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Abstract
Convection and diffusion are two harmonious physical processes that transfer
particles and physical quantities. This paper deals with a new aspect of solving the
convection–diffusion equation in fractional order using the finite volume method
and the finite difference method. In this context, we present an alternative way for
estimating the space fractional derivative by utilizing the fractional Grünwald formula.
The proposed methods are conditionally stable with second-order accuracy in space
and first-order accuracy in time. Many comparisons are performed to display
reliability and capability of the proposed methods. Furthermore, several results and
conclusions are provided to indicate appropriateness of the finite volume method in
solving the space fractional convection–diffusion equation compared with the finite
difference method.
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1 Introduction
The mathematical model is one of the most important logical aspects used to help us
explain and study physical phenomena. Many physical situations include non-Markov
processes, earthquakes, and terrestrial surface transport can be modeled through a class
of diffusion equations or wave equations. In particular, the physical quantities are trans-
ferred inside physical systems by diffusion and the flow of heat and stochastically chang-
ing systems are described. In recent years, researchers have focused on finding effective
numerical methods to solve such a type of partial differential equations (PDEs). Differ-
ent PDEs have been studied and resolved including the space–time fractional diffusion–
wave equation [1], the space fractional convection–diffusion equation [2], the space frac-
tional Cauchy equation [3], the fractional heat- and wave-like equations [4], the fractional
Korteweg–de Vries equation [5], and so forth [6–11]. Different effective methods have
been proposed by scholars such as the reproducing kernel method [12–15], the residual
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power series method [16–18], the homotopy perturbation method [19], the multi-step
approach [20], and some others [21–24].

During the past years, certain numerical methods, such as the finite difference method,
the finite volume method, and the finite element method, have been developed to solve
some PDEs. The important goal of these methods is to convert the equation to a system of
linear algebraic equations. For example, in [25], the time-fractional convection–diffusion
equations have been reduced to a system of linear algebraic equations using the Gegen-
bauer polynomials and Lagrange polynomials space and time expansion, respectively. In
[26], Saadatmandi et al. studied the sinc-Legendre collocation technique for solving a class
of fractional convection–diffusion equations with variable coefficients. In [27], the finite
volume element technique was used to solve the sub-diffusion problems in fractional or-
der. In addition, Jia and Wang used the volume penalization approach to improve the finite
volume technique for finding a solution for a space fractional diffusion equation [28]. In
[29], Mahto et al. applied the continuation property to propose the approximate solution
of the sub-diffusion equation via internal control. In [30], Zhao et al. applied the finite
element technique for solving the time-fractional diffusion problem, they introduced an
unconditionally stable scheme based on the spatial quasi-Wilson nonconforming; while
in [31], the authors derived the optimal error estimates by studying the two mixed finite
element methods, conforming and nonconforming, to solve the time-fractional diffusion
problem. On the other hand as well, Stynes et al. used a different technique to solve the
time-fractional diffusion equation and to find elaborate error boundedness based on the
regularity of the exact solution [32]. In [33], Sayevand et al. proposed the finite volume
element technique for analyzing the behavior of sub-diffusion equations and proved its
stability analysis of obtained solution. In [34], the authors proposed the finite difference
discretization based on the weighted trapezoidal rule to approximate the fractional Lapla-
cian and proved the convergence in one dimension. More interesting applications can be
found in [35–45].

In this paper, we deal with a new aspect of FVM and FDM to obtain approximate solu-
tion for the space fractional convection–diffusion equation (SFCDE), in which the space
fractional derivative is represented in the Riemann–Liouville sense. More specifically, let
us consider the SFCDE of the following form:

∂ψ(x, t)
∂t

+ ε
∂βψ(x, t)

∂xβ
= ρ

∂2ψ(x, t)
∂x2 , (1)

subject to the initial condition

ψ(x, 0) = g(x), 0 ≤ x ≤ L, (2)

where t ≥ 0, x ∈ [0, L], a parameter β describes the order of the space fractional derivative,
0 < β ≤ 1, so that the space fractional derivative is described in the Riemann–Liouville
sense, ψ(x, t) is concentration, ε and ρ are positive parameters, ρ is a diffusion coefficient,
ε is the velocity of water flow, and L is the length of the channel. For β = 1, the equa-
tion, indeed, reduces to the linear convection–diffusion equation. In particular, the exact
solution of the linear convection–diffusion equation of the shape

∂ψ(x, t)
∂t

+ ε
∂ψ(x, t)

∂x
= ρ

∂2ψ(x, t)
∂x2
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subject to the initial condition ψ(x, 0) = – sin(πx) is given in the form

ψ(x, t) = – sin
(
π (x – εt)

)
e–ρπ2t .

The structure of this analysis is as follows. In Sect. 2, some preliminary definitions and
theorems related to Grünwald–Letnikov fractional derivative are introduced. Section 3 is
devoted to constructing the FDM for FIVPs (1) and (2) along with its theoretical analy-
sis. In Sect. 4, the FVM is proposed to solve FIVPs (1) and (2) along with its theoretical
analysis. In Sect. 4, numerical examples are given to express validity and reliability of the
methods and to make a comprehensive comparison for both FVM and FDM. Finally, some
conclusions are given in Sect. 5.

2 Basic definitions
In the literature there are numerous integrals which are widely used in physics, astronomy,
and engineering [46, 47]. Consequently, different types of fractional integrals and deriva-
tives have been found very reliable under some conditions. In this section, we introduce
some preliminary definitions and theorems related to the Riemann–Liouville fractional
derivative and Grünwald–Letnikov fractional derivative.

Definition 1 The Riemann–Liouville integral of fractional order α > 0, Jα
a ψ(x), is defined

as

Jα
a ψ(x) =

1
	(α)

∫ x

a
(x – t)α–1ψ(t) dt, provided that ψ ∈ L1[a, b].

For α = 0, the Riemann–Liouville integral of fractional order J0
aψ(x) = ψ(x) is the identity

operator.

Definition 2 Let n be the smallest integer that exceeds α, then the Riemann–Liouville
fractional derivative of order α > 0 is defined as

Dα
a ψ(x) = DnJ (n–α)

a ψ(x)

=
1

	(n – α)

(
dn

dxn

)[∫ x

a

ψ(t)
(x – t)α+1–n dt

]
. (3)

For α∈N, the Riemann–Liouville fractional derivative of order α is given as Dα
a ψ(x) =

dαψ(x)
dxα .

Definition 3 Let ψ ∈ C�α�[a, b],α > 0. Then the Grünwald–Letnikov fractional derivative
of the function ψ of order α is given by

D̃α
aψ(x) = lim

h→0

1
hα

[ x–a
h ]∑

k=0

(–1)k
(

α

k

)
ψ(x – kh), a < x ≤ b, (4)

where h = x–a
N .

The following theorem shows the relation between this definition and the Riemann–
Liouville fractional derivatives.
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Theorem 1 Let α > 0, n = �α� and ψ ∈ Cn[a, b]. Then we have

D̃α
aψ(x) = Dα

a ψ(x), a < x ≤ b.

Theorem 2 Let α > 0 and ψ ∈ C[a, b]. Then we have

Jα
aψ(x) = lim

h−→0
hα

[ x–a
h ]∑

k=0

(–1)k
(

–α

k

)
ψ(x – kh), h =

x – a
N

, a < x ≤ b, (5)

where (–1)k(–α

k
)

= α(α–1)(α–2)...(α–k+1)
k! = 	(α+k)

	(α)	(k+1) and 	(x) is the gamma function given by
	(x) =

∫ ∞
0 sx–1e–s ds. If the weights are given by υα

0 = 1,υα
1 = α and υα

k = (1 – (1–α)
k )υα

k–1, k =
2, 3, . . . , then Eq. (5) may be rewritten as

Jα
aψ(x) = lim

h→0
hα

[ x–a
h ]∑

k=0

υα
k ψ(x – kh), h =

x – a
N

. (6)

The above formula is used to approximate the fractional integral Jα
a ψ(x).

Lemma 1 Let 0 < α < 1. Then we have
1. vα

0 = 1 and vα
k > 0 for k = 1, 2, . . . .

2. vα
k – vα

k+1 > 0 for = 0, 1, . . . .
3. limk→∞ vα

k = 0.

Proof 1. By induction and the recursive definition, we indeed have vα
0 = 1, vα

1 = α > 0, and

vα
k =

(
1 –

(1 – α)
k

)
vα

k–1, k = 2, 3, . . . . (7)

Since 0 < α < 1, we have 0 < 1–α
k < 1

k < 1 for k ≥ 2. Therefore, the coefficient (1 – (1–α)
k ) in

Eq. (7) strictly lies between zero and one.
2. For k ≥ 2, we have

vα
k – vα

k+1 =
(

1 –
(1 – α)

k

)
vα

k–1 –
(

1 –
(1 – α)
k + 1

)
vα

k

=
(

1 –
(1 – α)

k

)
vα

k–1 –
(

1 –
(1 – α)
k + 1

)(
1 –

(1 – α)
k

)
vα

k–1

=
[

1 –
(

1 –
(1 – α)
k + 1

)](
1 –

(1 – α)
k

)
vα

k–1

=
(1 – α)
k + 1

(
1 –

(1 – α)
k

)
vα

k–1.

The result is, therefore, positive. Part 3 is straightforward. Hence, we omit the details.
This completes the proof of the lemma. �
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3 Finite difference scheme formulation
In this section, we propose a new finite difference scheme formulation (FDSF) for solving
the SFCDE with constant coefficients

∂ψ(x, t)
∂t

+ ε
∂βψ(x, t)

∂xβ
= ρ

∂2ψ(x, t)
∂x2 (8)

subject to the initial condition

ψ(x, 0) = g(x), a ≤ x ≤ b, (9)

in which t ≥ 0, 0 < β ≤ 1, g(x) is an analytical smooth function of a spatial x, ψ(x, t) is
an unknown analytical function, ε and ρ are positive parameters, and β is a parame-
ter that describes the order of the space fractional, where the space fractional derivative
is described in the Riemann–Liouville sense. If β = 1, then the equation becomes a lin-
ear convection–diffusion equation. Now, by utilizing Definition 2 and Riemann–Liouville
fractional derivative, we have

∂ψ(x, t)
∂t

+ ε
∂

∂x
J1–β
a ψ(x, t) = ρ

∂2ψ(x, t)
∂x2 , (10)

where J1–β
a is the Riemann–Liouville integral with respect to x. If α = 1 – β , then we have

0 ≤ α < 1. Define tn = nτ , n = 0, 1, . . . , M; xi = a + ih, i = 0, 1, . . . , N , where τ is the time
step and h is the spatial step. Then, we will be using the standard Grünwald formula to
approximate the α order fractional Riemann–Liouville integral and the central difference
formula to approximate the first and the second derivative as follows:

Jα
a ψ(x, t) = hα

N∑

j=0

vα
j ψ(x – jh, t) + o(1), (11)

∂ψ(x, t)
∂x

∣
∣∣∣
x=xi

=
ψ(xi+1, t) – ψ(xi–1, t)

2h
+ O

(
h2), (12)

∂2ψ(x, t)
∂x2

∣∣∣
∣
x=xi

=
ψ(xi–1, t) – 2ψ(xi, t) + ψ(xi+1, t)

h2 + O
(
h2). (13)

The starting point for applying the finite difference method by evaluating Eq. (10) at
x = xi and using the above equations is that

dψ(xi, t)
dt

= –
ε

2h

[

hα

i+1∑

j=0

vα
j ψ(xi–j+1, t) – hα

i–1∑

j=0

vα
j ψ(xi–j–1, t)

]

+ ρ

[
ψ(xi–1, t) – 2ψ(xi, t) + ψ(xi+1, t)

h2

]
. (14)

Hence, using the standard backward difference to approximate the temporal derivative
in Eq. (14) reveals

dψ(xi, t)
dt

∣
∣∣∣
t=tn+1

=
ψ(xi, tn+1) – ψ(xi, tn)

τ
+ O(τ ). (15)
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Letting ψn
i ≈ ψ(xi, tn) denotes that the numerical solution implies

ψn+1
i – ψn

i
τ

= –
ε

2h

[

hα

i+1∑

j=0

vα
j ψn+1

i–j+1 – hα

i–1∑

j=0

vα
j ψn+1

i–j–1

]

+ ρ

[
ψn+1

i–1 – 2ψn+1
i + ψn+1

i+1
h2

]
. (16)

By collecting like terms, Eq. (16) can be rewritten as

ψn+1
i – ψn

i
τ

+
N∑

j=0

bijψ
n+1
j = 0, (17)

where

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εhα–1[vα
i–j+1–vα

i–j–1]
2 , j < i – 1,

εhα–1[vα
2 –vα

0 ]
2 – ρ

h2 , j = i – 1,
εhα–1vα

1
2 + 2ρ

h2 , j = i,
εhα–1vα

0
2 – ρ

h2 , j = i + 1,

0, j > i + 1.

(18)

Denoting the numerical solution vector by ψn = [ψn
0 ,ψn

1 , . . . ,ψn
N ], the vector equation

becomes

(I + τA)ψn+1 = ψn, (19)

where A is a matrix with elements aij = bij. Hence, the above given equation can be for-
matted as

ψn+1 = Mψn, (20)

where M = (I + τA)–1 is the iteration matrix.
The next theorems show that the finite difference scheme FDS expressed in Eq. (20)

is conditionally stable and consistent with first-order accurate in time and second-order
accurate in space.

We commence to prove the strictly diagonally dominant property for the iteration ma-
trix M.

Theorem 3 Let ε > 0,ρ > 0, and 0 ≤ α < 1 satisfy ρ > εhα+1

2 , where h is the spatial step.
Then the coefficients aij satisfy the inequality

|aii| >
N∑

j=0
j 
=i

|aij|, i = 1, 2, . . . , N .
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Proof Let i = 1, 2, . . . , N be given. Then consider the sum

N∑

j=0
j 
=i

|aij| =
i–2∑

j=0

|aij| + |ai,i–1| + |ai,i+1| +
N∑

j=i+2

|aij|

=
i–2∑

j=0

∣
∣∣
∣
εhα–1[vα

i–j+1 – vα
i–j–1]

2

∣
∣∣
∣ +

∣
∣∣
∣
εhα–1[vα

2 – vα
0 ]

2
–

ρ

h2

∣
∣∣
∣ +

∣
∣∣
∣
εhα–1vα

0
2

–
ρ

h2

∣
∣∣
∣.

Therefore, the previous lemma and the hypotheses ρ > εhα+1

2 guarantee that each term
is negative. So, we have

N∑

j=0
j 
=i

|aij| =
i–2∑

j=0

εhα–1[vα
i–j–1 – vα

i–j+1]
2

+
(

ρ

h2 –
εhα–1[vα

2 – vα
0 ]

2

)
+

(
ρ

h2 –
εhα–1vα

0
2

)
.

Replacing the finite sum with the infinite sum yields

N∑

j=0
j 
=i

|aij| <
i–2∑

j=–∞

εhα–1[vα
i–j–1 – vα

i–j+1]
2

+
(

ρ

h2 –
εhα–1[vα

2 – vα
0 ]

2

)
+

(
ρ

h2 –
εhα–1vα

0
2

)
.

Therefore, the telescoping sum has the form (vα
1 – vα

3 ) + (vα
2 – vα

4 ) + (vα
3 – vα

5 ) + (vα
4 – vα

6 ).
Now, b y Lemma 1, this equals vα

1 + vα
2 . Hence, we have obtained

N∑

j=0
j 
=i

|aij| <
εhα–1[vα

1 + vα
2 ]

2
+

(
ρ

h2 –
εhα–1[vα

2 – vα
0 ]

2

)
+

(
ρ

h2 –
εhα–1vα

0
2

)

=
εhα–1vα

1
2

+
2ρ

h2 = |aii|.

This completes the proof of the theorem. �

Corollary 1 The iteration matrix M in Scheme (20) is convergent, so the scheme itself is
conditionally stable.

Proof By the previous theorem, we infer that A is strictly diagonally dominant with pos-
itive diagonal elements, and so is I + τA. Therefore, the iteration matrix M = (I + τA)–1

exists, and its spectral radius satisfies

ρ(M) = ρ(I + τA)–1 =
(
1 + τρ(A)

)–1 < 1.

The proof is therefore completed. �

Theorem 4 Numerical Scheme (17) is consistent with second-order accuracy in space and
first-order one in time.
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Proof By using Eqs. (11), (12), (13), and (15), we write Eq. (10) at (xi, tn+1) as follows:

ψn+1
i – ψn

i
τ

+ O(τ )

= –
ε

2h

[

hα

i+1∑

j=0

vα
j ψn+1

i–j+1 + o(1) – hα

i–1∑

j=0

vα
j ψn+1

i–j–1 + o(1)

]

+ O
(
h2) + ρ

[
ψn+1

i–1 – 2ψn+1
i + ψn+1

i+1
h2

]
+ O

(
h2).

Therefore, we obtain

∂ψ(xi, t)
∂t

∣∣
∣∣
t=tn+1

= –ε
∂

∂x
[
J1–β
a ψ(x, tn+1)

]
∣∣
∣∣
x=xi

+ ρ
∂2ψ(x, tn+1)

∂x2

∣∣
∣∣
x=xi

,

which, indeed, leads to Eq. (10) at (xi, tn+1). The proof of the theorem is complete. �

Corollary 2 Numerical Scheme (17) is consistent and stable.

By the fundamental theorem of numerical methods for differential equations, the given
numerical scheme is convergent.

4 Finite volume scheme formulation
In this section, we propose a novel finite volume scheme formulation (FVSF) for solving
the SFCDE with constant coefficients

∂ψ(x, t)
∂t

+ ε
∂βψ(x, t)

∂xβ
= ρ

∂2ψ(x, t)
∂x2 , (21)

subject to the initial condition

ψ(x, 0) = g(x), a ≤ x ≤ b, (22)

where t ≥ 0, 0 < β ≤ 1, g(x) is an analytical smooth function of spatial x, ψ(x, t) is an un-
known analytical function, ε and ρ are positive parameters, and β is a parameter that de-
scribes the order of the space fractional, where the space fractional derivative is described
in the Riemann–Liouville sense. If β = 1, it becomes a linear convection–diffusion equa-
tion.

Now, to establish the finite volume scheme, we need to partition the finite domain � =
[a, b] to N + 1 uniformly spaced nodes xi = a + ih, i = 0, 1, . . . , N , where the spatial step is
h = b–a

N . Thus, by utilizing the Riemann–Liouville fractional derivative, we have

∂ψ(x, t)
∂t

+ ε
∂

∂x
J1–β
a ψ(x, t) = ρ

∂2ψ(x, t)
∂x2 , 0 < β ≤ 1, (23)

where J1–β
a is the Riemann–Liouville integral with respect to x. Setting α = 1 – β gives

0 ≤ α < 1. Integrating Eq. (23) over the ith control volume [xi– 1
2

, xi+ 1
2

] suggests

∫ xi+ 1
2

xi– 1
2

∂ψ(x, t)
∂t

dx =
∫ xi+ 1

2

xi– 1
2

∂

∂x

[
–εJα

a ψ(x, t) + ρ
∂u(x, t)

∂x

]
dx. (24)
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Dividing each side by h gives the standard finite volume discretization

dψ i(t)
dt

=
ε

h
[
Jα
a ψ(xi– 1

2
, t) – Jα

a ψ(xi+ 1
2

, t)
]

+
ρ

h

[∂ψ(xi+ 1
2

, t)

∂x
–

∂ψ(xi– 1
2

, t)

∂x

]
, (25)

where

ψ i(t) =
1
h

∫ xi+ 1
2

xi– 1
2

ψ(x, t) dx

is the control volume averages of ψ(x, t).
Using the fractionally-shift Grünwald formula to approximate Jα

a ψ(x, t) yields

Jα
aψ(x, t) = lim hα

h→0

[ x–a
h +p]∑

j=0

	(α + j)
	(α)	(j + 1)

ψ
(
x – (j – p)h, t

)
, (26)

in which h = x–a
N , x ∈ (a, b]. Hence, the Riemann–Liouville integral includes the order term

Jα
a ψ(x, t) = hα

N+p∑

j=0

vα
j ψ

(
x – (j – p)h, t

)
+ o(1). (27)

Therefore, due to certain needs of the fractional shift p = 1
2 , we write

Jα
a ψ(x, t)|x=xi– 1

2
= Jα

a ψ(xi– 1
2

, t) + hα

i∑

j=0

vα
j ψ(xi–j, t) + o(1), (28)

Jα
a ψ(x, t)|x=xi+ 1

2
= Jα

a ψ(xi+ 1
2

, t) + hα

i+1∑

j=0

vα
j ψ(xi–j+1, t) + o(1), (29)

where vα
0 = 1, vα

1 = α, and vα
j = (1 – (1–α)

j )vα
j–1, j = 2, 3, . . . . For ∂ψ(x,t)

∂x , use the identity

∂ψ(xi, t)
∂x

=
ψ(xi+1, t) – ψ(xi–1, t)

2h
+ O

(
h2) (30)

to write

∂ψ(xi– 1
2

, t)

∂x
≈

ψ(xi+ 1
2

, t) – ψ(xi– 3
2

, t)

2h
, (31)

∂ψ(xi+ 1
2

, t)

∂x
≈

ψ(xi+ 3
2

, t) – ψ(xi– 1
2

, t)

2h
. (32)

For Eqs. (31) and (32), use the standard averaging scheme ψ(xi+ 1
2

, t) ≈ [ψ(xi ,t)+ψ(xi+1,t)]
2 to

construct approximations of first derivative in terms of function values at the nodes xj:

∂ψ(xi– 1
2

, t)

∂x
≈ 1

4h
[
ψ(xi, t) + ψ(xi+1, t) – ψ(xi–2, t) – ψ(xi–1, t)

]
, (33)

∂ψ(xi+ 1
2

, t)

∂x
≈ 1

4h
[
ψ(xi+1, t) + ψ(xi+2, t) – ψ(xi–1, t) – ψ(xi, t)

]
. (34)
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So, Eq. (25) can be approximated as

dψ i(t)
dt

= εhα–1

[ i∑

j=0

vα
j ψ(xi–j, t) –

i+1∑

j=0

vα
j ψ(xi–j+1, t)

]

+
ρ

4h2

[
ψ(xi–2, t) – 2ψ(xi, t) + ψ(xi+2, t)

]
. (35)

Notice that if ψ(x, t) is a smooth function, then the value of the control volume averages
ψ i(t) will agree with the value of ψ(x, t) at the midpoint of the interval [xi– 1

2
, xi+ 1

2
] toO(h2).

So, we can rewrite Eq. (35) as

dψ(xi, t)
dt

= εhα–1

[ i∑

j=0

vα
j ψ(xi–j, t) –

i+1∑

j=0

vα
j ψ(xi–j+1, t)

]

+
ρ

4h2

[
ψ(xi–2, t) – 2ψ(xi, t) + ψ(xi+2, t)

]
. (36)

Now, define a temporal partition tn = nτ , n = 0, 1, . . . , where τ is the time step, and use
the standard backward difference to approximate the temporal derivative in Eq. (36) such
that

dψ(xi, t)
dt

∣∣∣
∣
t=tn+1

=
ψ(xi, tn+1) – ψ(xi, tn)

τ
+ O(τ ).

Let ψn
i ≈ ψ(xi, tn) denote the numerical solution. Then we have

ψn+1
i – ψn

i
τ

= εhα–1

[ i∑

j=0

vα
j ψn+1

i–j –
i+1∑

j=0

vα
j ψn+1

i–j+1

]

+
ρ

4h2

[
ψn+1

i–2 – 2ψn+1
i + ψn+1

i+2
]
. (37)

By collecting like terms, we rewrite Eq. (37) in the form

ψn+1
i – ψn

i
τ

=
1
h

N∑

j=0

kijψ
n+1
j , i = 0, 1, 2, . . . , N , (38)

where kij is given by

kij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εhα[vα
i–j – vα

i–j+1], j < i – 2,

εhα[vα
2 – vα

3 ] + ρ

4h , j = i – 2,

εhα[vα
1 – vα

2 ], j = i – 1,

εhα[vα
0 – vα

1 ] – ρ

2h , j = i,

εhα[–vα
0 ], j = i + 1,

ρ

4h , j = i + 2,

0, j > i + 2.
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The vector of the numerical solution ψn = [ψn
0 ,ψn

1 , . . . ,ψn
N ] can be denoted by

(
I +

τ

h
A

)
ψn+1 = ψn, (39)

where the matrix A has the elements aij = –kij.
The next two theorems explain that the finite volume scheme described in Eq. (37) is

conditionally stable and consistent with first-order accuracy in time and second-order ac-
curacy in space.

Theorem 5 For i = 0, 1, . . . , N , the numerical scheme ψn+1
i –ψn

i
τ

= 1
h
∑N

j=0 kijψ
n+1
j is condition-

ally stable.

Proof Substitute ψn
i = ψ̂n exp(iIξ ) into the numerical scheme to get

ψn+1
i – ψn

i
τ

=
1
h

N∑

j=0

kijψ
n+1
j , i = 0, 1, 2, . . . , N .

However, we have

ψ̂n+1 exp(iIξ ) – ψn exp(iIξ ) = r
N∑

j=0

kijψ̂
n+1 exp(jIξ ), r =

τ

h
, ψ̂n+1 = ρ(ξ )ψ̂n,

where

ρ(ξ ) =
1

[1 – r
∑N

j=0 kij exp((j – i)Iξ )]

satisfies the von Neumann condition when |1 – r
∑N

j=0 kij exp((j – i)Iξ )| ≥ 1. Therefore, by
using the reverse triangle inequality, we have

∣∣
∣∣
∣
1 – r

N∑

j=0

kij exp
(
(j – i)Iξ

)
∣∣
∣∣
∣
≥

∣∣
∣∣
∣
1 –

∣∣
∣∣
∣
r

N∑

j=0

kij exp
(
(j – i)Iξ

)
∣∣
∣∣
∣

∣∣
∣∣
∣
.

Hence, the von Neumann condition will be satisfied whenever
∣∣
∣∣
∣
1 –

∣∣
∣∣
∣
r

N∑

j=0

kij exp
(
(j – i)Iξ

)
∣∣
∣∣
∣

∣∣
∣∣
∣
≥ 1.

That is, either

1 –

∣
∣∣∣
∣
r

N∑

j=0

kij exp
(
(j – i)Iξ

)
∣
∣∣∣
∣
≥ 1,

which is impossible to hold, or

1 –

∣
∣∣∣
∣
r

N∑

j=0

kij exp
(
(j – i)Iξ

)
∣
∣∣∣
∣
≤ –1,

which is equivalent to |∑N
j=0 kij exp((j – i)Iξ )| ≥ 2

r .
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Thus, the symbol ρ(ξ ) of the numerical scheme satisfies the von Neumann condition if

∣∣
∣∣
∣

N∑

j=0

kij exp
(
(j – i)Iξ

)
∣∣
∣∣
∣
≥ 2

r
, ∀i = 0, 1, 2, . . . , N ,

which means that the numerical scheme is conditionally stable. This completes the proof
of the theorem. �

Theorem 6 Numerical Scheme (37) is consistent with second-order accuracy in space and
first-order one in time.

Proof Insert ψ(x, t) into expression (37) to get

ψ(xi, tn+1) – ψ(xi, tn)
τ

= εhα–1

[ i∑

j=0

vα
j ψ(xi–j, tn+1) –

i+1∑

j=0

vα
j ψ(xi–j+1, tn+1)

]

+
ρ

4h2

[
ψ(xi–2, tn+1) – 2ψ(xi–2, tn+1) + ψ(xi+2, tn+1)

]
,

Tn
i =

ψ(xi, tn+1) – ψ(xi, tn)
τ

– εhα–1

[ i∑

j=0

vα
j ψ(xi–j, tn+1) –

i+1∑

j=0

vα
j ψ(xi–j+1, tn+1)

]

–
ρ

4h2

[
ψ(xi–2, tn+1) – 2ψ(xi–2, tn+1) + ψ(xi+2, tn+1)

]
.

By the control volume averages, combined with a temporal backward difference for the
time derivative,

dψ i(tn+1)
dt

=
ψ(xi, tn+1) – ψ(xi, tn)

τ
+ O

(
τ + h2),

we have

Tn
i =

dψ i(tn+1)
dt

– O
(
τ + h2) – εhα–1

[ i∑

j=0

vα
j ψn+1

i–j –
i+1∑

j=0

vα
j ψn+1

i–j+1

]

–
v

4h2

[
ψn+1

i–2 – 2ψn+1
i + ψn+1

i+2
]
.

Substitute (25), (27), and (30) above, it turns to Tn
i = O(τ + h2). Hence, Tn

i → 0 as τ → 0
and h → 0. So, the given numerical scheme is consistent with second-order accuracy in
space and first-order in time. This completes the proof of the theorem. �

Corollary 3 Numerical Scheme (37) is consistent and stable.

By the fundamental theorem of numerical methods for differential equations, the given
numerical scheme is convergent.
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Table 1 Numerical results for Example 1 with varying β at time t = 1, fixed h = 0.015625 and τ = 0.01
using FDSF and FVSF

x β = 0.7 β = 0.8 β = 0.9

FDSF FVSF FDSF FVSF FDSF FVSF

1. 2.8695× 10–4 3.2270× 10–4 3.0669× 10–4 2.2835× 10–4 1.2079× 10–4 4.0124× 10–5

1.015625 5.7376× 10–4 6.4525× 10–4 6.1325× 10–4 4.5659× 10–4 2.4151× 10–4 8.0218× 10–5

1.03125 8.6030× 10–4 9.6750× 10–4 9.1951× 10–4 6.8460× 10–4 3.6208× 10–4 12.0254× 10–5

1.046875 1.14637× 10–3 12.8924× 10–4 1.22528× 10–3 9.1221× 10–4 4.8242× 10–4 16.0196× 10–5

1.0625 1.43177× 10–3 16.1023× 10–4 1.53032× 10–3 11.3925× 10–4 6.0243× 10–4 20.0010× 10–5

1.078125 1.71627× 10–3 19.3022× 10–4 1.83439× 10–3 13.6553× 10–4 7.2200× 10–4 23.9660× 10–5

1.09375 1.99964× 10–3 22.4893× 10–4 2.13724× 10–3 15.9087× 10–4 8.4103× 10–4 27.9109× 10–5

1.109375 2.28164× 10–3 25.6612× 10–4 2.43861× 10–3 18.1505× 10–4 9.5941× 10–4 31.8321× 10–5

1.125 2.56202× 10–3 28.8149× 10–4 2.73823× 10–3 20.3789× 10–4 10.7703× 10–4 35.7259× 10–5

1.140625 2.84055× 10–3 31.9476× 10–4 3.03583× 10–3 22.5918× 10–4 11.9379× 10–4 39.5886× 10–5

1.15625 3.11696× 10–3 35.0567× 10–4 3.33115× 10–3 24.7871× 10–4 13.0957× 10–4 43.4166× 10–5

1.171875 3.39102× 10–3 38.1392× 10–4 3.62391× 10–3 26.9629× 10–4 14.2428× 10–4 47.2062× 10–5

1.1875 3.66247× 10–3 41.1923× 10–4 3.91384× 10–3 29.1171× 10–4 15.3779× 10–4 50.9538× 10–5

1.203125 3.93106× 10–3 44.2132× 10–4 4.20068× 10–3 31.2477× 10–4 16.5000× 10–4 54.6558× 10–5

1.21875 4.19653× 10–3 47.1990× 10–4 4.48415× 10–3 33.3527× 10–4 17.6081× 10–4 58.3087× 10–5

1.234375 4.45864× 10–3 50.14697× 10–4 4.76397× 10–3 35.4299× 10–4 18.7011× 10–4 61.9088× 10–5

1.25 4.71715× 10–3 53.0542× 10–4 5.03990× 10–3 37.4776× 10–4 19.7778× 10–4 65.4528× 10–5

5 Numerical experiments
In this section, we introduce the numerical problems to verify the correctness and effec-
tiveness of the proposed schemes. Both schemes can efficiently be solved, but the FVSF
is more accurate than the FDSF. Two examples are introduced by comparing the numer-
ical solutions with the exact solutions. The computations are performed by Mathematica
Software 11.0.

Example 1 Consider the following SFCDE:

∂u(x, t)
∂t

+ ε
∂βu(x, t)

∂xβ
= ρ

∂2u(x, t)
∂x2 (40)

subject to the initial condition

u(x, 0) = – sin(πx), (41)

where x ∈ [1, 2.5], t ≥ 0, ε = 1,ρ = 2, and 0 < β ≤ 1. For β = 1, the exact solution is
u(x, t) = – sin(π (x – t)) exp(–2(π2t)). The proposed schemes are applied to solve the above
problem for different values of β such that β ∈ {0.7, 0.8, 0.9, 1}, by fixed h = 0.015625 and
τ = 0.01, h and τ are chosen small enough to demonstrate the accuracy of our schemes. In
Table 1, we show the numerical results at t = 1 with varying β such that β ∈ {0.7, 0.8, 0.9}
and x ∈ [1, 1.25] using the FDSF and the FVSF; while the absolute errors between the nu-
merical solution in both schemes and the exact solution are reported in Table 2. When
β = 1, t = 1, and x ∈ [1, 1.25], this table demonstrates that there is an agreement be-
tween the approximate solution and the exact solution, which confirms that the proposed
schemes are effective. According to our observations, the FVSF is more accurate than the
FDSF. The 2D plot of the solutions behavior with varying β such that β ∈ {0.7, 0.8, 0.9} is
drawn in Fig. 1 at t = 1 and x ∈ [1, 2.5] using the FVSF and the FDSF; while Fig. 2 shows
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Table 2 Exact solution and absolute errors for Example 1 at time t = 1, β = 1, fixed h = 0.015625 and
τ = 0.01 using FDSF and FVSF

x Exact solution Absolute error Absolute error

FDSF FVSF

1. 0. 7.193791× 10–5 5.814751× 10–6

1.015625 –1.312701× 10–10 1.438076× 10–5 1.162322× 10–7

1.03125 –2.622240× 10–10 2.1553847× 10–5 1.741653× 10–7

1.046875 –3.925462× 10–10 2.8706087× 10–5 2.318803× 10–7

1.0625 –5.219227× 10–10 3.5830568× 10–5 2.893150× 10–7

1.078125 –6.500419× 10–10 4.2920399× 10–5 3.464091× 10–7

1.09375 –7.765951× 10–10 4.9968719× 10–5 4.031040× 10–7

1.109375 –9.012773× 10–10 5.696871× 10–5 4.593420× 10–7

1.125 –1.023788× 10–9 6.391360× 10–5 5.150668× 10–7

1.140625 –1.143833× 10–9 7.079666× 10–5 5.702229× 10–7

1.15625 –1.261122× 10–9 7.761125× 10–5 6.247557× 10–7

1.171875 –1.375372× 10–9 8.435077× 10–5 6.786116× 10–7

1.1875 –1.486310× 10–9 9.100869× 10–5 7.317379× 10–7

1.203125 –1.593667× 10–9 9.757858× 10–5 7.840830× 10–7

1.21875 –1.697184× 10–9 10.40540× 10–5 8.355962× 10–7

1.234375 –1.796613× 10–9 11.04289× 10–5 8.862276× 10–7

1.25 –1.891714× 10–9 11.66969× 10–5 9.359287× 10–7

Figure 1 Solutions to Example 1 at time t = 1 for varying β using FDSF and FVSF

that FVSF provides an excellent agreement with the exact solution rather than the FDSF.
Moreover, the 3D plot of the exact solution behavior and the solutions behavior using the
FVSF is drawn in Fig. 3 at β = 1, t ∈ [0, 1] and x ∈ [1, 2.5].

Example 2 Consider the following SFCDE:

∂u(x, t)
∂t

+ ε
∂βu(x, t)

∂xβ
= ρ

∂2u(x, t)
∂x2 , (42)

subject to the initial condition

u(x, 0) = eζx, (43)

where x ∈ [–2, 4], ε = 0.1,ρ = 0.02, t ≥ 0, 0 < β ≤ 1, and ζ = 1.1771243444677. For β = 1,
the exact solution is u(x, t) = eζx–mt , m = 0.09. The FDSF and FVSF are tested numeri-
cally to solve the above problem for different values of β such that β ∈ {0.5, 0.7, 0.9, 1}, by
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Figure 2 Exact and approximate solutions to Example 1 at time t = 1 for β = 1 using FDSF and FVSF. Here
black and green lines coincide to some extent

Figure 3 Surface plot to Example 1 at β = 1 exact solution (left) and using FVSF (right)

fixed h = 0.0625 and τ = 0.01. Here, h and τ are chosen small enough to demonstrate
the accuracy of our schemes. The numerical results at t = 1 with varying β such that
β ∈ {0.5, 0.7, 0.9} and x ∈ [–2, –1.25] using the FDSF and the FVSF are reported in Ta-
ble 3. When β = 1, t = 1, and x ∈ [–2, –1.25], the numerical results are reported in Table 4.
These results demonstrate that the FVSF is more significantly accurate than the FDSF, and
it can be observed through by the absolute errors between the numerical solution in both
schemes and the exact solution. The 2D plot of the solutions behavior with varying β such
that β ∈ {0.5, 0.7, 0.90} is drawn in Fig. 4 at t = 1 and x ∈ [–2, 1] using the FDSF and the
FVSF, while Fig. 5 shows that the FVSF provides an excellent agreement with the exact
solution rather than the FDSF. Moreover, the 3D plot of the exact solution behavior and
the solutions behavior using the FVSF is drawn in Fig. 3 at β = 1, t ∈ [0, 1], and x ∈ [–2, 1].
Figure 6 shows the surface plot of the solution behavior at β = 1 by using the FVSF and
the FDSF at t ∈ [0, 1] and x ∈ [–2, 4].

Table 3 and Table 4 depict that the solution obtained by the FVSF is more accurate
and closer to the exact solution compared with the solution obtained by the FDSF in two
different experiments. Also, it is easy to increase the nodes in the regular grid to get higher-
order accuracy. Thus, it can be concluded that the FVM is effective for solving the SFCDE
with a constant coefficient. This implicit scheme can be improved for implementation
when tackling differential equations, in specific for problems with or without source terms
that are deformed or nonlinear. Also, it can handle general condition without difficulty and
can deal with unlimited kinds of the initial condition.
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Table 3 Numerical results for Example 2 with varying β at time t = 1, fixed h = 0.0625 and τ = 0.01
using FDSF and FVSF

x β = 0.7 β = 0.8 β = 0.9

FDSF FVSF FDSF FVSF FDSF FVSF

–2. 0.030621 0.030618 0.030579 0.030491 0.03033986 0.03033981
–1.9375 0.059504 0.059501 0.059414 0.059216 0.05887638 0.05887635
–1.875 0.085525 0.085520 0.085364 0.085010 0.08439982 0.08439979
–1.8125 0.108188 0.108174 0.107925 0.107367 0.10641620 0.10641618
–1.75 0.127745 0.127712 0.127348 0.126555 0.12521788 0.12521786
–1.6875 0.144948 0.144883 0.144390 0.143344 0.14160306 0.14160304
–1.625 0.160711 0.160604 0.159973 0.158670 0.15652714 0.15652713
–1.5625 0.175875 0.175718 0.174945 0.173386 0.17085273 0.17085271
–1.5 0.191093 0.190881 0.189964 0.188154 0.18524192 0.18524190
–1.4375 0.206829 0.206559 0.205497 0.203438 0.20015484 0.20015483
–1.375 0.223397 0.223067 0.221860 0.219551 0.21589775 0.21589774
–1.3125 0.241017 0.240626 0.239269 0.236708 0.23267882 0.23267880
–1.25 0.259854 0.259399 0.257890 0.255068 0.25065218 0.25065216

Table 4 Exact solution and absolute errors for Example 2 at time t = 1, β = 1, fixed h = 0.0625 and
τ = 0.01

x Exact solution Absolute error Absolute error

FDSF FVSF

–2. 0.02949131 2.860725× 10–4 8.30618× 10–5

–1.9375 0.05741732 1.941801× 10–4 9.50135× 10–5

–1.875 0.08254919 4.107925× 10–4 8.55201× 10–5

–1.8125 0.10222554 6.965656× 10–4 1.08174× 10–5

–1.75 0.12048793 1.199878× 10–4 1.27712× 10–5

–1.6875 0.13548110 1.046201× 10–4 4.48834× 10–5

–1.625 0.14885322 1.139510× 10–4 6.06044× 10–5

–1.5625 0.16225611 2.306122× 10–4 7.57187× 10–5

–1.5 0.17534557 1.393114× 10–4 9.08811× 10–5

–1.4375 0.18828164 6.647887× 10–4 0.20690× 10–5

–1.375 0.20312896 3.956443× 10–4 0.70671× 10–5

–1.3125 0.21995710 8.339676× 10–4 0.84062× 10–5

–1.25 0.23504094 8.336256× 10–4 0.25998× 10–5

Figure 4 Solutions to Example 2 at time t = 1 for varying β using FDSF and FVSF

6 Conclusions
The SFCDE is one of the most important equations used to describe physical phenom-
ena. In this paper, the FDM and the FVM have been developed for solving the SFCDE.
The space fractional derivative in this equation was considered in the Riemann–Liouville
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Figure 5 Exact and approximate solutions using FDSF and FVSF for Example 2 at time t = 1 and β = 1

Figure 6 Surface plot to Example 2 at β = 1 exact solution (left) and using FVSF (right)

sense. The Grünwald–Letnikov fractional formula has been used for the discretization of
space fractional derivative, and in both formulations the implicit scheme has been intro-
duced. It has been shown that both schemes are stable with first-order accuracy in time
and second-order accuracy in space. Numerical results have been found using Mathemat-
ica software 11.0. Comparing illustrated examples justified the efficiency and accuracy of
the proposed methods.
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