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Abstract
Our objective in this paper is to study the oscillatory and asymptotic behavior of the
solutions of third-order neutral differential equations with damping and distributed
deviating arguments. New oscillation criteria are established, which are based on a
refinement generalized Riccati transformation. An important tool for this investigation
is the integral averaging technique. Moreover, we provide an example to illustrate the
main results.
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1 Introduction
We consider a third-order half-linear neutral differential equation with damping and dis-
tributed deviating arguments of the form

(
α2(ξ )

(
α1(ξ )

(
y′(ξ )

)γ )′)′ + α3(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′

+
∫ d

c
F
(
ξ , s, x

(
g(ξ , s)

))
dη(s) = 0 (1)

for ξ > ξ0, where y(ξ ) = x(ξ ) +
∫ b

a p(ξ ,σ )x(τ (ξ ,σ )) dσ , γ is a quotient of odd positive inte-
gers.

Throughout the manuscript, we assume the following conditions hold.
(A1) ξ0 > 0 is a constant, R = (–∞,∞), R+ = (0,∞). α1(ξ ) ∈ C2([ξ0,∞), R+),

α2(ξ ) ∈ C1([ξ0,∞), R+), α3(ξ ) ∈ C([ξ0,∞), R+),
∫ ∞
ξ0

α1(ξ )– 1
γ dξ = ∞,

∫ ∞
ξ0

1
α2(ξ ) exp(–

∫ ξ

ξ0
α3(s)
α2(s) ds) dξ = ∞.

(A2) τ (ξ ,σ ) ∈ C1([ξ0,∞) × [a, b], R+), ∂τ (ξ ,σ )
∂σ

> 0. τ (ξ ,σ ) satisfies τ (ξ ,σ ) ≤ ξ and
limξ→∞ τ (ξ ,σ ) = ∞ for σ ∈ [a, b], ξ ≥ ξ0. Moreover p(ξ ,σ ) ∈ C([ξ0,∞)×[a, b], R+),
0 < p∗ < 1 is a constant such that 0 ≤ P(ξ ) ≡ ∫ b

a p(ξ ,σ ) dσ < p∗.
(A3) F(ξ , s, x) ∈ C([ξ0,∞) × [c, d] × (0,∞), R+), q(ξ , s) ∈ C([ξ0,∞) × [c, d], R+), F(ξ ,s,x)

xγ ≥
q(ξ , s).
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(A4) g(ξ , s) ∈ C1([ξ0,∞) × [c, d], R+), ∂g(ξ ,s)
∂ξ

> 0, and ∂g(ξ ,s)
∂s ≥ 0. g(ξ , s) satisfies g(ξ , s) ≤ ξ

and limξ→∞ g(ξ , s) = ∞ for s ∈ [c, d], ξ ≥ ξ0.
(A5) η(s) ∈ C([c, d], R) is strictly increasing and the integral of Eq. (1) is in the sense of

Riemann–Stieltjes.
We restrict our attention to those solutions x(ξ ) of Eq. (1) which mean x ∈ C3[Lx,∞),

Lx ≥ ξ0. And Eq. (1) have the property α2(ξ )(α1(ξ )(y′(ξ ))γ )′ ∈ C1[Lx,∞) and α1(ξ )(y′(ξ ))γ ∈
C2[Lx,∞). We consider only solutions x of the equation which satisfy sup {|x(ξ )| : ξ ≥ L} >
0 for all L > Lx. As usual, a nontrivial solution of Eq. (1)is called oscillatory if it has arbi-
trarily large zero; otherwise, it is said to be nonoscillatory. Equation (1) is called oscillatory
if all of its solutions are oscillatory.

As a modeling tool for many phenomena in different fields, differential equations are
difficult to provide general solutions for most of them. Therefore, the qualitative prop-
erties of differential equations have attracted a lot of attention from scholars. Oscillation
and asymptotic property are important parts of qualitative research, and they are still hot
topics. In the process of studying the problem, it is not difficult to find that the future state
is not only affected by the current state but also by the past state. Therefore, adding some
time delay into the equation is more beneficial to the description of the problem. In ad-
dition to the theoretical importance, the qualitative study of neutral equations has great
practical importance. Interested readers can read Chap. 11 in the book [1] and book [2]. In
particular, half-linear equations arise in the study of p-Laplace equations, non-Newtonian
fluid theory, porous medium problems, chemotaxis models, and so on; see, e.g., the papers
[3–8] for more details.

With the progress and development of science and technology, in recent decades, os-
cillation results of third-order neutral delay (TOND) differential equations have attracted
extensive attention. In 2019, Wei et al. [9] and [10] studied the TOND differential equa-
tions with distributed deviating arguments and damping

(
α2(ξ )

(
α1(ξ )y′(ξ )

)′)′ + α3(ξ )
(
α1(ξ )y′(ξ )

)′ +
∫ d

c
F
(
ξ , s, x

(
g(ξ , s)

))
dη(s) = 0. (2)

And new canonical conditions are given as

∫ ∞

ξ0

α1(ξ )– 1
γ dξ = ∞ and

∫ ∞

ξ0

1
α2(ξ )

exp

(
–

∫ ξ

ξ0

α3(s)
α2(s)

ds
)

dξ = ∞.

Under this condition, a new method to deal with damping terms is given by constructing
an exponential function. However, in the study of many TOND differential equations or
dynamic equations, half-linear equations are still of great significance. Inspired by the ar-
ticles [11–13], we consider the form of Eq. (1) based on Eq. (2). We point out that one of
the key issues for the study is to find canonical conditions and an asymptotic condition
similar to the study of Eq. (2). In order to solve this problem, we refer to literature [14–16]
and give the conditions corresponding of Eq. (2) in this paper.

In addition, there is a large number of papers showing that the research on the oscilla-
tion of the third-order delay differential equation is related to the oscillation of the second-
order delay differential equation. We direct interested readers to [12]. A natural question
is whether Eq. (1) can apply the second-order method. Thus, to enrich the method of half-
linear TOND differential equations with damping, here, we introduce several interesting
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approaches to second-order differential equations oscillation problems. In [17–20], a new
operator is created. The operator is flexible in application and it is superior in estimation
parameters of some second-order equations. In [21] and [22], an unusual method is also
presented. That is, the new oscillation theorem is obtained by taking the inverse of the
Riccati function. Therefore, another difficulty is how to effectively generalize these meth-
ods to Eq. (1) and get some new results. And in particular, note that all of the results in
this paper apply to Eq. (2) when we set γ = 1.

Next, we give the Definition 1 we need to use.

Definition 1 ([17]) We say that a function 	 = 	(ξ , h, l) belongs to the function class Y ,
denoted by 	 ∈ Y , if 	 ∈ C(E, R), where E = {(ξ , h, l) : ξ0 ≤ l ≤ h ≤ ξ < ∞}, which satisfies
	(ξ , ξ , l) = 0, 	(ξ , l, l) = 0, 	(ξ , h, l) 
= 0 for l < h < ξ , and has the partial derivative ∂	

∂h on E
such that ∂	

∂h is locally integrable with respect to h ∈ E. We define the operator A[·; l, ξ ] by

A[ψ ; l, ξ ] =
∫ ξ

l
	2(ξ , h, l)ψ(h) dh (3)

for ξ ≥ h ≥ l ≥ ξ0 and ψ(h) ∈ C1([ξ0,∞), R). The function ϕ = ϕ(ξ , h, l) is defined by

∂	(ξ , h, l)
∂h

= ϕ(ξ , h, l)	(ξ , h, l). (4)

It is easy to verify that A[·; l, ξ ] is a linear operator and that it satisfies

A
[
ψ ′; l, ξ

]
= –2A[ψϕ; l, ξ ] (5)

for ψ(h) ∈ C1([ξ0,∞), R).

2 Preliminaries
As we all know, the common method to discuss the oscillation property of the solution
is to assume that the equation has an eventually positive solution. In this part, we study
and classify the function y(ξ ) related to the eventually positive solution. And during the
following sections of our paper, we shall need the next lemmas.

Lemma 2.1 ([23]) Set B(ν) = b1(ξ )ν –b2(ξ )ν
γ +1
γ , where the function b1(ξ ) is arbitrary, func-

tion b2(ξ ) and function ν are always positive, γ is a positive constant. Then the function
B(ν) has the maximum value Bmax at ν0 on R such that

B(ν) ≤ Bmax =
γ γ

(γ + 1)γ +1
bγ +1

1 (ξ )
bγ

2 (ξ )
, (6)

where ν0 = ( γ

γ +1
b1(ξ )
b2(ξ ) )γ .

Lemma 2.2 Suppose that (A1), (A3), and (A5) hold. Let x(ξ ) be a positive solution of Eq. (1).
Then y(ξ ) = x(ξ ) +

∫ b
a p(ξ ,σ )x(τ (ξ ,σ )) dσ must be in one of the following two cases:

case 1: y(ξ ) > 0, y′(ξ ) > 0,
(
α1(ξ )

(
y′(ξ )

)γ )′ > 0;

case 2: y(ξ ) > 0, y′(ξ ) < 0,
(
α1(ξ )

(
y′(ξ )

)γ )′ > 0,

where ξ ≥ ξ1 ≥ ξ0 for sufficiently large constant ξ1.



Wang et al. Advances in Difference Equations        (2021) 2021:515 Page 4 of 15

Proof Suppose that x(ξ ) is the positive solution of Eq. (1) in [ξ0,∞). There exists suf-
ficiently large ξ1 > ξ0 such that x(τ (ξ ,σ )) > 0 and x(g(ξ , s)) > 0 for ξ > ξ1. From y(ξ ) =
x(ξ ) +

∫ b
a p(ξ ,σ )x(τ (ξ ,σ )) dσ , we get y(ξ ) > x(ξ ) > 0.

Based on Eq. (1), (A3), and (A5), we obtain

(
α2(ξ )

(
α1(ξ )

(
y′(ξ )

)γ )′)′ + α3(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′

= –
∫ d

c
F
(
ξ , s, x

(
g(ξ , s)

))
dη(s)

≤ –
∫ d

c
q(ξ , s)xγ

(
g(ξ , s)

)
dη(s) < 0. (7)

To combine the damping terms, we use a useful function z(ξ ) = exp(
∫ ξ

ξ0
α3(s)
α2(s) ds). By the

properties of the exponential function, we have z(ξ ) > 0. Multiplying both sides of inequal-
ity (7) with z(ξ ), we get

z(ξ )
((

α2(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′)′ + α3(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′)

=
(
z(ξ )α2(ξ )

(
α1(ξ )

(
y′(ξ )

)γ )′)′ < 0, (8)

which means that z(ξ )α2(ξ )(α1(ξ )(y′(ξ ))γ )′ is decreasing and eventually of one sign. Due
to z(ξ ) > 0 and α2(ξ ) > 0, we obtain

(
α1(ξ )

(
y′(ξ )

)γ )′ > 0 or
(
α1(ξ )

(
y′(ξ )

)γ )′ < 0

for ξ > ξ1. Then we assert that (α1(ξ )(y′(ξ ))γ )′ > 0. If (α1(ξ )(y′(ξ ))γ )′ < 0, by (8), there exists
ξ2 > ξ1, when ξ > ξ2, we have

z(ξ )α2(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′ < z(ξ2)α2(ξ2)
(
α1(ξ2)

(
y′(ξ2)

)γ )′ =: –M1, (9)

where M1 is a positive constant. Integrating (9) from ξ2 to ξ , we have

α1(ξ )
(
y′(ξ )

)γ < α1(ξ2)
(
y′(ξ2)

)γ –
∫ ξ

ξ2

M1

z(ς )α2(ς )
dς

= α1(ξ2)
(
y′(ξ2)

)γ – M1

∫ ξ

ξ2

1
α2(ς )

exp

(
–

∫ ς

ξ0

α3(s)
α2(s)

ds
)

dς . (10)

From (A1), we get α1(ξ )(y′(ξ ))γ < 0, as ξ → ∞, which means y′(ξ ) < 0. Due to
(α1(ξ )(y′(ξ ))γ )′ < 0, there exists ξ3 > ξ2, when ξ > ξ3, we have

α1(ξ )
(
y′(ξ )

)γ < α1(ξ3)
(
y′(ξ3)

)γ =: –M2, (11)

where M2 is a positive constant. Then, integrating (11) from ξ3 to ξ , we have

y(ξ ) < y(ξ3) – M2
1
γ

∫ ξ

ξ3

α1(s)– 1
γ ds. (12)

From (A1), we can get y(ξ ) < 0, as ξ → ∞, which contradicts y(ξ ) > x(ξ ) > 0. Thus,
(α1(ξ )(y′(ξ ))γ )′ > 0.
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Next, we prove that y′(ξ ) is eventually of one sign. By (α1(ξ )(y′(ξ ))γ )′ > 0, we have that
α1(ξ )(y′(ξ ))γ is increasing and eventually of one sign. From α1(ξ ) > 0 and γ is a quotient
of odd positive integers, we get that y′(ξ ) is eventually of one sign. So, it is easy to know
that y(ξ ) has case 1 or case 2. This completes the proof. �

Lemma 2.3 Suppose that (A1)–(A5) hold. Let x(ξ ) be a positive solution of Eq. (1), and y(ξ )
satisfies case 2 in Lemma 2.2. If

∫ ∞

ξ0

(
1

α1(u)

∫ ∞

u

1
α2(ν)

∫ ∞

ν

q(s) ds dν

) 1
γ

du = ∞, (13)

where q(ξ ) =
∫ d

c q(ξ , s) dη(s) for ξ ∈ (ξ0,∞), then limξ→∞ x(ξ ) = 0.

Proof Suppose that x(ξ ) is the positive solution of Eq. (1) in [ξ0,∞). From Lemma 2.2,
we have y(ξ ) > 0, y′(ξ ) < 0. Based on the simple analysis, function y(ξ ) must converge to
the nonnegative constant m, when ξ → ∞. And we assert limξ→∞ y(ξ ) = m = 0. If m > 0,
noting that y(ξ ) is decreasing for ξ ≥ ξ1 ≥ ξ0, hence, we always have a constant θ > 0 such
that m < y(ξ ) < m + θ . From (A2), we have a constant 0 < p∗ < 1, because of the Archimedes
property of real numbers, we can choose a special number θ such that 0 < θ < m(1–p∗)

p∗ .
Next, from (A2) and integral mean value theorem, use m < y(ξ ) < m + θ , we have

x(ξ ) = y(ξ ) –
∫ b

a
p(ξ ,σ )x

(
τ (ξ ,σ )

)
dσ

≥ y(ξ ) –
∫ b

a
p(ξ ,σ )y

(
τ (ξ ,σ )

)
dσ

≥ y(ξ ) – y
(
τ (ξ , a)

)∫ b

a
p(ξ ,σ ) dσ

≥ m – p∗(m + θ ) ≥ m – p∗(m + θ )
m + θ

(m + θ )

≥ m – p∗(m + θ )
m + θ

y(ξ ). (14)

From 0 < θ < m(1–p∗)
p∗ , we obtain m–p∗(m+θ )

m+θ
> 0. Then, using Eq. (1), we have

(
α2(ξ )

(
α1(ξ )

(
y′(ξ )

)γ )′)′ + α3(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′

= –
∫ d

c
F
(
ξ , s, x

(
g(ξ , s)

))
dη(s) ≤ –

∫ d

c
q(ξ , s)xγ

(
g(ξ , s)

)
dη(s)

≤ –
∫ d

c
q(ξ , s)

(
m – p∗(m + θ )

m + θ
y
(
g(ξ , s)

))γ

dη(s)

≤ –
(

m – p∗(m + θ )
m + θ

)γ

yγ
(
g(ξ , d)

)
q(ξ )

≤ –
(

m – p∗(m + θ )
m + θ

)γ

yγ (ξ )q(ξ ). (15)



Wang et al. Advances in Difference Equations        (2021) 2021:515 Page 6 of 15

We also use function z(ξ ) = exp(
∫ ξ

ξ0
α3(s)
α2(s) ds) > 0, and we have z′(ξ ) > 0 easily. Then

(
z(ξ )α2(ξ )

(
α1(ξ )

(
y′(ξ )

)γ )′)′

= z(ξ )
((

α2(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′)′ + α3(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′)

≤ –
(

m – p∗(m + θ )
m + θ

)γ

yγ (ξ )z(ξ )q(ξ ). (16)

Integrating (16) from ξ to ∞, using m < y(ξ ) < m + θ , we get

–z(ξ )α2(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′ < –
(

m – p∗(m + θ )
m + θ

)γ ∫ ∞

ξ

yγ (s)z(s)q(s) ds

< –
(

m(m – p∗(m + θ ))
m + θ

)γ

z(ξ )
∫ ∞

ξ

q(s) ds, (17)

which implies that

(
α1(ξ )

(
y′(ξ )

)γ )′ >
(

m(m – p∗(m + θ ))
m + θ

)γ 1
α2(ξ )

∫ ∞

ξ

q(s) ds. (18)

Integrating (18) from ξ to ∞, we have

α1(ξ )
(
y′(ξ )

)γ < –
(

m(m – p∗(m + θ ))
m + θ

)γ ∫ ∞

ξ

1
α2(ν)

∫ ∞

ν

q(s) ds dν. (19)

Integrating (19) from ξ1 to ∞, we get

∫ ∞

ξ1

(
1

α1(u)

∫ ∞

u

1
α2(ν)

∫ ∞

ν

q(s) ds dν

) 1
γ

du <
m + θ

m(m – p∗(m + θ ))
y(ξ1). (20)

This contradicts (13), and we get m = 0. Due to limξ→∞ y(ξ ) = 0 and y(ξ ) > x(ξ ) > 0, we
obtain limξ→∞ x(ξ ) = 0. This completes the proof. �

3 Main results
In this section, we establish some new oscillation criteria for Eq. (1). For convenience, we
denote

q(ξ ) =
∫ d

c
q(ξ , s) dη(s), g ′(ξ , c) =

∂g(ξ , c)
∂ξ

, ρ ′(ξ , h, l) =
∂ρ(ξ , h, l)

∂h
,

G(ξ ) := g ′(ξ , c)
(

1
α1(g(ξ , c))

) 1
γ
(∫ g(ξ ,c)

ξ1

1
α2(s)

ds
) 1

γ

,

R(ξ , h, l) =
ρ ′(ξ , h, l)
ρ(ξ , h, l)

–
α3(ξ )
α2(ξ )

+ 2ϕ(ξ , h, l).

Theorem 3.1 Let (A1)–(A5) and (13) hold. Assume that, for each l ≥ ξ0, there exist a func-
tion 	 ∈ Y and a positive function ρ ∈ C1([ξ0,∞), R+) such that

lim sup
ξ→∞

A
[
ρ
(
1 – p∗)γ q –

( ρ′
ρ

– α3
α2

+ 2ϕ

γ + 1

)γ +1
ρ

Gγ
; l, ξ

]
> 0, (21)
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where the operator A is defined by (3), and ϕ = ϕ(ξ , h, l) is defined by (4). Then every solution
of Eq. (1) is oscillatory or converges to zero.

Proof Suppose to the contrary that there exists an eventually positive solution x(ξ ) of
Eq. (1) such that x(ξ ) > 0, x(τ (ξ ,σ )) > 0, x(g(ξ , s)) > 0 for ξ > ξ1 > ξ0. Then y(ξ ) = x(ξ ) +
∫ b

a p(ξ ,σ )x(τ (ξ ,σ )) dσ > 0 for ξ > ξ1 > ξ0. From Lemma 2.2, we get that y(ξ ) is one of case
1 or case 2.

If y(ξ ) satisfies case 1, we can get

x(ξ ) = y(ξ ) –
∫ b

a
p(ξ ,σ )x

(
τ (ξ ,σ )

)
dσ

≥ y(ξ ) –
∫ b

a
p(ξ ,σ )y

(
τ (ξ ,σ )

)
dσ

≥ y(ξ ) – y(ξ )
∫ b

a
p(ξ ,σ ) dσ

≥ (
1 – p∗)y(ξ ). (22)

Combining (1) and (22), we have

(
α2(ξ )

(
α1(ξ )

(
y′(ξ )

)γ )′)′ + α3(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′

= –
∫ d

c
F
(
ξ , s, x

(
g(ξ , s)

))
dη(s)

≤ –
∫ d

c
q(ξ , s)xγ

(
g(ξ , s)

)
dη(s)

≤ –
(
1 – p∗)γ yγ

(
g(ξ , c)

)
q(ξ ). (23)

Since y(ξ ) has case 1, we get y′(ξ ) > 0 and (α1(ξ )(y′(ξ ))γ )′ > 0. From (23), we can easily get
(α2(ξ )(α1(ξ )(y′(ξ ))γ )′)′ < 0, and we have

α1(ξ )
(
y′(ξ )

)γ = α1(ξ1)
(
y′(ξ1)

)γ +
∫ ξ

ξ1

(
α1(s)

(
y′(s)

)γ )′ ds

≥
∫ ξ

ξ1

(
α1(s)

(
y′(s)

)γ )′ ds

≥
∫ ξ

ξ1

α2(s)(α1(s)(y′(s))γ )′

α2(s)
ds

≥ α2(ξ )
(
α1(ξ )

(
y′(ξ )

)γ )′
∫ ξ

ξ1

1
α2(s)

ds. (24)

That means

y′(ξ ) ≥
(

α2(ξ )(α1(ξ )(y′(ξ ))γ )′

α1(ξ )

) 1
γ
(∫ ξ

ξ1

1
α2(s)

ds
) 1

γ

. (25)



Wang et al. Advances in Difference Equations        (2021) 2021:515 Page 8 of 15

From (A4), we obtain

y′(g(ξ , c)
)

≥
(

α2(g(ξ , c))(α1(g(ξ , c))(y′(g(ξ , c)))γ )′

α1(g(ξ , c))

) 1
γ
(∫ g(ξ ,c)

ξ1

1
α2(s)

ds
) 1

γ

≥
(

α2(ξ )(α1(ξ )(y′(ξ ))γ )′

α1(g(ξ , c))

) 1
γ
(∫ g(ξ ,c)

ξ1

1
α2(s)

ds
) 1

γ

=
(
α2(ξ )

(
α1(ξ )

(
y′(ξ )

)γ )′) 1
γ

(
1

α1(g(ξ , c))

) 1
γ
(∫ g(ξ ,c)

ξ1

1
α2(s)

ds
) 1

γ

. (26)

Next, we define the generalized Riccati-type function

w(h) = ρ(h)
α2(h)(α1(h)(y′(h))γ )′

yγ (g(h, c))
for h ≥ ξ1. (27)

Obviously, w(h) > 0. Differentiating w(h), we obtain

w′(h) = ρ ′(h)
α2(h)(α1(h)(y′(h))γ )′

yγ (g(h, c))
+ ρ(h)

(α2(h)(α1(h)(y′(h))γ )′)′

yγ (g(h, c))

– γρ(h)
α2(h)(α1(ξ )(y′(h))γ )′y′(g(h, c))g ′(h, c)

yγ +1(g(h, c))
.

From (23), (24), (26), and (27), by simple computation, we have

w′(h) ≤ ρ ′(h)
ρ(h)

(
ρ(h)

α2(h)(α1(h)(y′(h))γ )′

yγ (g(h, c))

)

– ρ(h)
α3(h)(α1(h)(y′(h))γ )′

yγ (g(h, c))

– ρ(h)
(1 – p∗)γ yγ (g(h, c))q(h)

yγ (g(h, c))

– γρ(h)
α2(h)(α1(h)(y′(h))γ )′y′(g(h, c))g ′(h, c)

yγ +1(g(h, c))

≤ ρ ′(h)
ρ(h)

w(h) –
α3(h)
α2(h)

w(h) – ρ(h)
(
1 – p∗)γ q(h)

–
γ y′(g(h, c))g ′(h, c)

y(g(h, c))
w(h)

≤ ρ ′(h)
ρ(h)

w(h) –
α3(h)
α2(h)

w(h) – ρ(h)
(
1 – p∗)γ q(h)

–
γ g ′(h, c)( 1

α1(g(h,c)) )
1
γ (

∫ g(h,c)
ξ1

1
α2(s) ds)

1
γ

ρ
1
γ (h)

w
γ +1
γ (h).
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For convenience, let G(h) := g ′(h, c)( 1
α1(g(h,c)) )

1
γ (

∫ g(h,c)
ξ1

1
α2(s) ds)

1
γ . Then we obtain

w′(h) ≤
(

ρ ′(h)
ρ(h)

–
α3(h)
α2(h)

)
w(h)

– γρ
– 1

γ (h)G(h)w
γ +1
γ (h) – ρ(h)

(
1 – p∗)γ q(h). (28)

Applying the operator A[·; ξ1, ξ ] (ξ ≥ ξ1) to (28), we note that A[·; ξ1, ξ ] is a linear operator,
then we get

A
[
w′; ξ1, ξ

] ≤ A
[(

ρ ′

ρ
–

α3

α2

)
w – γρ

– 1
γ Gw

γ +1
γ ; ξ1, ξ

]
– A

[
ρ
(
1 – p∗)γ q; ξ1, ξ

]
.

By (5) and the above inequality, we have

A
[
ρ
(
1 – p∗)γ q; ξ1, ξ

] ≤ A
[(

ρ ′

ρ
–

α3

α2
+ 2ϕ

)
w – γρ

– 1
γ Gw

γ +1
γ ; ξ1, ξ

]
.

To use Lemma 2.1, set

b1 =
ρ ′

ρ
–

α3

α2
+ 2ϕ, b2 = γρ

– 1
γ G, ν = w.

We can see that

A
[
ρ
(
1 – p∗)γ q; ξ1, ξ

] ≤ A
[( ρ′

ρ
– α3

α2
+ 2ϕ

γ + 1

)γ +1
ρ

Gγ
; ξ1, ξ

]
. (29)

That means

A
[
ρ
(
1 – p∗)γ q –

( ρ′
ρ

– α3
α2

+ 2ϕ

γ + 1

)γ +1
ρ

Gγ
; ξ1, ξ

]
≤ 0. (30)

Taking the super limit in the above inequality, we arrive at this inequality

lim sup
ξ→∞

A
[
ρ
(
1 – p∗)γ q –

( ρ′
ρ

– α3
α2

+ 2ϕ

γ + 1

)γ +1
ρ

Gγ
; ξ1, ξ

]
≤ 0,

which is a contradiction to (21).
If y(ξ ) satisfies case 2, from Lemma 2.3, the solution of (1) converges to zero. The proof

is complete. �

Next, let us discuss the special function ρ(ξ ) in Riccati-type function (27), then we can
get some new oscillation criteria that are weaker than Theorem 3.1.

Theorem 3.2 Let (A1)–(A5) and (13) hold. Assume that, for each l ≥ ξ0, there exists a
function 	 ∈ Y such that

lim sup
ξ→∞

A
[
ρ
(
1 – p∗)γ q; l, ξ

]
> 0, (31)



Wang et al. Advances in Difference Equations        (2021) 2021:515 Page 10 of 15

where the operator A is defined by (3), and ρ = exp(
∫ h
ξ1

( α3(s)
α2(s) – 2ϕ(ξ , s, l)) ds) for ϕ(ξ , s, l) is

as in (4). Then every solution of Eq. (1) is oscillatory or converges to zero.

Proof Suppose the contrary. Let x(ξ ) be an eventually positive solution of Eq. (1). Similar
to the proof of Theorem 3.1, if we set ρ = exp(

∫ h
ξ1

( α3(s)
α2(s) – 2ϕ(ξ , s, l)) ds), then (27) becomes

w(ξ , h, l) = ρ(ξ , h, l)
α2(h)(α1(h)(y′(h))γ )′

yγ (g(h, c))
.

Symbolize ∂w(ξ ,h,l)
∂h := w′(ξ , h, l) and ∂ρ(ξ ,h,l)

∂h := ρ ′(ξ , h, l). We can easily get the operator
A[·; l, ξ ] satisfying (5) for each fixed ξ and l, where ξ > h > l > ξ1. Then we also get in-
equality (30). By simple calculation, we obtain

ρ ′(ξ , h, l) =
(

α3(h)
α2(h)

– 2ϕ(ξ , h, l)
)

exp

(∫ h

ξ1

(
α3(s)
α2(s)

– 2ϕ(ξ , s, l)
)

ds
)

=
(

α3(h)
α2(h)

– 2ϕ(ξ , h, l)
)

ρ(ξ , h, l),

and R(ξ , h, l) = ρ′(ξ ,h,l)
ρ(ξ ,h,l) – α3(h)

α2(h) + 2ϕ(ξ , h, l) = 0 in inequality (30). This means that, for every
ξ and l, where ξ > h > l > ξ1, we get

A
[
ρ
(
1 – p∗)γ q; l, ξ

] ≤ 0.

Taking the super limit in the above inequality, we arrive at

lim sup
ξ→∞

A
[
ρ
(
1 – p∗)γ q; l, ξ

] ≤ 0,

which is a contradiction to (31). This completes the proof of Theorem 3.2. �

Remark 1 Look at inequality (21) from Theorem 3.1, we find that the function R(ξ , h, l) =
ρ′(ξ ,h,l)
ρ(ξ ,h,l) – α3(h)

α2(h) + 2ϕ(ξ , h, l) cannot judge the sign. And we note that the function G(h) is
affected by the damping function g(ξ , c). Thus, we get a function ρ(ξ , h, l) which can make
function R(ξ , h, l) = 0, so that g(ξ , c) disappears in our criteria.

Theorem 3.3 Let (A1)–(A5) and (13) hold. Assume that, for each l ≥ ξ0, there exists a
positive function ρ(ξ ) ∈ C1([ξ0,∞), R+) satisfying ρ ′(ξ ) < 0 such that

lim sup
ξ→∞

ε(ξ )
ρ(ξ )

[∫ g(ξ ,c)

g(ξ0,c)

(
1

α1(ς )

) 1
γ
(∫ ς

ξ0

1
α2(s)

ds
) 1

γ

dς

]γ

> 1, (32)

where ε(ξ ) =
∫ ξ ′
ξ

ρ(ς )(1–p∗)γ q(ς ) dς and ξ ′ > ξ . Then every solution of Eq. (1) is oscillatory
or converges to zero.

Proof Suppose the contrary, without loss of generality, we can assume that x(ξ ) is an even-
tually positive solution of Eq. (1) for ξ > ξ0. Similar to the proof of Theorem 3.1, case
2 always hold and case 1 still satisfies (23), (26), (27), and (28) for ξ > ξ1. By inequality
(28), using w(ξ ) > 0, ρ ′(ξ ) < 0 and (A1)–(A5), it is clear that w′(ξ ) < 0. Multiplying both
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sides of inequality (26) with g ′(ξ , c), then integrating this inequality from ξ1 to ξ , note
(α2(ξ )(α1(ξ )(y′(ξ ))γ )′)′ < 0 from (23), we have

y
(
g(ξ , c)

)

≥
∫ ξ

ξ1

(
α2(ς )

(
α1(ς )

(
y′(ς )

)γ )′) 1
γ

g ′(ς , c)

α
1
γ

1 (g(ς , c))

(∫ g(ς ,c)

ξ1

1
α2(s)

ds
) 1

γ

dς

≥ (
α2(ξ )

(
α1(ξ )

(
y′(ξ )

)γ )′) 1
γ

∫ ξ

ξ1

g ′(ς , c)

α
1
γ

1 (g(ς , c))

(∫ g(ς ,c)

ξ1

1
α2(s)

ds
) 1

γ

dς

=
(
α2(ξ )

(
α1(ξ )

(
y′(ξ )

)γ )′) 1
γ

∫ g(ξ ,c)

g(ξ1,c)

(
1

α1(ς )

) 1
γ
(∫ ς

ξ1

1
α2(s)

ds
) 1

γ

dς . (33)

From (28), note ρ ′(ξ ) < 0 and w(ξ ) > 0, we obtain

w′(ξ ) ≤ –ρ(ξ )
(
1 – p∗)γ q(ξ ).

Integrating the above inequality from ξ to ξ ′, for ξ < ξ ′,

w(ξ ) ≥ w
(
ξ ′) +

∫ ξ ′

ξ

ρ(ς )
(
1 – p∗)γ q(ς ) dς

≥
∫ ξ ′

ξ

ρ(ς )
(
1 – p∗)γ q(ς ) dς . (34)

And we assert

∫ ξ ′

ξ

ρ(ς )
(
1 – p∗)γ q(ς ) dς < ∞.

Otherwise w(ξ ′) ≤ w(ξ ) –
∫ ξ ′
ξ

ρ(ς )(1 – p∗)γ q(ς ) dς → –∞ for all ξ ′ > ξ . From (27), we have
that w(ξ ′) > 0 is positive, which is a contradiction.

Next, from (27) and (33), we get

1
w(ξ )

=
yγ (g(ξ , c))

ρ(ξ )α2(ξ )(α1(ξ )(y′(ξ ))γ )′

≥ 1
ρ(ξ )

[∫ g(ξ ,c)

g(ξ1,c)

(
1

α1(ς )

) 1
γ
(∫ ς

ξ1

1
α2(s)

ds
) 1

γ

dς

]γ

. (35)

Thus it follows from (35) that

w(ξ )
ρ(ξ )

[∫ g(ξ ,c)

g(ξ0,c)

(
1

α1(ς )

) 1
γ
(∫ ς

ξ0

1
α2(s)

ds
) 1

γ

dς

]γ

≤
[∫ g(ξ ,c)

g(ξ0,c)(
1

α1(ς ) )
1
γ (

∫ ς

ξ0
1

α2(s) ds)
1
γ dς

∫ g(ξ ,c)
g(ξ1,c)(

1
α1(ς ) )

1
γ (

∫ ς

ξ1
1

α2(s) ds)
1
γ dς

]γ

.
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Taking the super limit in the above inequality, we have

lim sup
ξ→∞

w(ξ )
ρ(ξ )

[∫ g(ξ ,c)

g(ξ0,c)

(
1

α1(ς )

) 1
γ
(∫ ς

ξ0

1
α2(s)

ds
) 1

γ

dς

]γ

≤ 1. (36)

Using (34) and (36), we can easily get a contradiction in (32). The proof is complete. �

Theorem 3.4 Let (A1)–(A5) and (13) hold. Suppose that {ϑn(ξ )}∞n=0 is a sequence of func-
tions defined as

ϑn(ξ ) =
∫ ε(ξ )

ξ

G̃(s)ϑ
γ +1
γ

n–1 (s) ds + ϑ0(ξ ), ξ ≥ ξ1, n = 1, 2, 3, . . . , (37)

where G̃(s) = γρ
– 1

γ (s)G(s), ϑ0(ξ ) =
∫ ε(ξ )
ξ

ρ(s)(1–p∗)γ q(s) ds for ξ > ξ0, and ε(ξ ) ∈ C1((ξ0,∞),
(ξ ,∞)), ε′(ξ ) > 0. Assume that there exists a positive function ρ(ξ ) ∈ C1([ξ0,∞), R+), satis-
fying ρ ′(ξ ) < 0 such that

lim sup
ξ→∞

ϑn(ξ )
ρ(ξ )

[∫ g(ξ ,c)

g(ξ0,c)

(
1

α1(ς )

) 1
γ
(∫ ς

ξ0

1
α2(s)

ds
) 1

γ

dς

]γ

> 1. (38)

Then every solution of Eq. (1) is oscillatory or converges to zero.

Proof Assume that x(ξ ) is a positive solution of Eq. (1), then similar to the proof of Theo-
rem 3.1 and Theorem 3.3, the case 2 hold, and we deduce that (27), (28), (36) in case 1 hold.
Next, we prove that there exists a positive ϑ(ξ ) on [ξ1,∞) such that limξ→∞ ϑn(ξ ) = ϑ(ξ ),
ϑ(ξ ) =

∫ ε(ξ )
ξ

G̃(s)ϑ
γ +1
γ (s) ds + ϑ0(ξ ), and w(ξ ) ≥ ϑn(ξ ).

In fact from (28), ρ ′(ξ ) < 0, and G̃(ξ ) = γρ
– 1

γ (ξ )G(ξ ), we get

w′(ξ ) + G̃(ξ )w
γ +1
γ (ξ ) + ρ(ξ )

(
1 – p∗)γ q(ξ ) ≤ 0. (39)

Then integrating (39) from ξ to ε(ξ ) and setting ϑ0(ξ ) =
∫ ε(ξ )
ξ

ρ(s)(1 – p∗)γ q(s) ds, we have

w
(
ε(ξ )

)
– w(ξ ) +

∫ ε(ξ )

ξ

G̃(s)w
γ +1
γ (s) ds + ϑ0(ξ ) ≤ 0. (40)

From (A2), (A3) and ρ(ξ ) ∈ C1([ξ1,∞), R+), we get ϑ0(ξ ) > 0 and

w
(
ε(ξ )

)
– w(ξ ) +

∫ ε(ξ )

ξ

G̃(s)w
γ +1
γ (s) ds ≤ 0. (41)

Then we conclude that

∫ ε(ξ )

ξ

G̃(s)w
γ +1
γ (s) ds < ∞, (42)

otherwise, w(ε(ξ )) ≤ w(ξ ) –
∫ ε(ξ )
ξ

G̃(s)w
γ +1
γ (s) dς → –∞ for all ξ > ξ1. From (27), we have

that w(ε(ξ )) is positive, which is a contradiction. Similarly, we also have ϑ0(ξ ) < ∞. We
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observe that function G̃(s) > 0, from (28), we have that w(ξ ) is positive and decreasing. By
(40), we get

w(ξ ) ≥
∫ ε(ξ )

ξ

G̃(s)w
γ +1
γ (s) ds + ϑ0(ξ ). (43)

That means w(ξ ) ≥ ϑ0(ξ ). In addition, from G̃(ξ ) > 0, we have ϑn(ξ ) ≤ ϑn+1(ξ ) for ξ > ξ1

always holds. By w(ξ ) ≥ ϑ0(ξ ) and (43), we have

w(ξ ) ≥
∫ ε(ξ )

ξ

G̃(s)ϑ
γ +1
γ

0 (s) ds + ϑ0(ξ ) = ϑ1(ξ ). (44)

Then we have

w(ξ ) ≥
∫ ε(ξ )

ξ

G̃(s)ϑ
γ +1
γ

1 (s) ds + ϑ0(ξ ) = ϑ2(ξ ). (45)

Inductively, we obtain w(ξ ) ≥ ϑn(ξ ), n = 1, 2, 3, . . . , for ξ > ξ1.
Since the sequence {ϑn(ξ )}∞n=0 is increasing and bounded, it converges to ϑ(ξ ). Then,

using Lebesgue’s monotone convergence theorem and putting n → ∞ in (37), we get
ϑ(ξ ) =

∫ ε(ξ )
ξ

G̃(s)ϑ
γ +1
γ (s) ds + ϑ0(ξ ). Then, from (36) and w(ξ ) ≥ ϑn(ξ ), we also get a contra-

diction to (38). The proof is complete. �

Remark 2 We give a Riccati-type function satisfying ρ ′(ξ ) < 0 such that the function w(ξ )
is bounded. If we change the condition of ρ ′(ξ ) < 0 to ρ′(ξ )

ρ(ξ ) – α3(ξ )
α2(ξ ) < 0 in Theorem 3.3 or

Theorem 3.4, we also have that the function w(ξ ) is bounded. Then, by the same proof, we
get new oscillation criteria.

4 Example
Consider the following differential equation:

(
1
ξ

(
ξ

((
x(ξ ) +

∫ 1

0

1
2

x
(

ξ

2

)
dσ

)′)3)′)′

+
1
ξ 2

(
ξ

((
x(ξ ) +

∫ 1

0

1
2

x
(

ξ

2

)
dσ

)′)3)′
+

∫ 1

0
λx

(
ξ

e

)
ds = 0, (46)

for ξ ∈ (0,∞).
Let α1(ξ ) = ξ , α2(ξ ) = 1

ξ
, α3(ξ ) = 1

ξ2 , p∗ = 1
2 , τ (ξ ,σ ) = ξ

2 , F(ξ , s, x) = λx, g(ξ , s) = ξ

e , γ = 3,
a = 0, b = 1, c = 0, d = 1, η(ξ ) = ξ in Eq. (1). Then we have q(ξ , s) = λ, and we also obtain
q(ξ ) = λ,

∫ ∞
ξ0

α1(ξ )– 1
γ dξ = ∞,

∫ ∞
ξ0

1
α2(ξ ) exp(–

∫ ξ

ξ0
α3(s)
α2(s) ds) dξ = ∞. And (13) holds for λ > 0.

We give 	(ξ , h, l) = (ξ – h)α(h – l)β , α > 1
2 , β > 1

2 . From (4), we get ϕ(ξ , h, l) = βξ–(α+β)h+αl
(ξ–h)(h–l) ,

by simple computation, we have

exp

(∫ h

ξ0

(
α3(s)
α2(s)

–
2(βξ – (α + β)s + αl)

(ξ – s)(s – l)

)
ds

)

= exp

(∫ h

ξ0

(
1
s

– 2
(

–α

ξ – s
+

β

s – l

))
ds

)
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= exp

(∫ h

ξ0

1
s

ds
)

· exp

(
2α

∫ h

ξ0

1
ξ – s

ds
)

· exp

(
–2β

∫ h

ξ0

1
s – l

ds
)

=
h
ξ0

·
(

ξ – h
ξ – ξ0

)–2α

·
(

h – l
ξ0 – l

)–2β

=
h(ξ – h)–2α(h – l)–2β

ξ0(ξ – ξ0)–2α(ξ0 – l)–2β
.

Then we have

lim sup
ξ→∞

∫ ξ

l
(ξ – h)2α(h – l)2βρ(ξ , h, l)

(
1 – p∗)γ q(h) dh

= lim sup
ξ→∞

λ(ξ – ξ0)2α

8ξ0(ξ0 – l)–2β

∫ ξ

l
(ξ – h)2α(h – l)2βh(ξ – h)–2α(h – l)–2β dh

= lim sup
ξ→∞

λ(ξ 2 – l2)(ξ – ξ0)2α

16ξ0(ξ0 – l)–2β
. (47)

Because of lim supξ→∞
(ξ2–l2)(ξ–ξ0)2α

16ξ0(ξ0–l)–2β → +∞, we get that (47) is positive for λ > 0. Using
Theorem 3.2 and operator A[·; l, ξ ], we have that the solution of (46) is oscillatory or con-
verges to zero for λ > 0.

5 Conclusion
In this paper, we study the oscillation criteria of TOND differential equations with dis-
tributed deviating arguments and damping. Under the condition of (A1), we analyze
the distribution function y(ξ ) which is related to the solution. Then we give some suf-
ficient condition which ensures that every solution of Eq. (1) is oscillatory or converges to
zero. In future work, we would like to get some other oscillation criteria of Eq. (1) when
∫ b

a p(ξ ,σ ) dσ > 1 in (A2). In fact, the case of “> 1” has been involved in studies of second-
order and even-order neutral differential equations. See, e.g., the papers [24–27] for more
details.
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