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1 Introduction
In this paper, we consider the following Kirchhoff-type problem for parabolic equation
systems:

du — 'C(”VM”LZ’ ||VV||L2)AM1 (x7 t) €Qx (O, T))

o
B = LUIVull2, IVVI2) A, (%,8) € 2 % (0,T), (1.1)
u(x, t) =vix, t) =0, x€0R,te(0,T],

with the following terminal condition
u(x, T) = f(x), vix, T)=g(x), x€L, (1.2)

where (f,g) € L2(R2) x L*(Q) is the Cauchy terminal data, and £ is defined in Sect. 2. In re-
cent years, partial differential equations concerning Kirchhoff terms have practical appli-
cations in continuum mechanics, phase transition phenomena, and population dynamics
and attracted many authors; see, for example, [1-9].

The parabolic equations with nonlocal diftusion arise in a variety of physical and biologi-
cal applications; see, for example, [10—15] and the references therein. To study interactions
of two or more biological species, systems of parabolic equations have been proposed. For
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example, Almeida [16] studied the following system of two population densities u, v:

ue — D1 (6 (w)(2), &) (0)) Au + A |ulP*u = F(x, 1), (x,) € Qr,
ve = Dy (E3(w)(2), L4 (v)(£)) Av + A [P v = G(x, 1), (x,1) € Qr,
u(x,t) =0, vix, t) =0, (x,¢t)€ST,

u(x,0) = up, v(x,0) =vo, xeQ,

where the death in species u is proportional to |u|?~2u by the factor A1, the death in species
v is proportional to |[v|?~2v by the factor A,, and fi, f; are the supplies of external sources.
The author obtained the results on the existence, uniqueness, and long-time behavior of
a smooth global solution of the system. Ferreira [17] also proved the well-posedness of
the system of nonlocal reaction—diffusion equations with both homogeneous Dirichlet or
Neumann boundary conditions.

Since model (1.1) is a system having a gradient element, perhaps, the techniques for this
problem are more complex. To the best of our knowledge, there is no result concerning
problem (1.1)—(1.2). The current main applications of backward in time parabolic equa-
tions are hydrological inversion and image processing. The parabolic equation with termi-
nal conditions plays an important role in physics and engineering, especially with thermal
conductivity dependent on both time and space. We refer the reader to some interesting
papers [18-21]. Our paper is motivated by the recent results of Baleanu et al. [21], Nam et
al. [19], and Tuan et al. [20]. The techniques of this paper are based on the previous paper
[22].

The main tool in the paper is the Fourier series technique in H* spaces, combined with
Banach’s fixed point theorem. The main and novel contributions of the paper are as fol-
lows:

« The first contribution result is the proof of the existence and uniqueness of a solution
of our backward problem. To this end, we had to increase the smoothness properties
of the input Cauchy data.

+ The second result is showing that our backward problem is ill-posed in the Hadamard
sense. Furthermore, we also regularize our inverse problem using the Fourier
truncation method. We then obtain an error assessment between the regularized and
exact solutions.

This paper is organized as follows. In Sect. 2, we introduce some preliminaries and the
mild solution of problem (1.1)—(1.2). Using the Banach fixed point theorem, we show that
our problem has a unique mild solution. In Sect. 3, we prove the ill-posedness of our prob-
lem. Applying the Fourier truncation method, we give a stability estimate of logarithmic

type between the regularized and exact solutions.

2 Some preliminaries and the mild solution of problem (1.1)-(1.2)
In this section, we introduce some properties of the eigenvalues of the operator —A; see,
for example, [6]. We have the equality

—Ae,(x) = —Aye,(x), xe€; e,(x)=0, x€dneN, (2.1)
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where {1,}°°; is the set of eigenvalues of —A satisfying
O<A <A< <Ay <-- (2.2)

and lim,,_, » A, = 00. Let us recall the following Hilbert scale space for v > 0:

H'(Q) = {w eLX(Q): Y A (e’ < +oo}, (2.3)

n=1

associated with the norm

i~ , 3
el oy = (Zlﬂ(u,en” ) . (2.4)
n=1

Let £ € C'(IR?) be a function such that:
« There exists two positive constants M, M; such that

Mo < L(z1,2) <My V(z1,25) € R (2.5)
« There exists a positive constant K; > 0 such that
|L(z1,20) - L(z1,72)| < Ki(|z1 = 21| + |22 — Za]). (2.6)
Due to conditions (2.5) and (2.6), we have the following lemma.

Lemma 2.1 Ifu,, us, v1, va belong to the space HY(Q), then

L(I1Vurll 2 Vil 2i0)) = L1Vl 200 1V V2l 200)

< Ki([| V(@1 = 1) “L2(Q) + V62 =) ||L2(Q))' (2.7)

3 The existence and ill-posedness of our backward problem

Let us first investigate the formula of a mild solution of problem (1.1)—(1.2). Multiplying
both sides of the main equation of problem (1.1)—(1.2) by e, and integrating by parts, we
get that

(5, en) = (LUIVull2, IVVI2) A, e), (3.1)
(50 e = (LUIVull2, [VV]2) Auey).

This equality immediately gives that

& (uyen) = Al LUIVtll 2, VVI|2) (4, €0), 62
L(v,en) = M LUIVull 2, VY 2) (s €4).
It is easy to see that system (3.2) allows us to get that the equalities
t
un(t)=exp<—xn f L(|Vu(, D) 20 W(~,r)||L2)dr)un(0) (3.3)
0
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and

V() :exp(—ky,/o £(||Vu(-,t)||L2,

Due to the terminal condition (1.2), we get that

VV(-,T)||L2)dT>Vn(O). (3.4)

u,(T) = (fr en), vu(T) = (g, en).

By a simple calculation we get the Fourier coefficients of # and v:

T
u,,(t):exp()»,,/ E(”Vu(-,r)”Lz, Vv(-,r)HLz)dt>(f,ey,),

(3.5)
wlf) :exp<ky, / L L(|Vaa )] w(.,f)”Lz)df) e,
which allow us to get that
u(x, t) = Zexp( / (Va9 120 [ VVC9) | 12) ds) (f, en)en(x) (3.6)
and
Zexp( / ([Vu8)] 20 [V¥(5)] ) ds)(g er)en(). (37)
Theorem 3.1 Let the Cauchy terminal data (f,g) € L*(Q) x L*(Q) be such that
i We2TMibn(f o )2~ B, i A3TMitn (g e,)? = B, (3.8)

n=1 n=1

for two constants By, By > 0. Then problem (1.1) has a mild solution on the space
(L (0, T; HY(%2)))".

Proof To show the existence of a mild solution, we define the operator Q(u,v)(t) =
(Q1(u,v)(2), Qa(u,v)(¢)) and show that Q has a fixed point in the space (L5°(0, T; H}(R2)))%.
Here the operators Q; and Q, are defined as follows:

Q1)) = X0 explny [ LUV, )l 2, IVV(-8) 1 2) ds) (S en)en(),

(3.9)
Qo v(8) = Y52y expln [ LUV, 8) 12, 1YV, 5)112) ds) (g, €n)en(5)-

We will prove by induction that if (u1,v1) € (L*®(0, T; H*(2)))? and (u3,v2) € (L0, T
HY(Q)))?, then

Q" 2, v1)(-,8) = Q" (112, v2)(,8) 11

T-t
= ( ) (2C(Bf +B )1(2) ” (ub Vl) - (uZ! VZ) ||(2L°°(O,T;H1(Q)))2' (310)

Page 4 of 15
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For m = 1, using the inequality (c + d)? < 2¢* + 2d?, we have

| Q" (a1, 1) ) = Q" (112, v2) (4 B) [ 11
< 2]/ Q7 (1, 1) (- 1) = Q (2, v2) D) 11

+ 2] Q5 (1, v1) () = Q5 (2, v2) (1) 1 - (3.11)
Applying Lemma 2.1 and the inequality |¢" — e?| < |r — g| max(e”, e?) for r,q € R, we have
” Q1 (u1,v1)( 1) = Q1 (u2,v2)(-, £) ||f_11(9)

00 T
=Y fewp ([ (V9 [ C09)0) )

n=1 t

T 2
~exp( [ L1509 [991] ) ) | 00
t

00 T
=3l [ L9l

n=1 t

T
- [ 2199,

V()] o) ds

2
Vva(9)]|,2) ds] A T-OMUbn(f o 12

T T 2
< Bfo(/ V(1 = u2)(19)] 12 A5 + / IV =v2)(8) | 2 dS)
t t
T 2
< B [ 1)9) = 2729 g (3.12)
t

where in the above line, we applied the inequality || V|| ;2(q) < Cll¥ ||y (q)- In a similar
way, we get that

” Qo (u1,v1) (- t) = Qa(u2,v2)(-, £) ||?_11(Q)
T
< B / [ @01, 72)19) — 02201 9) 2 g s (3.13)
t
Combining (3.11), (3.12), and (3.13), we deduce that

1 Q1 1) 1) = QUatz, v2) () [ 11

< 2C(By + B)KH(T = )| (w1, v1) = (2, v2) | oo 0. 75801 2 (3.14)

Let (3.10) hold for m = p. We will show that (3.10) holds for m = p + 1. Indeed, we have

| Q5 (a1, v) (1) = Q4 (i, va) ) 1
= || QI(Q{(ulrvl)(': t)) - QI(Q‘I;(MLVZ)('? t)) ||f.[1(9)

T
< B/ f Q41,119 = Q2 2) (9| g
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and

| Q5™ (aar, v1) (1) = Q57 (a2, va) () 1
= [ Qa( Q5 (w1, v1)(-, 1)) — Qo (D (12, v2) (-, )HH1

T
2
< CBK? f QB u1,12)(5) = QBlat,v2)(e5) s s
t
From two above observations we find that

Q7 (11, v1) (1) = Q7 42, v2) () 1
<2“Qp (1, v1)(>8) = Q4 (12, 1) (-, t)“Hl
+2| Q‘z’“(ul,vnc, 1)~ Q5 (12, v2) () | 11

T
<2C(B; + B)K} / Qa1 11)(19) = Q (112, v2)(5) | 1 g s (3.15)
t
By the induction assumption on (3.10), from (3.15) it follows that

Q7 (11, v1) (1) = Q7 a2, v2) () 1

T m
2\ m+1 2 (T - S)
< (20 + BKY)"™ 011) = ) oy [ o
(T —t)m+! N 2
= W (ZC(Bf +By)K; ) ” (u1,v1) = (42, v2) “(Loo(oyT;m(Q)))z. (3.16)

Hence (3.10) holds for any positive integer m. As a consequence, we derive that

Q" (w1, v1) = Q" (w2, v2) || oo o 7101 ()2

T™(2C(Bf + B)K2)™

m! || (ulr Vl) - (u21 VZ) || (2L°°(0,T;H1(Q)))2' (317)

Since

T™(2C(By + Bg)KP)™

m!

— 0, m— o0,

TTOCCEBIKI™ | sing the
(mo)! &

Banach fixed point theorem, we conclude that Q™0 has a fixed point (u*, v*) on the space
(L°°(0, T; HY(R2)))2. It is easy to get that (u*,v*) is also a solution of the equation Q(u,v) =
(u,v). O

there exists a positive constant m such that the term

Theorem 3.2 Problem (1.1) is ill-posed in the sense of Hadamard.

Proof Let us illustrate by an example that the solution of problem (1.1) is not stable ac-
cording to the input data. We take the input Cauchy data (f,,, g,,) with

_ Pmx)

Sn(%) = gm () o
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for natural m > 1. It is easy to check that

Z)"zeZTMIAn (f, en>2 _ Z}LieZTMl)Ln <g’ en>2 — )‘-iquTMl)hm' (3.18)
n=1
Under the Cauchy terminal data (f,,, g.») as above, by Theorem (3.1) we get that problem
(1.1) has a mild solution (u,,, v,,) € (L°°(0, T; H*(2)))?, which is given by

Mm(xrt) = Z 1exp )‘ ft ”Vum( »S )”Lzr ”va('rS)HLZ)ds){fm:en)em(x)r

(3.19)
Vm(x’ t) = Zn:l exXp }‘n ft E(Hvum(: S)||L21 ”va(’ S)||L2) dS) (gm: en>em(x)
Recalling the lower bound of £, we derive that forany0 <t < T,
_ exp(24, ST LUV )20 11V (- 9) 1 12) ds)
” U -+ £) ”LZ 2
)‘m
22y Mo(T — t
_ exp2hnMo(T - 1) (3.20)
)»2
m
By a similar argument we also obtain that
2 exp(2A, ft IVt (5 8) 12, 1V Vi (-, 8) [l 2) )
”Vm(" t) ”LZ(Q) 12
m
2) T-t
. exp(22,,, Mo( ))' (3.21)
)\2
m
From two recent observations we arrive at
” (M v )” -~ p exp()‘mMO(T - t)) _ exp()‘mMO T)
mr Fm I (200 (0, T;H Q)2 = 0<t<T Do Do
Taking the limits as m — +00, we get
. 1
m1~1>rPooH (fm;gm HL2 )XI2(Q) m1~1>IPoo E =0,
‘ exp(An MoT)
m1~l>r?oo ” (um; Vm) H (L°°(O,T;H1(Q)))2 = mgrlloo m =
Therefore, problem (1.1) is ill-posed in the sense of Hadamard. g

Remark 3.1 We expect to extend our model to noninteger derivatives according to papers
[23-30].

4 Fourier truncation method and error estimate
Let us define the regularized solution by the Fourier truncation method as

uNA (x, )
= YN exp(hn [, LUVIN(,8) ]2, 1V, 8)l112) dS) (P, enden(),
YW (x, t)
= YD expau f," LUV, 9112, IV, 5)112) ds) (g, en)en(),
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where N := N(§) is a regularization parameter. Here the function (f*,g%) € L2(Q2) x L*(2)

satisfies

”fa _f||L2(SZ) + ”gs _f||L2(Q) <é. (4.2)

Theorem 4.1 Letf € L*(2) be such that

oo

E (f’ en>2)\}11+(362M1T)»n < E

n=1

for some constants E > 0 and § > 0. Let us choose N := N(8) such that
lim N (8) = +o00, lim 82 A5y N6) = 0,
§—0 §—0
Then we have the estimate

| 0) = (-, ) ||in<sz> e - v ||12L11<sz>

< (6An(s) exp(2M 1 Thns)8* + 6E(N(8)) ") exp(6Kia; EC(T ~t)). (4.3)
Remark 4.1 It is obvious that Ay ~ N a . So we can choose a natural number N such that
1-v 1 1-v 1
In| = ) <Ay =< Inf-), O<v<l.
2TM, 8 MB, 8

) + ”VN,B('rt) - V(': t)

Then the error ||#™*(-, £) — u(-, L‘)||iﬂ(Q ||?11(Q) is of logarithmic order

o (] ()

Proof To show the existence of a mild solution, we define the operator R} (i, v)(£) =
(Ru,5(u, v)(£), Ray5 (1, v)(£)) and show that R} has a fixed point in the space (L{°(0, T; H' (2)))>.
Here the operators R; s and R, are defined as follows:

Ros(t,v)(8)
= YN exphn f.7 LUVIN(,8) ]2, VN2, 8)112) dS) (P, enden(),
R, )(0)
= YN exp(hn f,7 LUV (,8) 20 VN4, 5)l1,2) ds) g en)en(®).

(4.4)

We will prove by induction that if (u,v1) € (L*(0, T; H(2)))? and (u3,v,) € (L2(0, T;
HY()))?, then

(2DE.f,e)"(T - "

(4.5)
m!

" 2
||R3 (ulr Vl)(" t) - Rgn(ub V2)('r t) ||H1(§2) =<
For m = 1, using the inequality (c + d)? < 2¢* + 2d?, we get that

IR (12, v1)( £) = R (12, v2) () 11

< 2 RY (11, v1) () = R (12, v2) (4 ) [ 11 g

Page 8 of 15



Nam Advances in Difference Equations (2021) 2021:512 Page 9 of 15

m m 2
+2 ” Rzya(ulx Vl)('r t) - Rz,s(ub VZ)(': t) ||H1(Q)' (4'6)
By applying Lemma 2.1 and the inequality |¢" —e?| < |r —g| max(€’, e?) for r,q € R, we have

[R5 o1, ) 0) = R (02 v2) )1 g
N(@©) T
=S nfeoo( [ E19t.9)
n=1 !
T
ol et
t

N(8)

T
Ny (LR
t

n=1

L2’|

Vvi(.,s) ||L2) ds>

a9l ) 1.

n(-s)| ) ds

¥’

T 2
_/ ,C(” Vuz(-,s)| sz(.,s)”Lz)ds] (f’s,ey,>2
t
< |N(8)|362TM1N(8)K12 |V5 “22(9)
T T 2
X (/ ” v(ul - uZ)(’rS) ||L2(Q) ds + / ” V(Vl - VZ)("S) ||L2(Q) ds)
t t
T
= C|N(8)|362TM1N(8)I<[2 “,fa ||22(Q) / H (MI; Vl)('¢s) - (MZ; V2)('¢S) ||?_[1(Q) dS: (47)
t

where in the last line, we used the inequality |V ;2(q) < Cll¥ |41 (q)- By a similar argu-
ment we obtain that

| R ae1, 1) ) = R (12, v2) () [ 11
< CIN()[ NI K2 | g |7, /t T“(ul,vl)(.,s) 2, v2) () 11 - (4.8)
Combining (4.6), (4.7), and (4.8), we find that
| Rs aa1,v1) (- 8) = Ry (242, v2) )| 11
=D6so [ 69 — 1)) oy
< DE,f,)(T ~ 1) (1,2) = W2, | oy it ey (4.9)
where
D(s,f.8) = 2CINE) ™M NOR (| 1oy + € 20y

This implies (4.5). Assume that (4.5) holds for m = j. We will check that (4.5) holds for
m =j + 1. Indeed, by similar arguments as before, we also get the following two bounds:

| RIS 1, v0)( ) = RIS (2, v2) ) 1

= | R (R 501, v1) 1) = Rus (R 52, v2) (5 8) 1
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T . .
< C|N(8)|362TM1N(6)I<12 Hfa “iZ(Q) / HRll,a(uly Vl)(" S) - Rllfgl (uZ! VZ)(" S) ||i[l Q) ds
t
and

[R5 e, ) 1) = R ) )

= || Ras (Riz,g(ub vi)(, t)) - Ras (Ré,g(uz: ) (-, t)) ||12{1(Q)

T
3 2 i j+1 2
< C|N(8)| ezTMlN(é)Kl2 ||g8 ||L2(Q) / “R]M(Ml, v)(-,$) — Rjzfs (uo, VZ)(')S)”HI(Q) ds.
t
From two above observation we find that

’ i 2
||R/5+1(M1, v)(-t) — R]; (12, v2)(, £) HHl(Q)
. i :
= 2” R];(Sl(ub vi)(+ ) - R}ﬂsl(u% va) (1) HHI(Q)

j+1 j+1 2
+ 2||R]2:3 (I/ll, Vl)(', t) - Rl;)g (l/lz, V2)('1 t) ||H1(Q)

T . .
E ZD(Sxf’g)/ ||R}5+1(u11 Vl)('rs) —R15+1(M2, VZ)('yS) ||12_11(Q) dS. (4'10)
t
Using the induction assumption of (3.10), from (3.15) it follows that

RS (a1, va),2) = RS (a2, v2) ) 1

- ,
" T-—
E (2D(8rf)g))] ! ”(ul; Vl) - (MZ) v2)||(2L°°(O,T;H1(Q)))2 / ( j‘ S)] dS
P !
= M(27)(5 1) 1, v1) = (o, v | . (4.11)
G +1)! v ’ ’ (L0, T:H ()2

Hence, (3.10) holds for any positive integer m. As a consequence, we conclude that (4.5)

holds for any 7 € N. Since

lim L (206, f,0))" =0
l;inwm( (:f’g)) =0,

there exists a positive constant jy such that

j+1

(+ 1)

2DG,f,9) " < 1.

Using the Banach fixed point theorem (see [31-33]), we conclude that R’;’ has a fixed point
(u*,v*) on the space (L®(0, T; H'(2)))2. It is easy to get that (u*,v*) is also a solution of

the nonlinear equation

Rgo (u*, v*) = (u*, vh).

Page 10 of 15
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From (3.6) and (4.1) we find that

NP (x, ) — ulx, £)

zexp( [ e
_Zexp(/ (|va.9)|

2 [V 69| 2) dS) (%, enlen()

9] ,2) dS) {f,en)en(x). (4.12)

¥’
By a simple calculation we find that

U™ (x,8) — ulx, t)

Zexp( / (| Va2 (9|

|9V ) s st

N(3)

T
+Z<f7en>en(x)|:exp()\n/ £(||vu(':s)HL2r
n=1 ¢
T
~exp( [ T[99 ) )

+Zexp</ (| Vrte)|

n>N(8)

V(- s) ||L2) ds)

L2’

V(9] 2) dS> (fren)en(x)
= Error; + Error, + Errors. (4.13)

First of all, let us look at the first term. Using Parseval’s equality and noting that L(z1,23) <
M, for all (z,2;) € R%, Error; is bounded by

N(8)

T
||E1”1”01'1||i[19 = )\nexp 2)‘% ‘C(”VMN‘B("S)”LW VVN’B(US)”Lz)dS (fs _fjen>2
()
n=1 ¢
N(5) N(3)
<ZAN exp(2M 1 TAngs )Z(f fen
n=1

< )LN(S) exp(Z/\/ll T)»N((;)) “f‘S —f” < )\N(g,') exp(2/\/l1 TAN((;))SZ, (4-.14-)
which allows us to derive that
”EI‘I‘OI‘l ”Hl ) < )LN(B) exp(/\/ll T)\N(g))a. (415)

Next, we treat Error,. Using Parseval’s equality, by the inequality |e¢ — e?| < |c — d| max (e,
%), we get

N(3)
|Err0r2”H1 < Z(f 6;4 2 2M1T)Ln

§ </t (v

VN8 ( ) ||L2)ds

L
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=

T
| ewies)

N

V() ||L2) ds

L

T 2
—/ £(||Vu(-,s)|L2, VV(-,S)||L2)ds)

T
[ e(19uc.)

L’

2
V(. s) ||L2) ds) E, (4.16)

where we used that

N(8) 00
Z(}(" e,,)z)\neZMlT}”” < Z(f’ en>2)\'nezM1T)nn < )\‘IVE’
n=1

n=1
T 4.17
\VVN'5(~,5)||L2)ds) §exp<2kn/ M, ds) ®.17)

< Mo

T
exp (ZAH / E(” VuNi(.,s) |
t

2’

and

T
exp(kn / L'(H VuMNi(.,s) |

T
12 ViNA(., s) ||L2)ds>) < exp(2kn/ M, ds)
< Mo, (4.18)
Using Lemma (2.1), we get that
T T
[ £ T ) s [ L9 19009 )
T
<K / ([ (,9) = Vulo5)] o + [V 5) = Vo(5)] ), 4.19)

and from the inequality (c + d)? < 2¢? + 2d?, ¢,d > 0, it follows that

T 2
(/ £(||VuN"S(-,s)| VV(-,S)HLZ)dS)

T T
< 2K;</ ”VMN'(S(',S) —Vu(,s) ||L2 ds + / || VN () = V(- 5) HL2 ds). (4.20)

Combining (4.16) and (4.20), we arrive at

Ly

12y

PN " :
V(9 ) ds— [ £(|Vut )]

T
||Exror |7, @ = 21(,AIVE( / [Vl (., 8) = Vu(.,s)| 2 ds
t

T
+f HVVN‘S(-,S)—VV(~,S)||L2dS). (4.21)

The term Errors is bounded by

| Errors |12,
00 T
= Z knexp(Zky,/ £(||Vu(-,s)|
t

n>N(8)

Lz

V(- s) ||L2)ds> (f,en)?
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oo T
< (N(S))_y Z Ay exp(2kn/ E(”V”("S)”LZ’

n>N(8)

<EN@))”. (4.22)

V() “LZ’) ds) (f,en)?

Combining (4.14), (4.21), and (4.22), we find that

2
|| uN,é(.’ t) - u('r t) ||H1(Q)
< 3||Exrors |71 g, + 3lIErrors [} o) + 3l|Errors |7 o

< 3)\1\](5) exp(2./\/11 TA.N(S))82 + 3E(N(5))_y
T
+ 6K;)LIVE</ [Vl (.,s) - Vu(~,s)||L2 ds
t
T
+ / || VNS (,s) = Vu(,s) ||L2 ds). (4.23)
t
By a similar argument we also get that
8 2
”VN (8) = v( 1) ”Hl(Q)
< 3)\1\](5) exp(2./\/l1 TA.N(S))(SZ + 3E(N(3))_y

T
+ 6K1)LIVE</ [Vl (.,s) - Vu(~,s)||L2 ds

T
+/ ||VVN'5(~,S) - Vv(~,s)||L2 ds). (4.24)

By the previous to equations, recalling that || Vyr||;2(q) < Cll¥ |1 (q), we obtain the esti-

mate
OO R ChT e [ CHESTO]
< 6An(s) exp(2M Th(s))8> + 6E(N(8)) ™

T
- 2 2
+ 6I<1A1yEC/ (e (s) - u(.,s)HHl(Q) + [0 (0 8) = (-, 9) HH1<Q>) ds.  (4.25)
t
By applying Gronwall’s inequality we deduce that

| 0) = (-, ) ||i11(sz) o La CHRSTO ”?{1(9)

< (6Ans) exp(2M 1 Thn(s))8* + 6E(N(8)) ) exp(6Kia;" EC(T - t)). (4.26)
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