)
 X < R3}. From Lemma2.4and (3.1), for any (u,v) � P



�
 3,

we have

L1(u,v)
�

1
4

�
= 	

	 1

0
G1

�
1
4

,s
�

f1
�
s,u(s),v(s)



ds

�
	 N1

� (� 1)

	 3
4

1
4

(1 …s)� 1…1(z0 …
 )
�
u(s) + v(s)



ds

�
	 N1K(z0 …
 )

� (� 1)

	 3
4

1
4

(1 …s)� 1…1ds
�

 u
 + 
 v





= 	 (z0 …
 )P3
�

 u
 + 
 v





�
1
2

�
� (u,v)

�
�

X,

and

L2(u,v)
�

1
4

�
= µ

	 1

0
G2

�
1
4

,s
�

f2
�
s,u(s),v(s)



ds

�
µN2

� (� 2)

	 3
4

1
4

(1 …s)� 2…1� z�
0 …



�
u(s) + v(s)



ds

�
µN2K(z�

0 …
 )
� (� 2)

	 3
4

1
4

(1 …s)� 2…1ds
�

 u
 + 
 v





= µ
�
z�

0 …



P4

�

 u
 + 
 v





�
1
2

�
� (u,v)

�
�

X.

Then we have

�
� L(u,v)

�
� =

�
� L1(u,v)

�
� +

�
� L2(u,v)

�
� �

�
� (u,v)

�
�

X, � (u,v) � P 	 �
 3. (3.14)

Let �f1(t,w) = max0� u+v� w f1(t,u,v), �f2(t,w) = max0� u+v� w f2(t,u,v). Obviously,�f1,�f2 : [0,

1] × [0,+� ) � [0,+� ), f1(t,u,v) � �f1(t,w), f2(t,u,v) � �f2(t,w), u � 0, v � 0, u + v � w,

t � [0, 1];�f1(t,w) and�f2(t,w) are nondecreasing onw, and

lim sup
w� +�

max
t � [0,1]

�f1(t,w)
w

� z� , (3.15)

lim sup
w� +�

max
t � [0,1]

�f2(t,w)
w

� z�
� . (3.16)

By (3.15) and (3.16), there exist� > 0 andR4 > 0 such that

�f1(t,w) � (z� + 
 )w, �f2(t,w) �
�
z�

� + 



w, t � [0, 1],w � R4. (3.17)

Let 
 4 = {(u,v) � X| 
 (u,v)
 X < R4}, whereR4 = max{2R3,3R4}. For any (u,v) � P 	 �
 4,

we havef1(t,u,v) � �f1(t, 
 (u,v)
 X), f2(t,u,v) � �f2(t, 
 (u,v)
 X). So, by (3.13) and (3.17), we
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get that

L1(u,v)(t) = 	
	 1

0
G1(t,s)f1

�
s,u(s),v(s)



ds

�
	

� (� 1)(1 …B1)

	 1

0
(1 …s)� 1…1(z� + 
 )

� �� (u,v)
�
�

X



ds

= 	 (z� + 
 )P1
� �� (u,v)

�
�

X




�
1
2

�
� (u,v)

�
�

X,

and

L2(u,v)(t) = µ
	 1

0
G2(t,s)f2

�
s,u(s),v(s)



ds

�
µ

� (� 2)(1 …B2)

	 1

0
(1 …s)� 2…1� z�

� + 


� �

� (u,v)
�
�

X



ds

= µ
�
z�

� + 



P2

� �� (u,v)
�
�

X




�
1
2

�
� (u,v)

�
�

X.

Then we get

�
� L(u,v)

�
� =

�
� L1(u,v)

�
� +

�
� L2(u,v)

�
� �

�
� (u,v)

�
�

X, � (u,v) � P 	 �
 4. (3.18)

By virtue of (3.14)(3.18) and Lemma2.5, we know thatL has at least a “xed point (u,v) �

P 	 (
 4\ 
 3). Therefore, (u,v) is one positive solution of system (1.1). �

Since the proofs of the following theorems are similar to Theorem3.9, we only give the

results as follows.

Theorem 3.10 Let z0,z�
0,z� � (0,+� ), z�

� = 0, Q1 < Q2. Then when	 � (Q1,Q2), µ �

(Q3,+� ) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.11 Let z0,z�
0,z�

� � (0,+� ), z� = 0,Q3 < Q4. Then when	 � (Q1,+� ), µ �

(Q3,Q4) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.12 Let z0,z�
0 � (0,+� ), z� = z�

� = 0. Then when	 � (Q1,+� ), µ � (Q3,+� )

hold, we get that system(1.1) has at least one positive solution.

Theorem 3.13 Let z� ,z�
� � (0,+� ), z0 = +� , and z�

0 = +� . Then when	 � (0,Q2), µ �

(0,Q4) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.14 Let z̄0 = +� , z̄� � (0,+� ),z�
0 = +� , and z�

� = 0. Then when	 � (0,Q2),

µ � (0,+� ) hold, we get that system(1.1) has at least one positive solution.

Theorem 3.15 Let z�
� � (0,+� ), z� = 0, z0 = +� , and z�

0 = +� . Then when	 � (0,+� ),

µ � (0,Q4) hold, we get that system(1.1) has at least one positive solution.



Chen and LiAdvances in Di�erence Equations       (2021) 2021:497 Page 11 of 13

Theorem 3.16 Let z� = z�
� = 0, z0 = +� , and z�

0 = +� . Then when	 � (0,+� ), µ �
(0,+� ) hold, we get that system(1.1) has at least one positive solution.

4 Applications
Example4.1 Consider the following Caputo-type fractional system:

�
������

������

…cD
5
2 u(t) = 	 f1(t,u(t),v(t)), t � [0, 1],

…cD
5
2 u(t) = µ f2(t,u(t),v(t)), t � [0, 1],

u(0) = u��(0) = 0, u(1) = 1
2

� 1
0 u(t)dt,

v(0) = v��(0) = 0, v(1) = 1
2

� 1
0 v(t)dt.

(4.1)

Take

f1 = t(u + v)3 + (u + v)e(u+v) + (u + v),

f2 = t(u + v)3,

where� 1 = � 2 = 5
2, A1(t) = A2(t) = 1

2t , B1 = B2 = 1
4.

We can getP1 = P2 = 32
45



� , P3 = P4 = 9(9



3…1)

327680



� . Obviously, we can infer that

z0 = lim
(u,v)� (0+,0+)

sup
t � [0,1]

f1(t,u,v)
u + v

= lim
(u,v)� (0+,0+)

(u + v)2 + e(u+v) + 1 = 2,

z�
0 = lim

(u,v)� (0+,0+)
sup

t � [0,1]

f2(t,u,v)
u + v

= lim
(u,v)� (0+,0+)

(u + v)2 = 0,

z� = lim
(u,v)� (+� ,+� )

inf
t � [ 1

4 , 3
4 ]

f1(t,u,v)
u + v

= lim
(u,v)� (+� ,+� )

1
4

(u + v)2 + e(u+v) + 1 = +� ,

z�
� = lim

(u,v)� (+� ,+� )
inf

t � [ 1
4 , 3

4 ]

f2(t,u,v)
u + v

= lim
(u,v)� (+� ,+� )

1
4

(u + v)2 = +� .

Then, for each	 � (0, 45



�
8 ) andµ � (0,+� ), from Theorem3.6, system (4.1) has at least

a positive solution.

Example4.2 Consider the following Caputo-type fractional system:

�
������

������

…cD
5
2 u(t) = 	 f1(t,u(t),v(t)), t � [0, 1],

…cD
5
2 u(t) = µ f2(t,u(t),v(t)), t � [0, 1],

u(0) = u��(0) = 0, u(1) = 1
2

� 1
0 u(t)dt,

v(0) = v��(0) = 0, v(1) = 1
2

� 1
0 v(t)dt.

(4.2)

Take

f1(t,u,v) =
t

u + v
,

f2(t,u,v) =
t

u + v
+ 6,

where� 1 = � 2 = 5
2, A1(t) = A2(t) = 1

2t , B1 = B2 = 1
4.
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We can getP1 = P2 = 32
45



� , P3 = P4 = 9(9



3…1)

327680



� , and

z0 = lim
(u,v)� (0+,0+)

inf
t � [ 1

4 , 3
4 ]

f1(t,u,v)
u + v

= lim
(u,v)� (0+,0+)

1

4(u + v)2 = +� ,

z�
0 = lim

(u,v)� (0+,0+)
inf

t � [ 1
4 , 3

4 ]

f2(t,u,v)
u + v

= lim
(u,v)� (0+,0+)

1

4(u + v)2 +
6

(u + v)
= +� ,

z� = lim
(u,v)� (+� ,+� )

sup
t � [0,1]

f1(t,u,v)
u + v

= lim
(u,v)� (+� ,+� )

1

(u + v)2 = 0,

z�
� = lim

(u,v)� (+� ,+� )
sup

t � [0,1]

f2(t,u,v)
u + v

= lim
(u,v)� (+� ,+� )

1

(u + v)2 +
1

(u + v)
= 0.

Then, for each	 � (0,+� ) andµ � (0,+� ), from Theorem3.16, system (4.2) has at least

a positive solution.
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